
about 3 h ( miRNA-125b), so overall the 
generation of a new miRNA, its longevity 
and interdiction of translational processes 
may be relatively rapid neurogenetic process 
(Sethi and Lukiw, 2009). However, other bio-
physical and neurogenetic parameters such 
as miRNA secondary and tertiary structure, 
miRNA binding proteins, and other factors 
may significantly extend miRNA viability 
and action.

Another poorly understood layer of 
complexity in miRNA signaling is that sev-
eral miRNAs may regulate a single mRNA 
in a neurogenetic control process known 
as miRNA convergence, and conversely, a 
single miRNA may interact with multiple 
mRNAs in a regulatory process known as 
miRNA divergence (Lukiw and Alexandrov, 
2012). Multiple functioning, and sometimes 
overlapping, miRNA binding sites have been 
found, for example, in the 232 nt 3′-UTR of 
the human innate immune response regula-
tor complement factor H (CFH) mRNA in 
the human brain and retina. Therefore a dif-
ferent repertoire of miRNAs might be used 
to regulate CFH expression in either of these 
related tissue types (Lukiw and Alexandrov, 
2012; Lukiw et al., 2012). Indeed, overlap-
ping of miRNA binding sites in the 3′-UTR 
of the same mRNA may be an evolutionary 
strategy to regulate specific gene expression 
via a common genetic signal in multiple and 
related cell types (Lukiw and Alexandrov, 
2012; Lukiw et al., 2012). Anti-miRNA 
(antagomir, AM) approaches to these multi-
ple miRNA binding sites in mRNA 3′-UTRs 
are currently redirecting our therapeutic 
perspectives to potentially yield novel and 
highly efficacious treatment strategies for 
brain diseases that have not yet been con-
sidered (Lukiw et al., 2008, 2012; Cui et al., 
2010; Wang et al., 2012). It will be particu-
larly interesting to analyze global miRNA–
mRNA targeting and control patterns in the 
brain and CNS to further unravel this fas-
cinating,  evolutionarily  selective  regulatory 

The discovery of small non-coding RNAs 
(sncRNAs), and the biological actions of 
these ribonucleotide entities in the develop-
ing, aging, and pathological human central 
nervous system (CNS) has opened a novel 
and fascinating vista into our appreciation 
of human brain epigenetics, the role of 
sncRNAs on homeostatic and pathogenic 
gene control, and the potential role of sin-
gle stranded, 22 nt signals in shaping the 
transcriptome of the human CNS (Lukiw 
et al., 1992; Ambros, 2004, 2011; Lukiw, 
2007; Lukiw and Pogue, 2007; Guo et al., 
2010). Indeed, a major family of sncR-
NAs known as micro RNAs (miRNAs) has 
emerged as essential and critical regulators 
of gene expression in diverse neurobiologi-
cal pathways in both health and disease. 
The primary mode of action of miRNAs is 
to bind to target ribonucleotide sequences 
in messenger RNAs (mRNAs), typically 
in their 3′ un-translated region (3′-UTR), 
resulting in a highly selective repression of 
the readout of that mRNA’s genetic informa-
tion (Lukiw, 2007; Guo et al., 2010; Ambros, 
2011). Pathogenically up-regulated miRNAs 
can be considered an epigenetic mechanism 
to down-regulate specific mRNAs and their 
expression. Up-regulated miRNA in human 
brain-specific neurodegenerative disorders 
such as Alzheimer’s disease (AD) may help 
explain the large number of essential brain 
gene messages observed to be significantly 
down-regulated in AD affected anatomical 
regions, such as in the temporal lobe neo-
cortex (Brodmann area 22) and hippocam-
pus, or in primary human brain cell cultures 
that are chronically subjected to AD-relevant 
stressors (Loring et al., 2001; Colangelo et al., 
2002; Lukiw, 2004, 2012; Lukiw and Pogue, 
2007; Sethi and Lukiw, 2009; Ginsberg et al., 
2012; Lukiw and Alexandrov, 2012; Lukiw 
et al., 2012; Wang et al., 2012). While the 
total number of human miRNAs identified 
to date in all tissues numbers around 2000, 
the number of abundant human brain miR-

NAs is surprisingly far less; for example only 
about one-thirtieth of all so far identified 
human miRNAs are abundantly present 
in the human brain association neocortex 
(Table 1). Further, mathematical, bioinfor-
matical, and nucleotide sequence analysis 
indicate that a 22 nt single stranded RNA 
composed of four different ribonucleotides 
(A, G, C, and U) may have as many as 1013 
possible sequence combinations, so the fact 
that there typically only on the scale of ∼102 
abundant miRNAs in any single human brain 
sample suggests a very high developmental 
and evolutionary selection pressure to uti-
lize only specific miRNA oligonucleotide 
sequences that will yield neurobiologically 
useful miRNA–mRNA interactions (Lukiw, 
2012; Lukiw and Alexandrov, 2012). Table 1 
lists the 61 most abundant miRNAs found 
in a critically controlled pool of short post-
mortem interval (PMI; <3 h; total N = 21) 
human association neocortex (Brodmann 
area A22) indicating that only about 61 of 
1013, or less than one in one hundred trillion of 
all potential miRNA species possible have been 
selected to play some role in brain-essential 
regulatory functions as a brain abundant 
miRNA. An additional interesting fact is that 
miRNAs are highly developmental stage-, 
tissue- and cell-specific, even in adjacent 
cell types, and mean abundance of these 
individual species may fluctuate as do the 
levels of transcription factors which regu-
late pre-miRNA transcription (Burmistrova 
et al., 2007; Lukiw and Pogue, 2007; Guo 
et al., 2010; Lukiw and Alexandrov, 2012). 
The stability, and hence persistence of 
action, of sncRNAs, and miRNA appear 
to follow the adenine-uracil (AU) element 
(ARE) rich rules as for mRNA stability, and 
the half-life of several brain abundant miR-
NAs has been observed to be surprisingly 
restricted (Sethi and Lukiw, 2009; Wang 
et al., 2012). For example, human brain 
miRNA half-lives have been estimated to 
range from about 30 min (miRNA-9) to 
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networking. How individual sncRNA, 
miRNA, and mRNA complexity together 
become progressively altered in aging and 
disease, and their selective quenching using 
novel AM strategies should be of high thera-
peutic value in the homeostatic stabilization 
of miRNA complexity, and in the treatment 
of common, age-related degenerative disor-
ders, both inside and outside of the central 
nervous system.
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