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The question whether adaptation follows a deterministic route largely prescribed by the
environment or can proceed along a large number of alternative trajectories has engaged
extensive research over the recent years. Experimental evolution studies enabled by
advances in high throughput techniques for genome sequencing and manipulation, along
with increasingly detailed mathematical modeling of fitness landscapes, are beginning to
allow quantitative exploration of the repeatability of evolutionary trajectories. It is becoming
clear that evolutionary trajectories in static correlated fitness landscapes are substantially
non-random but the relative contributions of determinism and stochasticity in the evolu-
tion of specific phenotypes strongly depend on the specific conditions, particularly the
magnitude of the selective pressure and the number of available beneficial mutations.
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1. MEASURING EVOLUTIONARY REPEATABILITY
The great evolutionist Stephen Jay Gould often employed the
metaphor “replaying life’s tape” to emphasize the preeminent
role of contingency in the evolutionary process (Gould, 1990).
In Gould’s view, the outcome of this Gedanken experiment would
have been dramatically different from the actually observed course
of events because evolution is essentially a stochastic phenomenon
whereby trajectories that start infinitely close to each other soon
diverge because the divergence is exponential. The actual evo-
lutionary trajectory is fundamentally unpredictable because the
survival of the fittest could occur along a great number of forking
paths. Until recently, the relative contributions of determinism and
stochasticity in the evolutionary process had been a problem that,
however fascinating, could not be addressed by direct means. The
well-established (near) neutrality of many (probably a substantial
majority) of the fixed mutations (Kimura, 1983, 1986; Koonin and
Wolf, 2010; Nei et al., 2010) as well as the fact that many biological
functions are mediated by unrelated genes in different organisms
(non-orthologous gene displacement; Koonin, 2005; Omelchenko
et al., 2010) indicated that the stochastic component is substan-
tial but the quantification of the (un)predictability of evolution
remained elusive. The precise definition of predictability when
applied to trajectories has not been settled on yet. Our purpose
here is to promote the notion of the mean path divergence as a
quantitative measure of predictability when applied to a statistical
ensemble of trajectories that share the endpoints.

Over the last decade, the advances of technologies for rapid
DNA sequencing and mutagenesis have enabled the launch of
the experimental evolution field. Evolutionary experiments under
controlled laboratory conditions allow researchers, at least in prin-
ciple, to directly address the problem of the predictability of
evolutionary processes. Prediction of the actual trajectory of evo-
lution is a daunting task that requires a complete and detailed

understanding of the mutational effects on phenotype (Loewe,
2009; Papp et al., 2011). A narrower form of Gould’s question
is closely related to this problem: does adaptation that leads to
an a priori known phenotype follow a quantifiably repeatable
route? In other words, if the starting and ending phenotypes are
known, how similar in a quantitative sense are the trajectories
that lead from one to the other? Answers to both questions can
be given on different genomic scales. For example, one might
be interested in predicting the groups of genes that are likely
to be involved in adaptation to a particular challenge. A higher
resolution answer would enumerate specific genes involved and
whether these genes are duplicated, (in)activated, or mutated.
The nucleotide resolution answer to the question of repeatability
must quantify the individual and combined effects of all muta-
tions involved in adaptation. Given the exponential increase in the
number of combinations with the number of mutations, even with
next generation sequencing it is possible to obtain the nucleotide
resolution answer only in cases where there are only a dozen or
fewer important mutations.

A direct approach to quantifying evolutionary predictabil-
ity requires massively parallel, carefully controlled, and fully
characterized evolution experiments. Results from a substantial
number of recent experiments allow preliminary conclusions on
the question of evolutionary predictability to be formulated. To
summarize, there is significant parallelism in adaptation on the
level of functional groups and operons; these changes can be
effected through a number of alternative mutations although
there exist particularly important mutations that are required
(Nakatsu et al., 1998; Wichman et al., 1999; Elena and Lenski,
2003; Pelosi et al., 2006; Blount et al., 2008; Gresham et al.,
2008; Kao and Sherlock, 2008; Dickins and Nekrutenko, 2009;
Cooper and Lenski, 2010; Crozat et al., 2010; Lang et al., 2011;
Papp et al., 2011; Meyer et al., 2012). An important result at the
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nucleotide level is that many adaptive mutations require one or
several compensatory mutations to manifest their full benefit or
even to provide any benefit at all, so sign epistasis is an essential
aspect of evolution that substantially constrains the evolutionary
process (Weinreich et al., 2005; Davis et al., 2009; Brown et al.,
2010).

Although important insights have been obtained via parallel
evolution experiments, they present significant technical chal-
lenges that are only now becoming addressable. Achieving sta-
tistical significance in quantifying predictability requires charac-
terization of numerous clones from a large number of evolving
populations. Strict uniformity of the experimental conditions over
time and among the evolving populations is essential as well
because there is evidence that a fluctuating environment leads
to a greater diversity of adaptive trajectories (Cooper and Lenski,
2010). Obtaining pertinent information on the predictability of
evolution requires thorough understanding of the complex clonal
interference dynamics that dominates chemostat experiments with
large effective population sizes (Gresham et al., 2008; Kao and
Sherlock, 2008; Lang et al., 2011; Miller et al., 2011). The ten-
tative conclusion that emerges is that understanding the extent
and the nature of the genetic variation, which requires extensive
sequencing in a population, is paramount to predicting the evo-
lutionary trajectory (Lang et al., 2011). Because of the technical
challenges, most experiments either focus on viruses (Wichman
et al., 1999, 2005; Dickins and Nekrutenko, 2009; Rokyta et al.,
2009; da Silva et al., 2010; Miller et al., 2011; Meyer et al., 2012)
or study a situation in which only a few genetic loci are impli-
cated in the adaptive process (Kellam et al., 1994; Medeiros,
1997; Weinreich et al., 2006; O’Maille et al., 2008; Brown et al.,
2010; da Silva et al., 2010; Salverda et al., 2011; Toprak et al.,
2012). However, thanks to the advent of next generation sequenc-
ing (Kircher and Kelso, 2010; Metzker, 2010), several attempts
have been recently made to conduct precisely controlled par-
allel evolution experiments in tandem with high precision full
genome sequencing of multiple bacterial or yeast clones (see details
below).

A complementary approach to quantifying evolutionary pre-
dictability is based on the idea of a fitness landscape that was
originally introduced in the seminal work of Sewall Wright as
a metaphor and an illustration of evolutionary paths from low
fitness to high fitness genotypes (Wright, 1932,1988). A key simpli-
fying assumption behind the concept of a fitness landscape is that
in a fixed environment there is a functional relationship between
the genome of an organism and its growth rate, i.e., its Malthu-
sian fitness (Gavrilets, 2004). The concept of a fitness landscape
has been influential in shaping the discussion in many areas of
research on molecular evolution and considerable effort has been
expended in understanding the properties of empirical landscapes
as well as characterizing model landscapes (Kauffman and Levin,
1987; Kauffman and Weinberger, 1989; Aita et al., 2000; Lunzer
et al., 2005; Hayashi et al., 2006; Miller et al., 2006, 2011; Beeren-
winkel et al., 2007; Poelwijk et al., 2007, 2011; O’Maille et al., 2008;
Kogenaru et al., 2009; Kryazhimskiy et al., 2009; Carneiro and
Hartl, 2010; Dawid et al., 2010; Novais et al., 2010; Costanzo and
Hartl, 2011; Costanzo et al., 2011; Franke et al., 2011; Lobkovsky
et al., 2011).

Here we review the findings of parallel evolution experiments
specifically focusing on the conclusions regarding predictability.
We proceed to discuss experiments that completely reconstruct
small regions of fitness landscapes and theoretical efforts to ana-
lyze the degree of repeatability of evolution on these landscapes.
We then introduce the concept of path divergence and use it to fur-
ther quantify repeatability of mutational trajectories in empirical
and model fitness landscapes.

2. PARALLEL EVOLUTION EXPERIMENTS
Parallel evolution experiments typically choose one of several
common model systems: bacteriophages, Escherichia coli (and
other well-characterized, easily cultivable bacteria), yeast and oth-
ers, and subject several, initially identical wild type populations to
an environmental challenge such as nutritional limitation, antibi-
otic exposure, or elevated temperature. Successful clones from
each population are sequenced and the genetic basis of their
phenotypic adaptation is sought.

In one of the earliest parallel evolution experiments, Wich-
man et al. (1999) studied two parallel bacteriophage lines under
strong selection and found that each underwent over a dozen
adaptive nucleotide substitutions after over a thousand popula-
tion doublings. Although, strikingly, half of the substitutions were
shared between the two lines, the order of their appearance dif-
fered between the two lines suggesting that there was minimal if
any epistasis between the common mutations. In general, in the
absence of epistasis, i.e., the situation where the combined fitness
effect of any number of mutations is simply the sum of their indi-
vidual effects, beneficial mutations can appear in any order while
improving fitness at every step. The mutations that were unique
to each of the two bacteriophage lines in the experiments of Wich-
man et al. (1999) might represent compensatory changes that are
drawn from a much larger pool of possibilities. Another study of 7
closely related bacteriophages (Rokyta et al., 2009) also found over-
whelming parallel evolution on the nucleotide level even among
phages that differed by as much as 7% of the genome sequence.
Several other studies of bacteriophage adaptation reported simi-
lar results (Wichman et al., 2005; Dickins and Nekrutenko, 2009;
Miller et al., 2011; Meyer et al., 2012).

Human immunodeficiency virus adapting to an alternative
chemokine receptor evolves via a set of 7 mutations (Boucher
et al., 1992; Kellam et al., 1994; da Silva et al., 2010). da Silva
et al. (2010) assayed the fitness of a large number of mutants
that contained combinations of these 7 mutants to discover
strong and complex epistatic relationships between substitutions.
The authors computed the probabilities of observing different
adaptive trajectories and found that, although no single domi-
nant trajectory existed, a random trajectory hypothesis could be
rejected.

Evolution of drug resistance in a more complex organism such
as Plasmodium falciparum (Lozovsky et al., 2009; Brown et al.,
2010; Costanzo and Hartl, 2011) typically involves a small num-
ber of mutations in one or several loci. Traditionally, minimum
inhibitory concentration (MIC or IC50) of mutants is measured
rather than the growth rate in a fixed drug environment. Because
the growth rate is a monotonic function of the drug concen-
tration, MIC can be used as a proxy for fitness. The analysis of
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adaptive trajectories that involve 6 mutations in the Dihydrofo-
late Reductase (DHFR) locus (Costanzo et al., 2011) has shown
that, although there were 3 high resistance alleles, one of these
was reached substantially more often, presumably because of the
greater availability of monotonic fitness trajectories leading to this
particular genotype. In addition, when all possible trajectories are
considered, only a small fraction are monotonic in fitness and
hence accessible to evolution under strong selection.

Bacteria can be subjected to a broader range of challenges.
In one long term experiment, 18 lines of Ralstonia grown for
over a thousand generations on an alternative carbon source
(Nakatsu et al., 1998) exhibited parallel duplications of a com-
mon plasmid segment and several common deletions. Blount et al.
(2008) have shown that Escherichia coli grown in a citrate-rich but
glucose-limited medium required several potentiating mutations
that did not themselves confer a fitness advantage. Selectively neu-
tral potentiating mutations could occur in any order and thus the
adaptive trajectory is not repeatable at the nucleotide level. How-
ever, when focus is shifted to the level of genes and operons (Woods
et al., 2006), or gene expression profiles (Pelosi et al., 2006), exten-
sive parallelism is uncovered. Ostrowski et al. (2008) studied E.
coli adapting to a glucose environment and identified 21 muta-
tions (18 unique) in five alternative loci/gene regions. Although
all mutants fared equally well on glucose, fitness on alternative
nutrients varied greatly, with the substitutions in the same locus
clustering together phenotypically. Whole-genome re-sequencing
of 5 parallel populations of E. coli grown in glycerol (Herring et al.,
2006) revealed extensive parallelism at the level of genes. Although
not exactly shared between populations, mutations were found in
the same regions of the affected proteins.

Evolution of resistance to a large class of antibiotics involves
several mutations in the TEM-1 β-lactamase locus (Medeiros,
1997). Salverda et al. (2011) subjected 12 replicates of E. coli to
in vitro mutagenesis and selection in the presence of cefotaxime
and found a high degree of repeatability in the order of appearance
of the adaptive mutations. Remarkably, the first fixed mutation
was particularly important in determining the entire trajectory.
Toprak et al. (2012) developed a device that dynamically adjusts
the concentration of antibiotic in an evolving bacterial popula-
tion to keep the growth rate constant. Whole-genome sequencing
revealed that resistance of E. coli to chloramphenicol and doxy-
cycline involved mutations in about a dozen genes involved in
translation, transcription, and transport. The authors hypothe-
sized that a smoothly increasing fitness and a weak albeit signifi-
cant parallelism at the nucleotide level were due to a large target
for adaptation (that is, adaptation could involve a variety of genes
that provided resistance at different stages of the antibiotic action
and delivery to the cell). In contrast, mutations involved in adapta-
tion to trimethoprim were strictly localized to the DHFR gene and
its promoter. In this case, the small size of the mutational target
and presumably small number of available beneficial mutations
resulted in the step-wise fitness evolution. In addition, extremely
high parallelism was observed in the order of adaptive mutations
(Toprak et al., 2012).

Evolution of E. coli in an elevated temperature environment
(Tenaillon et al., 2012) was found to be overwhelmingly adap-
tive (80% of the fixed mutations were estimated to be beneficial),

leading to an almost twofold increase in fitness. Although two
major pathways of high temperature adaptation were identified
(one centering around the RNA polymerase, the other around the
termination factor ρ), mutations tended to affect a small number
of genes or functional units. However, because little parallelism
was observed on the nucleotide level, the potential number of
mutations beneficial in a high temperature environment appears
to be large.

In eukaryotes, only a few parallel evolution experiments have
been reported, and the results are more difficult to interpret.
Yeast evolved under limited glucose conditions (Kao and Sher-
lock, 2008) exhibited a broad spectrum of adaptive mutations in
a number of loci although the amplification of the HXT6/HXT7
locus (a tandem array of genes encoding glucose transporters)
was found in two out of the 5 studied lines. A detailed follow-up
on this work has revealed a rugged fitness landscape dominated
by reciprocal sign epistasis (Kvitek and Sherlock, 2011). Another,
more extensive study of nutrient limitation effects in yeast (Gre-
sham et al., 2008) identified diverse pathways of adaptation to
glucose and phosphate limitation. However, sulfate limitation
adaptation proceeded mainly via the amplification of the SUL1
locus.

A remarkable case of convergent, apparently deterministic evo-
lution, albeit coming from comparative rather than experimental
studies, is that of the PEPC gene involved in the C4 photosynthesis
(Christin et al., 2007; Besnard et al., 2009). A phylogenetic recon-
struction of the PEPC evolution revealed that, although it has been
recruited independently several times, 5 sites under positive selec-
tion underwent identical changes. These results recapitulate and
expand the classic work of Stewart, Wilson, and colleagues that
revealed 7 identical mutations occurring in parallel in the genes
coding for lysozymes in cows and langur monkeys that are the
only mammals adapted to cellulose fermentation in the foregut
(Stewart et al., 1987; Swanson et al., 1991; Messier and Stewart,
1997).

To summarize, parallel evolution experiments find a broadly
varying degree of repeatability of evolution. When the number
of mutations implicated in adaptation is small (a few dozens at
most) and/or there exists substantial epistasis between individual
mutations, considerable degree of parallelism is observed on the
nucleotide level although even in these cases there is usually a
number of alternative beneficial mutations. Typically, substantial
parallelism is observed at the more coarse-grained level of genes
and operons although even at this level several alternative pathways
to adaptation frequently exist.

3. PREDICTABILITY OF EVOLUTION ON EMPIRICAL
LANDSCAPES

Because of the technical challenges still involved in conduct-
ing parallel evolution experiments, their conclusions, however
important, remain largely qualitative. An alternative approach
with a promise for a quantitative understanding of the evolu-
tion repeatability is based on the direct measurement and analysis
of fitness landscapes. The data are beginning to shed light on
questions pertaining to the degree of epistasis and its variation
across the landscape (Weinreich et al., 2005; Beerenwinkel et al.,
2007; Martin et al., 2007; O’Maille et al., 2008; Davis et al., 2009;
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Kogenaru et al., 2009; da Silva et al., 2010; Dawid et al., 2010;
Lunzer et al., 2010; Poelwijk et al., 2011; Salverda et al., 2011;
Tenaillon et al., 2012), the distribution of fitness effects and its
dependence on the genetic background (Aita et al., 2000; Lun-
zer et al., 2005; Martin et al., 2007; Davis et al., 2009; Lang
et al., 2011; Miller et al., 2011), or the strength of correlations
between mutations (Miller et al., 2006; Beerenwinkel et al., 2007;
Knight et al., 2009; Rokyta et al., 2009). Here we focus on land-
scape features relevant to the questions of accessibility of high
peaks and predictability of evolutionary trajectories. We also sum-
marize the efforts to construct realistic model landscapes and
compare them to empirical landscapes in order to extract model
parameters and quantify the relationship between the measures
of landscape ruggedness and the metrics of accessibility and
predictability.

There are two complementary approaches to sampling the vast
sequence space. The exhaustive sampling approach measures the
fitness of a library of mutants that harbor all possible combina-
tions of several important substitutions (Weinreich et al., 2006;
O’Maille et al., 2008; Reetz and Sanchis, 2008; Novais et al., 2010;
Franke et al., 2011). As pointed out by Franke et al. (2011),
the mere fact that the chosen substitutions are deemed “impor-
tant” (on the basis of preliminary experiments that detect these
substitutions in the adapted organisms) and so only the small
region of the landscape that harbors these substitutions is sam-
pled exhaustively biases the explored portion of the landscape.
The ruggedness of the explored part of the fitness landscape is
likely to be exaggerated compared to the complete landscape. The
key advantage of exhaustive sampling of a small part of the land-
scape is that measures of accessibility and predictability can be
computed directly.

An alternative to an exhaustive study of a small region of the
landscape is to take a broad but sparse sample of the landscape
and rely on models to infer the complete landscape proper-
ties. Usually, a library of random mutants is constructed using
error-prone PCR or a similar method. Measuring the fitness of
the mutants of a highly fit sequence provides a glimpse into
the properties of the landscape near a peak. The results of note

include the confirmation of significant sign epistasis near a fitness
peak and the observation that local deviations from additivity
are derived from a nearly normal distribution (Weinreich et al.,
2005; Beerenwinkel et al., 2007; Martin et al., 2007; Lunzer et al.,
2010). If, alternatively, the process is started from a low fitness
sequence, adaptive trajectories can be probed via repeated rounds
of random mutagenesis and purifying selection (Bershtein et al.,
2006; Miller et al., 2006; Romero and Arnold, 2009; Tracewell
and Arnold, 2009). During adaptation mean fitness grows with
each generation and eventually stagnates at a suboptimal plateau.
The characteristics of the growth as well as the dependence of
the plateau height on the library size can be used to classify
fitness landscapes in a class of models introduced by Kryazhim-
skiy et al. (2009). A quantitative comparison to the NK model
of random epistatic landscapes can even yield estimates of the
model parameters (Kauffman and Weinberger,1989; Hayashi et al.,
2006).

To summarize, notable success has been achieved in comparing
sparse fitness data to landscape models. However, simple mod-
els fail to account for all observed features of the landscapes
and evolutionary trajectories whereas increasingly complex mod-
els (e.g., Rowe et al., 2010) tend to obscure interpretation of the
data. It seems likely that the massively multidimensional nature of
landscapes (Gavrilets, 2004) precludes a simple universal model
applicable to all situations and custom models will need to be
designed for each scenario.

The fitness landscape is only one of the factors that determine
whether evolution is predictable. The evolutionary dynamics con-
trolled by the mutation rate and the strength of selection, which
itself depends on the effective population size, are of major impor-
tance as well (Figure 1). When the mutation rate is low, mutations
are either fixed or eliminated before another mutation arises. In
this low mutation limit, the dynamics are composed of sweeps
and the evolution of a population can be represented by a single
trajectory on the fitness landscape (Figure 1A). In the opposite,
high mutation rate extreme, the evolutionary process is defined
by clonal interference: the population consists of multiple com-
peting clones that differ from each other by several mutations

A B

FIGURE 1 | Mutation rate and evolutionary trajectories on fitness
landscapes. When mutations are rare (A), the population is nearly
homogeneous and mutations are fixed sequentially via sweeps. Evolution
can therefore be represented by a single path on the fitness landscape.
Several distinct clones coexist at any given time in the population when

mutation rate is high. (B) If each clone is allotted its own trajectory, the
evolution of the population can be represented by a bundle of trajectories
which split and terminate on the way to the summit. At any given time the
population can be represented by a probability density function in
sequence space.
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(Fogle et al., 2008; Keller et al., 2012). In this limit, the popu-
lation explores multiple trajectories in parallel so that evolution
can be represented by a time-dependent distribution in sequence
space (Figure 1B). To decouple the effect of the landscape topog-
raphy on the predictability of evolution from the intricacies of
the evolutionary dynamics, researchers often assume the strong
selection, weak mutation (SSWM) limit in which mutations are
fixed sequentially (sweep dynamics) and the probability of fix-
ation of a deleterious or neutral mutation is essentially nil (no
genetic drift; Gillespie, 1985; Slatkin and Muirhead, 1999). Evo-
lutionary paths in the SSWM limit are monotonic trajectories on
the fitness landscape (Figure 2A). Thus, when selection is strong
and mutation rate is low, the statistics of monotonic paths quan-
tify the accessibility of high fitness peaks and, to some degree, the
predictability of mutational trajectories during adaptation. Peak
accessibility is usually defined as the probability of finding at least
one monotonic path to the highest peak averaged over the starting
point on and/or over the statistical ensemble of model landscapes.
Another frequently measured quantity is the distribution of the
number of monotonic paths to the main summit. This quantity is
frequently regarded as the indicator of repeatability of evolution
or predictability of evolutionary trajectories: the greater the mean
number of monotonic trajectories to the peak, the less predictable
evolution is thought to be (Weinreich et al., 2006; Poelwijk et al.,
2007; O’Maille et al., 2008; Reetz and Sanchis, 2008).

Indeed, there should be a negative correlation between the
number of monotonic paths and the predictability of the trajec-
tory that is realized. However, the notion of predictability can
be made more precise by quantifying the degree of similarity
between the monotonic paths. The idea is that a large number
of similar, clustered paths represents a high degree of repeata-
bility whereas a small number of dissimilar paths signifies low
predictability. Accordingly, we recently introduced the concept
of mean path divergence to quantify evolutionary predictability
(Lobkovsky et al., 2011).

Predictability is defined for an ensemble of trajectories. Each
trajectory must have an associated probability of occurrence under
the specified evolutionary dynamics. In the SSWM limit all ben-
eficial mutations are fixed whereas all neutral and deleterious
mutations are purged. Thus, the probability of fixing a particular

beneficial mutation is simply the inverse of the number of available
mutations that increase fitness at that point on the landscape. The
probability of occurrence of a monotonic path in the SSWM limit
is therefore the inverse of the product of the number of possible
beneficial mutations at every point along the path. The ensemble
path divergence is defined as the sum over all pairs of paths of the
product of the probabilities of their occurrence and the inter-path
distance (see Figure 2 for more detail). The distance between paths
can be defined in a number of different ways. A natural measure
of the inter-path distance is the sum of the minimum Hamming
distances from each point on one path to the other path divided
by the combined total length of the two paths (see Figure 2B for
more detail).

Having defined the path divergence of an ensemble of paths,
we quantify the predictability of evolution on a particular land-
scape by computing the mean path divergence among ensembles
of monotonic paths that originate at all possible points on the
landscape and terminate at one the of the peaks.

We used the path divergence, statistics of monotonic paths,
and several measures of landscape roughness to quantify the pre-
dictability of evolution in three classes of fitness landscapes: (1)
noisy additive landscapes (see Box 1 for more detail), (2) cur-
rently available complete empirical fitness landscapes (see Box 1),
and (3) landscapes derived from a model of heteropolymers
in which fitness was equated with the robustness to misfold-
ing (Lobkovsky et al., 2010, 2011). Our goal was to examine
the association between roughness and evolutionary predictabil-
ity. It is impossible to capture the roughness of a multidimen-
sional landscape in a single parameter. We therefore utilized
four distinct measures of roughness summarized in Box 1. We
showed that empirical and model-derived landscapes were sig-
nificantly smoother than their randomly permuted counterparts.
The roughness measures were found to be good proxies for evo-
lutionary predictability. The roughness measures as well as the
measures of evolutionary predictability of empirical and folding
model-derived landscapes were consistent with those of moder-
ately perturbed additive landscapes. The model landscapes exhib-
ited a deficit of suboptimal peaks even compared with noisy
additive landscapes with similar overall roughness. We conjec-
tured that the relative smoothness, mutational robustness, and

FIGURE 2 | Divergence of evolutionary paths on fitness landscapes. (A)
Demonstrates monotonic paths on a fitness landscape. Each path’s
probability of occurrence in the SSWM limit is the inverse product of the
number of “up” steps at each point along the path. The ensemble path
divergence of the “ensemble” consisting of only these two paths would be

the product of their probabilities of occurrence and the inter-path distance. (B)
Illustrates the calculation of the inter-path distance d (p1, p2). For every point
x 1 ∈ p1 we find the closest point on p2 and record the distance d (x 1, p2). We
perform the same operation for points on p2. The distance is then
d (p1, p2) = (

∑
p1d (x 1, p2) +

∑
p2d (x 2, p1))/(length(p1) + length(p2)).
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Box 1 Smooth and rough fitness landscapes.

Noisy Additive Landscapes
An instance of an additive landscape perturbed by noise was constructed by first assigning a fitness effect drawn from an exponential
distribution to every substitution in the peak sequence. To obtain the fitness of a mutant sequence, we subtract the sum of the fitness
effects of mutations from the peak fitness. This quantity was modified by multiplicative noise via a multiplication a number drawn from a
uniform distribution [0,1] raised to a positive power. When this power is small, multiplicative factors are close to unity and the perturbation
is small as well. If the perturbed fitness was positive, the mutant was included into the landscape.The noise amplitude was varied to obtain
a family of landscapes of continuously varying roughness.

Empirical Landscapes
In Lobkovsky et al. (2011) we analyzed two exhaustively sampled empirical landscapes: (1) five substitutions inTEM β-lactamase conferring
antibiotic resistance (Weinreich et al., 2006); and (2) eight substitutions in Sesquiterpene synthase which toggle the major reaction product
(O’Maille et al., 2008).

Measures of Roughness
We used four measures of roughness: (1) deviation from additivity (Carneiro and Hartl, 2010); (2) root mean squared difference between
the fitness of a point and its neighbors, averaged over the entire landscape; (3) the number of points with no fitter neighbors divided by the
total number of points in the landscape (peak fraction); and (4) mean distance to the tree component which is a set of points that have at
most a single fitter neighbor.

substantial deficit of peaks in fitness landscapes of protein evolu-
tion are the consequences of the fundamental physics of protein
folding.

4. CONCLUDING REMARKS
Clearly, quantitative study of evolutionary trajectories is still in its
infancy. Parallel evolution experiments directly probe predictabil-
ity but face a number of daunting technical challenges such as
the difficulty of maintaining uniformity of the environment, and
tracking and sequencing a large number of populations and indi-
viduals. Therefore important complementary approaches involve
empirical characterization of fitness landscapes and their theoret-
ical analysis in terms of evolutionary characteristics such as peak
accessibility and predictability of adaptation.

Currently, to the best of our knowledge, due to technical chal-
lenges of isolating all combinatorial mutants and measuring their
fitness, complete empirical fitness landscapes include combina-
tions of at most eight binary substitutions. In other words, these
evolutionary experiments explore only a minuscule fraction of
the sequence space. As the available empirical fitness landscapes
become more numerous and larger, their continuous analysis will
shed further light on the extent of variation of evolutionary pre-
dictability and its dependence on the landscape size and structure.
Other types of landscapes such as the aptamer binding affinity
(Warren et al., 2006; Knight et al., 2009) or RNA folding energy
(Cowperthwaite et al., 2008) landscapes do not require special fit-
ness assays and therefore can be substantially larger. Analysis of
the roughness measures and evolutionary predictability for these
landscapes can determine whether, like the fitness landscapes, the
DNA binding and RNA folding landscapes can be approximated by
moderately perturbed additive landscapes. The analysis of larger
landscapes will also shed light on the dependency of evolutionary
predictability on the landscape size.

Another potentially fruitful avenue of investigation is a thor-
ough analysis of other types of model landscapes in addition
to noisy additive landscapes. Franke et al. (2011) computed the

statistics of monotonic paths for several classes of model land-
scapes including uncorrelated landscapes, rough mount Fuji land-
scapes (Aita et al., 2000), the NK model landscapes (Kauffman
and Weinberger, 1989), and the neutral landscapes with randomly
inserted inaccessible islands. An empirical landscape of dimen-
sionality 8 (de Visser et al., 2009) was found to be similar to a
moderately correlated case of the NK model, and peak accessibil-
ity as well as the number of alternative trajectories to the peak were
both found to increase with the landscape size. Further analysis of
the broad classes of model landscapes as well as emerging empir-
ical landscapes, in particular calculation of the path divergence
and roughness measures, are expected to help with the classifica-
tion of landscapes and illuminate the nature of the connections
between roughness, size, and evolutionary predictability. Finally,
if the assumption of stationarity of the fitness landscape were
relaxed, the landscape would become a seascape (Mustonen and
Lassig, 2010). The peak location would be no longer fixed, and
therefore our formulation would have to be modified to include
an appropriate averaging procedure.

It is far premature to attempt a general conclusion on the
degree of repeatability of evolutionary trajectories. Moreover, this
degree critically depends on the specifics such as the number of
loci involved in adaptation, the existence of alternative adaptation
pathways, and the environmental (or experimental) conditions so
that a general solution simply might not exist. All these caveats
notwithstanding, recent experimental and model studies make it
abundantly clear that short-term evolution in a fixed environ-
ment is far more predictable in a quantitative sense measured by
the path divergence than it would be in an uncorrelated land-
scape. In other words, although multiple evolutionary trajectories
are often accessible, evolution is strongly constrained and the part
of the fitness landscape available for exploration is highly vari-
able but typically small. Thus, if we actually could replay the
tape of evolution, the outcome could have been considerably
more similar to the existing diversity of life forms than Gould
expected.
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