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Epigenetic modifications of DNA, such as cytosine methylation are differentially abundant
in diseases such as cancer. A goal for clinical research is finding sites that are
differentially methylated between groups of samples to act as potential biomarkers for
disease outcome. However, clinical samples are often limited in availability, represent a
heterogeneous collection of cells or are of uncertain clinical class. Array-based methods
for identification of methylation provide a cost-effective method to survey a proportion
of the methylome at single base resolution. The Illumina Infinium array has become a
popular and reliable high throughput method in this field and are proving useful in the
identification of biomarkers for disease. Here, we compare a commonly used statistical
test with a new intuitive and flexible computational approach to quickly detect differentially
methylated sites. The method rapidly identifies and ranks candidate lists with greatest
inter-group variability whilst controlling for intra-group variability. Intuitive and biologically
relevant filters can be imposed to quickly identify sites and genes of interest.
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INTRODUCTION
Studying DNA methylation profiles and related implications in
developmental processes and diseases is currently the focus of
much epigenetic research e.g., (Teschendorff et al., 2010; Sproul
et al., 2011). Recent advances in the field of DNA methyla-
tion are due to a large range of experimental methods to detect
genome-wide DNA methylation patterns. Amongst these, DNA
methylation arrays, in particular the Illumina Infinium Human-
Methylation BeadChips (Bibikova et al., 2011; Sandoval et al.,
2011) provide a cost-effective platform to quantitatively measure
methylation levels at single-base resolution. Their quantitative
accuracy in comparison to other methods has been shown in
recent studies (Bibikova et al., 2011; Dedeurwaerder et al., 2011;
Touleimat and Tost, 2012). This is particularly clear when differ-
ences between compared groups are substantial, as non-uniform
variation in the mid-range (heteroscedasticity) may mask true
differences (Roessler et al., 2012).

When using these arrays, a common goal is to find CpG sites
that are differentially methylated between two groups of sam-
ples, for example, in order to identify diagnostic biomarkers
for diseases like cancer. Statistical tests, like the non-parametric
Wilcoxon rank sum test, present an obvious approach to detect
differential methylation between groups and are used in tools
developed to analyse methylation arrays. These approaches may
be combined with the ability to rank statistically significant sites
according to the absolute difference between the average methy-
lation levels of the analysed groups e.g., (Kanduri et al., 2010;
Øster et al., 2011). However, in clinical cases, these approaches are
often limited by the rarity of material, resulting in groups of lim-
ited numbers and an underpowered tool. Also, if a filtering step
of absolute differences is not applied, retrieved candidates can

represent statistically significant candidates which may be biolog-
ically irrelevant or difficult to validate by other means such as
pyrosequencing (Roessler et al., 2012). Moreover, potential sites
can be difficult to detect, if the sample DNA is obtained from a
heterogeneous population of cells.

Here, we present Numerical Identification of Methylation
Biomarker Lists (NIMBL), an approach to identify potential
candidates, which uses a simple heuristic to identify and visual-
ize differential methylation patterns between groups of samples.
Importantly, NIMBL can also be used to compare and visual-
ize the results obtained by multiple Infinium array investigation
tools.

RESULTS
IDENTIFICATION OF DIFFERENTIALLY METHYLATED SITES
USING NIMBL
The input to NIMBL consists of a matrix of unique identifiers
of each measured site and the paired measurements obtained for
each sample: an unmethylated and methylated average hybridiza-
tion signal, along with a detection p-value serving as a measure of
probe performance. Additionally, annotation is provided for all
array sites, setting them in genomic context by specifying chro-
mosomal location, association with a gene or with a CpG island,
etc. Methylation levels are usually estimated by calculating the
proportion of the methylated signal to the sum of both signals
and a constant offset, which avoids an overestimation if mea-
sured signals are low (Bibikova et al., 2009). These estimates are
called beta values and can easily be interpreted as the proportion
of methylation at a given locus. Thus, beta values range from 0
(CpG site always found unmethylated in sample DNA) to 1 (CpG
site always found methylated in sample DNA). If beta values are
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already provided as part of the input, these values are used for
analysis.

NIMBL consists of four main modules. The first module
(NIMBL-qc) allows for a basic quality assessment of samples.
Several output plots are generated to visualize the sample qual-
ity including a plot of the beta value distribution of each sample.
Deviation from the expected distribution is largely related to
the detection p-values, where an increase in number of mea-
surements with low confidence of methylation accuracy (e.g.,
detection p-value >0.05) is reflected by a significant deviation of
beta value distribution. A Kolmogorov–Smirnov test is performed
to assist the identification of low quality samples which may influ-
ence downstream analysis and these can be then excluded from
further analysis.

The core module of NIMBL is used to identify differentially
methylated sites. Detection of differential methylation requires
the selection of any two groups of samples, for example, tumor
samples and controls. Array sites, where measurements are miss-
ing or show low confidence in a number of samples, can be
excluded from differential methylation analysis by user-defined
thresholds. Optionally, specific groups of sites can be selected
using their annotation, for example, to include only autosomes
in the analysis or restrict analysis to sites within CpG islands.
Differentially methylated sites are identified as sites with the
largest difference in methylation levels between the two groups.
The user can control this by specifying a minimum beta value
distance (d) between non-overlapping groups (Figure 1).

NIMBL has been developed in collaboration with researchers
working with clinical data particularly those derived from tumor
samples. These data have peculiarities which have guided some of
the features of NIMBL. One of which is a method to cope with
higher heterogeneous methylation common in primary tissue
samples, particularly tumor samples when compared to cell lines
[as has been noted previously (Bibikova et al., 2011; Roessler et al.,

2012)]. This problem is increased in surgically removed samples
which often include histopathologically normal cells resulting
from the resection margin surrounding a removed tumor. To this
end we have incorporated a user option to mask a proportion of
samples which are highly heterogeneous. This option may also be
useful to identify biomarkers where a sample cannot confidently
be placed into a clinical group. If appropriate, the user specifies
a maximum fraction of samples (m), which can be masked from
each group (Figure 1, see Materials and Methods). Finally, the list
of potential biomarkers is ranked by calculating a score based on
the inter-group and intra-group variability:

score = beta_valdist − (mediandiff − beta_valdist) (1)

where beta_valdist is the distance in beta values between non-
overlapping groups and mediandiff is the absolute difference of the
medians of each group. Higher discrimination between groups
and lower variability within groups yields a higher score. The
ranked list of potential biomarkers is visualized in a summary
plot and reported along with annotation information in a text file.
Besides the default procedure, further constraints can be imposed
to test a biological question. These constraints can, for exam-
ple, impose biologically motivated limits on methylation levels
within one group, e.g., hypomethylated in a single group by lim-
iting the beta value range allowed for that group. Additionally,
the core module generates a comprehensive table of genes asso-
ciated with the sites identified. This gene-centric analysis allows
the rapid investigation of enrichment of differentially methy-
lated sites within the genes and their corresponding regions (e.g.,
promoter regions).

The third module (NIMBL-gene) allows the detailed exam-
ination of user defined genes of interest. Genomic informa-
tion is used to create methylation overview plots of each gene,
where methylation measurements are plotted according to their

FIGURE 1 | Detection of differential methylation by NIMBL.

Each site is tested for a minimum distance of beta values (d )
between two groups (corresponding samples depicted as circles
and squares). If no samples are masked (m = 0), only non-overlapping

sites separated by at least a value of d are identified (A). If samples
are masked (marked as x), sites with previously overlapping groups
(B) or low discrimination (C) are additionally identified and flagged
(B∗,C∗).
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genomic location. Moreover, alignment files in the FASTA format,
which contain the DNA sequence of each gene and the aligned
DNA probe sequences, provide information of the exact sequence
context of array measurements.

Finally, the fourth module (NIMBL-compare) can be used to
compare two or three lists of sites identified by any method or by
different settings of one method. The comparison is performed
both on a site level and gene level. The gene information tables,
similar to the one obtained from the core module, can be used to
identify candidate genes that are common or unique between the
input lists or their subsets.

COMPARISON OF METHODS TO DETECT DIFFERENTIALLY
METHYLATED SITES
Whilst no universally accepted method for the analysis of
Infinium arrays exists; widely used approaches are incorporated
within the Illumina Methylation Analyzer (IMA) (Wang et al.,
2012). Whilst IMA has many variables, common usage is to con-
duct the Wilcoxon rank-sum test for inference of differences
between categorical groups and a general linear model (using the
limma R package) to infer methylation change associated with a
continuous covariate (Smyth, 2005).

A publicly available breast cancer data set consisting of eight
tumor and eight normal samples (Dedeurwaerder et al., 2011)
was used as the test data (see Materials and Methods). IMA
was run using both Wilcoxon rank sum test and linear model
(limma) approaches and the results obtained were compared.
The NIMBL-compare module was used to visualize overlap and
uniquely identified differentially methylated sites.

Table 1 highlights that when no minimum median differ-
ence between groups is imposed (filter = no) many (11,681)
sites are identified by all three methods representing approx-
imately 78% of those detected by NIMBL [d = 0.1, m = 2].
Substantial differences between the three approaches are seen
with 1730, 1506, and 3319 sites identified by only a single method
(NIMBL [d = 0.1, m = 2], Wilcoxon and limma, respectively).
The scatterplot output of NIMBL-compare shows that whilst the
value of m influences overlap (Table 1, Figure 2), the majority
of sites not identified by NIMBL are due to small differences
between groups. When a minimum beta value median differ-
ence between groups of 0.2 is imposed (Table 1, filter = yes),
the number of sites identified by all methods reduces by approxi-
mately 33% (7823 sites identified by all methods). The number
of sites identified by an individual method also substantially

Table 1 | Number of differentially methylated sites.

d m Filter Ntot Wtot Ltot N+W+L N+W N+L W+L N W L

0.1 0 No 1347 32,184 35,629 1347 0 0 29,329 0 1508 4953

0.1 1 No 5740 32,184 35,629 5351 0 318 25,325 71 1508 4635

0.1 2 No 15,047 32,184 35,629 11,681 2 1634 18,995 1730 1506 3319

0.1 0 Yes 1134 10,847 13,210 1134 0 0 9698 0 15 2378

0.1 1 Yes 4457 10,847 13,210 4186 0 256 6646 15 15 2122

0.1 2 Yes 9520 10,847 13,210 7823 1 1229 3009 467 14 1149

Sites identified by each method were compared against each other. Overlapping and unique sites are reported. Abbreviations: d, minimum inter-group distance

within NIMBL; m, maximum number of masked samples in each group within NIMBL; filter, minimum median beta value difference of 0.2 between groups;

N, NIMBL; W, IMA Wilcoxon test; L, IMA limma test; tot, total number of sites identified by each method.

FIGURE 2 | Comparison of methylation levels without post-filter.

NIMBL-compare output of median beta values of normal versus cancer
samples when no samples (m = 0) (A) or up to two samples (m = 2)

(B) were masked by NIMBL. The number of sites unique to each of the
seven sets are given in brackets. Abbreviations: N, NIMBL; W, IMA wilcoxon;
L, IMA limma.
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reduces (467 NIMBL [d = 0.1, m = 2], 14 Wilcoxon and 1149
limma, see Table 1 and Figure 3). Whilst imposition of a mini-
mum median beta value difference of 0.2 may appear arbitrary,
this is a cut-off that has been shown to allow robust confirma-
tion of findings by alternative methods such as sequencing of
sodium bisulfite converted DNA, which is considered the gold
standard method for quantifying DNA methylation (Emes and
Farrell, 2012).

This comparison highlights the lack of concordance between
NIMBL and IMA and also between the limma and Wilcoxon
methods of IMA. Importantly due to the variability of methy-
lation between individuals and cells, reporting of single sites
which are differentially methylated is unlikely to identify epige-
netic modifications relating to changes in phenotype. To achieve
this, a gene- or region-centric approach should be undertaken.
One such approach known as the “bump hunting” method (Jaffe
et al., 2012), which was originally developed for CHARM arrays
(Irizarry et al., 2008), is also applicable to Infinium methylation
array data. However, the lower density of measurements of the
Infinium compared to CHARM arrays leads to a significant sub-
set of unused measurements (Jaffe et al., 2012). An alternative
is to collect and summarize methylation measurements for spe-
cific gene regions (e.g., proximal to transcriptional start sites) as is

conducted by IMA. This has been suggested to improve statistical
power by conducting fewer individual tests (Wang et al., 2012).
To summarize data for a region, NIMBL reports the number
of sites measured and the number of these detected as differen-
tially methylated within different annotated regions of each gene.
This approach allows for a rapid identification of genes and gene
regions of interest.

When the numbers of sites from each approach are mapped to
underlying genes an increase in overlap between methods is seen
(Table 2). 4678 genes are identified as differentially methylated by
all methods; this is approximately 89% of the 5282 differentially
methylated genes detected by NIMBL (Table 2).

Using NIMBL-gene a user defined list of candidate genes
can be investigated in greater detail. Figure 4 shows an exam-
ple graphical output of NIMBL for the gene chondroadherin
(CHAD) identified as differentially methylated by all compared
methods. In the test data the CHAD gene is clearly hyperme-
thylated in the cancer samples. This increase in methylation is
particularly distinct in the region in close proximity to the tran-
scriptional start site (TSS-200 – txStart in Figure 4). Although
this is a good candidate for an epigenetically regulated gene, this
example also highlights that individual cancer samples can be par-
ticularly heterogeneous with one or two cancer samples having a

FIGURE 3 | Comparison of methylation levels with post-filter.

NIMBL-compare output of median beta values of normal versus cancer
samples when no samples (m = 0) (A) or up to two samples (m = 2) (B) were

masked by NIMBL and sites were selected by a minimum median beta value
difference of 0.2. The number of sites unique to each of the seven sets are
given in brackets. Abbreviations: N, NIMBL; W, IMA wilcoxon; L, IMA limma.

Table 2 | Number of differentially methylated genes.

d m Filter Ntot Wtot Ltot N+W+L N+W N+L W+L N W L

0.1 0 No 772 7871 8465 772 0 0 6978 0 121 715

0.1 1 No 2613 7871 8465 2550 0 46 5200 17 121 669

0.1 2 No 5282 7871 8465 4678 6 283 3072 315 115 432

0.1 0 Yes 665 3918 4532 665 0 0 3249 0 4 618

0.1 1 Yes 2074 3918 4532 1999 0 69 1915 6 4 549

0.1 2 Yes 3678 3918 4532 3207 0 341 707 130 4 277

Genes identified by each method were compared against each other. Overlapping and unique genes are reported. N, NIMBL; W, IMA Wilcoxon test; L, IMA limma

test; tot, total number of genes identified by each method.
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methylation profile more similar to normal samples. It was the
observation of these examples which drove the NIMBL approach
to allow masking of a proportion of sites when identifying differ-
entially methylated candidates.

Whilst there is general agreement between methods, a sub-
stantial number of genes are also identified by a single approach
(315 NIMBL [d = 0.1, m = 2], 115 Wilcoxon and 432 limma,
see Table 2). The number of genes identified by a single
approach is again reduced when a minimum median difference
between groups of 0.2 is imposed (130 NIMBL [d = 0.1, m = 2],
4 Wilcoxon and 227 limma, see Table 2). One of the 130 genes
identified by NIMBL alone as being an epigenetically regulated
candidate is solute carrier family 38, member 2 (SLC38A2). Three
sites upstream of the transcriptional start site were identified by
NIMBL as being hypomethylated in cancer samples (Figure 5).
Generally hypomethylation of a promoter region will be asso-
ciated with expression of the gene in question. In this case we
would predict hypomethylation of the potential promoter region
of SLC38A2 would result in higher expression of SLC38A2 in the
breast cancer samples analyzed. Although this would require ver-
ification, SLC38A2 gene expression is found to be upregulated in

various cell lines including ssMCF7 breast cancer and HMEC184
breast cancer (Lukk et al., 2010).

DISCUSSION
Recent emphasis on the unraveling of the epigenome has resulted
in a number of methods for the identification of differential
methylation and this continues to be an active area of research
e.g., (Du et al., 2008; Barfield et al., 2012; Kilaru et al., 2012; Wang
et al., 2012). From our interactions with clinical researchers, par-
ticularly those interested in comparison of disease with clinically
normal samples, we identified that a biologically intuitive method
for the interpretation and prioritization of candidate biomarkers
would be useful to the research community. We have developed
an intuitive numerical approach that can quickly test various
biological hypotheses to retrieve a list of candidates, which can
be subject for follow-up studies. Our method is focused on
incorporating biologically meaningful constraints, thereby taking
advantage of the easy interpretation of beta values. An alterna-
tive method to quantify methylation levels for the Infinium array
(M-value) (Irizarry et al., 2008) has been suggested to outper-
form beta values in detection of differentially methylated CpG

FIGURE 4 | Methylation profile of gene CHAD. NIMBL-gene output
showing a zoomed region of the genomic location of the gene CHAD
displaying 12 out of 14 CpG sites associated with this gene on the array.
The stems below the x-axis correspond to all CpG sites located in this

region. CpG sites identified as differentially methylated by NIMBL
[d = 0.1, m = 2] are highlighted with asterisks. Abbreviations: TSS200,
position 200 bp upstream of transcriptional start site (txStart); cdsStart,
coding sequence start.
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FIGURE 5 | Methylation profile of gene SLC38A2. NIMBL-gene output
showing a zoomed region of the genomic location of the gene SLC38A2
displaying 18 out of 20 CpG sites associated with this gene on the array. The
stems below the x-axis correspond to all CpG sites located in this region.

CpG sites identified as differentially methylated by NIMBL [d = 0.1, m = 2]
are highlighted with asterisks. Abbreviations: TSS1500, position 1500 bp
upstream of transcriptional start site; TSS200, position 200 bp upstream of
transcriptional start site (txStart); cdsStart, coding sequence start.

sites (Du et al., 2010). However, we use beta values as they are
robust to the type of methylation quantification (Bell et al., 2011)
and the values are easily interpretable in a biological context.

It is important to note that none of the available methods
including NIMBL will be guaranteed to provide a list of true
positives, but these methods are invaluable to prioritize genes of
particular interest to the researcher. To aid with this interpreta-
tion we developed modules of NIMBL that allow comparisons of
different methods, visualize differentially methylated sites in the
context of the gene, and provide the genomic DNA and probe
information so that confirmatory experiments can be quickly
conducted.

The results obtained using the freely available test data showed
that the majority of sites identified by NIMBL are also iden-
tified by two common approaches (Wilcoxon test and limma
procedure), which are both available within IMA. Many sites
were detected by IMA using the limma and/or Wilcoxon tests.
However, many of these were due to small differences (median
beta value difference <0.2) between groups (Table 1). Whilst
some of these are potentially of interest, most will not be readily
verifiable by sequencing methods.

When a minimum median beta value difference of 0.2 post-
filter is used, many of these additional sites are removed, although
a significant number (3023) remain undetected by NIMBL but
detected by IMA with the Wilcoxon option. Wilcoxon is the
default option of IMA for comparison of categorical data which
we have in this test example and is therefore expected to be more
appropriate than the limma method. However, there is signifi-
cant overlap between the Wilcoxon and limma approaches of IMA
with the limma option producing the largest number of candidate
sites. Limma is an R package for linear modeling of experimen-
tal data and was developed for use in the analysis of microarray
data (Smyth, 2005). As the experiment conducted here used cat-
egorical data (normal vs. cancer data) it is possible that the use
of limma is inappropriate and has identified some false positives
and potentially only those also identified using the appropriate
Wilcoxon method should be considered.

To overcome the problems when comparing clinical samples
such as tumor samples with high heterogeneity, the potential of
mis-diagnosis or analysis of a mixed population of cells, NIMBL
was developed to allow the masking of a proportion of values
from each compared group. The effect of the masking variable
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can be seen in Table 1 and Figure 2. When m = 1 a total of 5740
sites are identified as differentially methylated by NIMBL. 5669
(98.8%) of these are also identified by IMA using either the limma
or Wilcoxon method. As the number of masked sites increases
the number of NIMBL-specific sites also increases. For example,
when m = 2 a total of 15,047 sites are identified as differentially
methylated by NIMBL and the majority of these (13,317, 88.5%)
are also identified by IMA using either the limma or Wilcoxon
method whilst a small proportion (1730) of CpGs are detected
by NIMBL alone. This may be seen as a controversial approach as
the removal of highly variable sites would invalidate the principles
of statistical testing. However, the number of individual samples
masked is reported in the NIMBL output and should be used
as one of the criteria in ranking candidates for verification. We
are confident that this option offers flexibility for the user and
this approach has identified a number of candidates of interest
by ourselves, for example, the identification of SLC38A2 identi-
fied here as a potentially epigenetically regulated gene which is
differentially expressed in breast cancer cell lines.

The quality control implemented within NIMBL allows a
quick assessment of overall sample performance. An aberrant beta
value distribution of samples detected by NIMBL is used as an
indicator of a low quality sample on the array. However, such
a deviation might be due to biological reasons (e.g., large chro-
mosomal aberrations) rather than technical failure. The user is
advised to integrate all quality control information, especially the
number of low quality measurements of each sample. A correla-
tion between these data and an aberrant beta value distribution
is a strong indicator of an experimental problem. Other tools,
for example, the R packages lumi (Du et al., 2008), methy-
lumi or HumanMeth27QCReport (Mancuso et al., 2011), offer
comprehensive quality control procedures and could be used if
required.

Several technical factors have been identified to impact the
methylation data obtained from Infinium arrays, including batch
effects, color bias, and a methylation level shift due to two differ-
ent probe designs (commonly referred to Infinim I and II) that are
used for the latest array technology (Dedeurwaerder et al., 2011;
Sun et al., 2011; Touleimat and Tost, 2012). The probe design
compensation is considered an important correction by multiple
groups. NIMBL offers the option to correct Infinium II signals
as described in Dedeurwaerder et al. (2011). However, two alter-
native methods have also been proposed recently (Maksimovic
et al., 2012; Touleimat and Tost, 2012). No absolute standard
for data preprocessing has been established yet and further stud-
ies are necessary to evaluate and integrate different correction
approaches within preprocessing pipelines as was shown recently
in Touleimat and Tost (2012). Whilst the methods to preprocess
samples may change, the output of preprocessed beta values from
any preprocessing tools can easily serve as the input for NIMBL
or multiple methods can be compared with NIMBL-compare.

NIMBL was developed as a methylation analysis pipeline
which can be used by researchers in an easy and intuitive
way without requiring detailed programming knowledge. Setting
methylation measurements in their genomic context signifi-
cantly facilitates the biological interpretation of methylation array
data.

MATERIALS AND METHODS
DATASETS
The methylation dataset used in this study was retrieved from
the Gene Expression Omnibus (GEO) database (GEO accession
GSE29290). This dataset consists of eight breast tumor samples
and eight normal breast tissue samples (Dedeurwaerder et al.,
2011), for which methylation levels were measured with the
Illumina HumanMethylation450 BeadChip. The obtained data
files include the methylation levels as beta values and corre-
sponding detection p-values to estimate the quality of the mea-
surement. The HumanMethylation450_15017482_v.1.1 manifest
from Illumina was used for annotation of array sites (includ-
ing, for example, gene and gene region information). Genomic
information including genomic DNA sequence and coordinates
of gene coding regions were obtained from the UCSC Genome
Browser database (Dreszer et al., 2012).

SOFTWARE
Two software packages were used for methylation analy-
sis. First, NIMBL (Numerical identification of Methylation
Biomarker Lists) is a Matlab package which is freely avail-
able from: https://sites.google.com/site/emesbioinformatics/
group-software. Second, IMA (Illumina Methylation Analyzer,
version 3.1.2) (Wang et al., 2012) is an R package, which is freely
available from: http://www.rforge.net/IMA/.

DATA PRE-PROCESSING
Array sites with one or more of the 16 samples having a detec-
tion p-value of less than 0.05 and sites with missing measurements
(beta values) were excluded from differential methylation analy-
sis in both software packages. The final dataset contained 480,917
measurements as the input of both packages.

DIFFERENTIAL METHYLATION ANALYSIS
The detection of differentially methylated sites by NIMBL is con-
trolled by setting a minimum beta value distance (d) between
non-overlapping groups. Optionally, a maximum number of
samples can be masked within each group. Two different masking
limits for each group can be specified within NIMBL. We used
the same value (m) for each group within this study. Masking of
samples is performed for each array site independently. Group
medians are calculated and the distance of each sample to the
corresponding group median is determined. The sample most
distant to its group median is masked and remaining samples are
re-tested for d. A single sample is masked per iteration irrespec-
tive of group. This process repeats until either d is reached or m
samples are masked for each group. Here, the differential methy-
lation settings used for NIMBL are based on a constant level of
beta value inter-group distance (d = 0.1) and three different val-
ues for the maximum number of masked samples within each
group (m = 0, 1 or 2). The NIMBL input script for the com-
plete methylation analysis of the test data can be obtained from
the example directory within the NIMBL package.

To detect differential methylation by IMA, the Wilcoxon and
limma methods were applied. The Benjamini–Hochberg (BH)
procedure was used for multiple testing correction of both IMA
methods and the cut-off for adjusted p-values was set to 0.05.
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NIMBL-compare was used to impose a post-filter of a median
methylation difference of 0.2 between the two groups.
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