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In many species, spatial genetic variation displays patterns of “isolation-by-distance.” Char-
acterized by locally correlated allele frequencies, these patterns are known to create
periodic shapes in geographic maps of principal components which confound signatures
of specific migration events and influence interpretations of principal component analy-
ses (PCA). In this study, we introduced models combining probabilistic PCA and kriging
models to infer population genetic structure from genetic data while correcting for effects
generated by spatial autocorrelation. The corresponding algorithms are based on singular
value decomposition and low rank approximation of the genotypic data. As their complex-
ity is close to that of PCA, these algorithms scale with the dimensions of the data. To
illustrate the utility of these new models, we simulated isolation-by-distance patterns and
broad-scale geographic variation using spatial coalescent models. Our methods remove
the horseshoe patterns usually observed in PC maps and simplify interpretations of spatial
genetic variation. We demonstrate our approach by analyzing single nucleotide polymor-
phism data from the Human Genome Diversity Panel, and provide comparisons with other
recently introduced methods.

Keywords: principal component analysis, isolation-by-distance, spatial autocorrelation, spatial factor analysis

INTRODUCTION
The concept of “isolation-by-distance” (IBD) was introduced by
S. Wright to describe the accumulation of local genetic differences
under spatially restricted dispersal (Wright, 1943). In species that
are continuously distributed in geographic space and disperse over
short distances, the theory predicts that genetic differentiation will
increase with geographic distance (Malécot, 1948; Kimura and
Weiss, 1964). IBD can be described by spatial autocorrelation, a
measure of the degree of dependency among observations in a
geographic space. Although studying IBD patterns could lead to
useful estimates of gene dispersal (Rousset, 1997), spatial autocor-
relation derived from IBD often presents a problem for population
genetic analyses. More specifically, the presence of spatial auto-
correlation patterns can increase the rate of false positive tests for
hierarchical population structure or for the detection of loci under
selection (Meirmans, 2012).

Recently, it has been acknowledged that distortions caused by
spatial autocorrelation could also bias interpretations of popu-
lation genetic structure as inferred from principal component
analysis (PCA) or from Bayesian clustering methods (Novembre
and Stephens, 2008; François et al., 2010). PCA is a method that
searches for axes, called principal components, along which pro-
jected individuals show the highest variance. As a result, the first
PCs are often used to explore the structure of variation in the
sample. Characterized by locally correlated allele frequencies, IBD
patterns create periodic shapes in PC maps that can confound
signatures of migration events and influence interpretations of
principal component analyses (Novembre and Stephens, 2008). In
scenarios where covariance decays exponentially with geographic

distance, PC plots are indeed expected to exhibit horseshoe effects,
an artifact in which the second axis is curved relative to the first
axis. These effects lead to counterintuitive representations of the
data (Legendre and Gallagher, 2001; Diaconis et al., 2008).

Several methods have been proposed to correct for the effects
of spatial autocorrelation in exploratory data analyses. In particu-
lar, those methods include spatial Principal Component Analysis
(sPCA, Borcard and Legendre, 2002; Borcard et al., 2004; Dray
et al., 2006; Jombart et al., 2008), and sparse factor analysis (SFA,
Engelhardt and Stephens, 2010). Generally the methods share the
objective of separating local and regional geographic scales in the
data. In this study, we introduce a novel approach, based on latent
factors models, that addresses the separation of geographic scales
more directly than the two previous methods. The new method,
spatial factor analysis (spFA), combines probabilistic PCA (Tip-
ping and Bishop, 1999) and kriging models (Cressie, 1993) to
infer population genetic structure from genetic data while correct-
ing for errors introduced by spatial autocorrelation. While many
approaches have been argued to improve interpretations of the
data, their outputs have not yet been compared to each other on
the basis of spatial simulations. To compare methods, we gener-
ated patterns of IBD and broad-scale geographic variation using
computer simulations of spatial coalescent models. We compared
the outcomes of methods under population genetic models of
isolation-by-distance, and we argued that the methods provided
insights on distinct aspects of the data. We report that the new
spFA method was able to remove the horseshoe effect observed
in spatially structured data, whereas this was not the case in PCA,
sPCA, and SFA analyses. We discuss the significance of this result
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in an assessment of single nucleotide polymorphism data from
worldwide samples of the Human Genome Diversity Panel.

MATERIALS AND METHODS
We considered single nucleotide polymorphism (SNP) data for
n individuals genotyped at L loci. For these data, the genotypic
matrix entries, (Gil), record the number of derived alleles at locus
l for individual i. For autosomal data, Gil is thus equal to 0, 1, or 2,
and corresponds to the genotype at locus l. The data were centered
by subtracting the mean value of each column of G and scaled
by dividing by the standard deviation value of each column of G.
In addition to the genotypic data, we assumed that geographical
coordinates, (Xi), were recorded for each individual.

We evaluated the effects of IBD patterns on inference of pop-
ulation genetic structure using 4 statistical methods: Principal
Component Analysis (PCA, Jolliffe, 1986; Patterson et al., 2006),
spatial PCA (sPCA, Jombart et al., 2008), Sparse Factor Analysis
(SFA, Engelhardt and Stephens, 2010), and a new method called
spatial Factor Analysis (spFA).

PRINCIPAL COMPONENT ANALYSIS
PCA is a popular method that searches for a set of K orthog-
onal axes (the principal components), each of which is a linear
combination of the original axes, such that projections of the orig-
inal data display maximal variance onto the new axes (McVean,
2009). We computed the score matrix, U of dimension n×K,
and the loading matrix, V of dimensions K × L, using the rank K
singular value decomposition method implemented in the R func-
tion prcomp and in the computer program SmartPCA (Patterson
et al., 2006).

MORAN EIGENVECTORS AND SPATIAL PCA
Moran eigenvectors maps were proposed as an alternative to trend
surface analysis for incorporating spatial variation in population
genetics models (Dray et al., 2006; Jombart et al., 2008). In Moran
eigenvectors maps, there are positive and negative eigenvalues.
Eigenvectors associated with positive eigenvalues have positive
autocorrelation, and they describe global structures. Eigenvec-
tors associated with negative eigenvalues describe local struc-
tures. Implemented in an algorithm called spatial PCA (sPCA),
Moran’s eigenvector maps (MEM) maximize Moran’s spatial
autocorrelation index, defined as follows

I (G) =

∑
i,j wij

(
gi − ḡ

) (
gj − ḡ

)
∑

i,j wij
∑

i

(
gi − ḡ

)2

with respect to a spatial weighting matrix, W, deduced from geo-
graphical distances and where gi is the ith column of G (Dray
et al., 2006). We implemented MEMs and sPCA using the R pack-
ageadegenetusing a Delaunay weighting matrix (Jombart et al.,
2008).

SPATIAL FACTOR ANALYSIS
We introduce a new spatial factor analysis model (spFA) which
incorporates spatial information in factor analysis in an explicit
way. In spFA, inference is performed in a matrix factorization
model similar to probabilistic PCA (Tipping and Bishop, 1999).

Gi` = U T
i V` + εi`, (1)

where εi` are statistically dependent Gaussian variables with
mean zero and with covariance matrix 6θ . Similarly to Krig-
ing approaches (Cressie, 1993), a radial basis covariance matrix
was chosen to model spatial autocorrelation patterns generated by
IBD (see also Durand et al., 2009). The covariance matrix6θ was
defined as follows. For all pairs of individuals, i and j, we have∑

θ

(
i, j
)
= exp

(
−d

(
Xi , Xj

)/
θ
)

, θ > 0, (2)

where d(Xi, Xj) represents the squared Euclidean or great-circle
distance between sites with coordinate Xi and with coordinate
Xj. To avoid collinearity issues, we assumed that the individual
geographical coordinates were distinct from each other (ties were
broken by adding small perturbations to the original spatial coor-
dinates). The parameter θ is a scale parameter measured in units
of average pairwise distance between geographic sites, d̄ . In prac-
tice, spFA requires that an array of θ values (scale parameter) are
explored, so θ was varied in the range (0, 10d̄).

To solve the spFA model, we used a Cholesky decomposi-
tion, CT C = 6−1

θ , and we established an equivalence with the
following matrix factorization model

G̃i` = Ũ
T
i Ṽ `+ε̃i`, (3)

where G̃ = CG, Ũ = CU , Ṽ = V , and where ε̃` are statistically
independent Gaussian vectors of mean zero and covariance matrix
equal to identity. The matrix Ũ and Ṽ were obtained by applying
a singular value decomposition of rank K to the transformed data
matrix, CG. Then, U and V were obtained by applying a singu-
lar value decomposition of rank K to C−1Ũ Ṽ . To avoid multiple
solutions, the orthogonality condition VVT

= IK, where IK is the
identity matrix in K dimensions, was imposed to V (Figure 1).
The time needed to compute spFA is the same order as the time
needed to compute K scores and loadings for a standard PCA
(Patterson et al., 2006). For an example of implementation, see
our R code1.

SPARSE FACTOR ANALYSIS
Sparse Factor Analysis (SFA) was introduced by Engelhardt and
Stephens (2010) as an alternative to admixture-based models, and
this method can recapitulate the results of PCA when population
structure is influenced by IBD patterns. To give a description of
SFA, we considered a regression model of the following form

Gi` = U T
i V` + εi` (4)

in which the residual errors are independent Gaussian random
variables, εi,`∼N (0,1/ψ i), and where the prior distribution on
the precision parameter, ψ i, is a Gamma distribution. In the SFA
model, an automatic relevance determination prior is considered
for the score vectors, Uik ∼ N (0, σ 2

ik), where some σ 2
ik are con-

strained to be equal to zero. We implemented SFA using the code
distributed in Engelhardt and Stephens (2010), and we used 1,000
iterations. Eigenvectors in spFA and in SFA are also referred to as
factors or axes.

1http://membres-timc.imag.fr/Olivier.Francois/spfa.R
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FIGURE 1 | Algorithm for spFA. For a genotypic matrix G with individual
geographic coordinates (Xi), and for scale parameter θ >0, the spFA steps
summarize as follows.

SIMULATED DATA
We generated simulated data for two diverging populations using
coalescent models implemented in the computer program ms
(Hudson, 2002). In these models, each population was simu-
lated according to a linear stepping-stone model with 50 demes.
To reproduce the simulation settings of Novembre and Stephens
(2008), the effective migration rate between pairs of adjacent
demes was set to the value 4Nm= 1. The divergence time τ
between the two populations was varied within the range of values
τ = (0,100) measured in coalescent units. We sampled 100 indi-
viduals, one from each deme both side of a (fictive) geographic
barrier. For each simulation, we evaluated Wilks’ 3, a statistic
used in multivariate analysis of variance to test whether there are
differences between the means of identified groups of individuals
on the combination of genotypes (Mardia et al., 1979).

RESULTS
PURE ISOLATION-BY-DISTANCE PATTERNS
In a first series of experiments, we used simulations of one-
dimensional stepping-stone models reproducing the patterns of
IBD described in Novembre and Stephens (2008). In those simu-
lated data, the divergence time between the two populations was
thus set to τ = 0, and the populations were connected by recur-
rent gene flow (4Nm= 1). As expected from theoretical results
for PCA and for other ordination methods (Ahmed et al., 1974;
Dray et al., 2006; Novembre and Stephens, 2008), the first PC maps
displayed oscillating patterns. In addition, the frequency of oscilla-
tion increased as we examined axes of higher orders (Figure 2A).

When we used sPCA, the first three positive components were
almost identical to those obtained with PCA (not reported).

Running spFA with K = 3 and with 3 distinct values of the
scale parameter (θ/d̄ = 0.1, 0.2, and 0.3) led to different inter-
pretations of the genetic data (Figures 2B–D). Gradually varying
θ allowed us to evaluate the scales at which the IBD effects were
apparent, and also allowed us to remove those effects sequentially.
For θ/d̄ = 0.1, the maps corresponding to factor 1 and 2 dis-
played sinusoidal curves similar to PC1 and PC2, whereas the map
for factor 3 was flat as expected if the effect of IBD is removed
(Figure 2B). For θ/d̄ = 0.2, the map corresponding to factor 1
remained similar to PC1,but the maps for factor 2 and factor 3 were
flat (Figure 2C). For θ/d̄ = 0.3, the effects of isolation-by-distance
were corrected in all axes (Figure 2D).

When we ran SFA with K = 3 factors, the resulting maps also
emphasized aspects of the data different from the ones described
by PC maps and spatial factor maps (Figure 3). Maps for SFA are
interpreted in terms of clusters, similar to those obtained in non-
spatial Bayesian assignment programs like structure (Pritchard
et al., 2000). Clusters created by clustering programs under IBD
models are often reported as being undesirable (François and
Durand, 2010; Meirmans, 2012).

TWO DIVERGING POPULATIONS WITH IBD PATTERNS
In a second series of experiments, we used simulations of a two-
population model, where each population consisted of a linear
network of 50 demes. In these experiments, the two populations
were separated by a geographic barrier to gene flow.

First the divergence time was set to τ = 10 coalescent units.
Using PCA, the first 2 components displayed oscillating pat-
terns, similar to those obtained with τ = 0 (pure IBD simulations;
Figure 4A). The PC1-PC2 plot exhibited a clear horseshoe pattern.
Differentiation between the two populations was visible in the
PC1 map, where a discontinuity was observed at the center of the
habitat. This discontinuity corresponded to the localization of the
geographic barrier. Results for the positive eigenvectors of sPCA
strongly resembled those obtained for the first PCs (Figure 4B).

Turning to spFA, we argued for a particular choice of θ/d̄
based on Wilks’ 3 statistic, a standard measure of separation of
groups in discriminant analysis, and computed this statistic for
θ/d̄ ranging between 0.01 and 10. As spatial factor analysis pro-
vided different interpretations of the data depending on the scale
at which the data were analyzed, the choice of θ was crucial to
the method. Figure 5 reports the value of Wilks’3 as a function
of the logarithm of θ/d̄ . Values of θ/d̄ minimizing Wilks’ statis-
tic and providing the best assignment of our data into clusters
were about 0.32 (Figure 5). When spFA was applied with K = 2,
the first factor map grouped demes at the left and the right of
the geographic barrier in two main clusters, while simultaneously
correcting for IBD patterns within the two clusters (Figure 4C).
The spFA Axis1-Axis2 plot removed the horseshoe effect observed
in PCA and sPCA plots. The resulting figure emphasized a dis-
continuous population structure consisting of two differentiated
genetic clusters. Running SFA with K = 2 also led to a description
of the data in two genetic clusters, located both sides of the geo-
graphic barrier, but the method failed to describe the two clusters
as discontinuous entities (Figure 4D).
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Frichot et al. Correcting principal component analysis

FIGURE 2 | PC and spFA factor maps for data simulated under an IBD model. (A) PC maps, (B) spFA factor maps for θ/d̄ = 0.1, (C) spFA factor maps for
θ/d̄ = 0.2, (D) spFA factor maps for θ/d̄ = 0.3.

FIGURE 3 | SFA factor maps for data simulated under an IBD model. Plots of the first three Factor maps for SFA.

Based on PC and factor plots, we next computed Wilks’3 sta-
tistic for all methods, and for divergence times τ ranging between
0 and 100 (Figure 6). Lower values of 3 generally indicated better
discrimination of the 2 divergent populations in PC or factor plots.
For all methods, the 3 statistic decreased as the divergence time
between the 2 populations increased (McVean, 2009). In our spa-
tially explicit framework, SFA (green curve) detected the existence
of diverging populations earlier than PCA (red curve) and than

sPCA (not shown, similar to PCA). SpFA was the most sensitive
method, and provided an earlier detection of divergent clusters
than SFA and PCA (blue curve).

HUMAN DATA ANALYSIS
Next we applied PCA, sPCA, spFA, and SFA to a worldwide sample
of genomic DNA from 418 individuals in 27 Asian populations,
from the Harvard Human Genome Diversity Project - Centre
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FIGURE 4 |Two discrete populations under equilibrium IBD. Plots of the first 2 maps for (A) PCA, (B) sPCA, (C) spFA, (D) SFA.

FIGURE 5 | Wilks’ 3 statistic as a function of the scale parameter θ/d̄ in spFA.
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Etude Polymorphism Humain (Harvard HGDP-CEPH)2. In those
data, each marker has been ascertained in samples of Mongo-
lian ancestry (referenced population HGDP01224). We selected
all samples from Central and East-Asia with the exception of
Xibe, which originated in northeastern China, but migrated to
northwestern China only recently (Powell et al., 2007) (Figure 7A).

2ftp://ftp.cephb.fr/hgdp_v3/

FIGURE 6 | Wilks’ 3 statistic as a function of the divergence time, τ ,
ranging between 1 and 100.

The data set used a panel of 10,664 SNPs3 (see Patterson et al.,
2012).

In our analysis, samples from Central Asia, west to the
Tibetan plateau, were represented with red/orange colors, whereas
populations from East-Asia were represented with blue colors
(Figure 7A). For those samples, the PC plot exhibited a horseshoe
pattern, which was a signature of the presence of IBD patterns
in the data (Figure 7B). PCA led to a continuum of samples
without observable genetic discontinuities. Running spFA with
K = 2 and setting θ/d̄ = 10−2 on the basis of Wilks’ statistic
analysis, spFA corrected for the effects of IBD in axes 1 and 2
(Figure 7C). The spFA method provided evidence of a major dis-
continuity separating two clusters, one in Central Asia and one
in East-Asia. In addition, Uyghur and Hazara population sam-
ples aligned with the two main clusters and were placed in an
intermediate position, suggesting genetic admixture from ances-
tral Central Asian and East-Asian gene pools. Essentially the same
patterns emerged when spFA was applied with K = 3 at the same
scale (Figures 8C,D).

Using SFA with K = 2, factors 1 and 2 confirmed the main dis-
continuity, in a representation of clusters closer to Bayesian clus-
tering methods than to PCA (Figure 7D). Uyghur and Hazara pop-
ulation samples were also placed between the main clusters. When
we used SFA with K = 3, we obtained shapes without natural inter-
pretations (Figures 8A,B). SFA detected additional discontinuities

3ftp://ftp.cephb.fr/hgdp_supp10/

FIGURE 7 | (A) Map of Asia with geographic locations of HGDP populations. PC and factor plots for (B) PCA, (C) spFA, (D) SFA.
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FIGURE 8 | Factor plots for (A,B) SFA and (C,D) spFA with K = 3 clusters.

whereas the other methods suggested that continuous genetic
variation in geographic space was predominant.

DISCUSSION
Principal component analysis and related methods used to
describe genomic variation among large population samples are
known to produce results that can be distorted by IBD, and that
may thus be difficult to interpret. The horseshoe effect is one of
the distortions observed in PC plots that arises when covariance
between allele frequencies decays exponentially with geographic
distance. In this case, there is an established mathematical cor-
respondence between the eigenvectors of the covariance matrix
and the columns of a discrete cosine-transform (Ahmed et al.,
1974; Diaconis et al., 2008). In this study, we used this correspon-
dence to propose a new approach based on spatial models for the
covariance structure of residual errors in factor analysis. In spFA,
IBD effects were modeled through the introduction of a covari-
ance matrix that accounts for the geographic distance between
individuals explicitly.

We compared spFA to PCA and to two recent methods that also
attempt to correct for IBD effects: spatial Principal Component
Analysis (sPCA, Jombart et al., 2008) and sparse factor analysis
(SFA, Engelhardt and Stephens, 2010). When we applied PCA to
simulated data from spatial coalescent models, PC maps displayed
sinusoidal curves as observed in previous studies (Novembre and
Stephens, 2008). We observed that sPCA, which includes several
distance matrices within Moran eigenvector maps of genetic data,
produced results similar to those of PCA, and did not correct for

IBD effects. When we applied SFA to spatial coalescent simula-
tions, the algorithm clustered individuals in several small groups
depending on the number of latent factors used in the method. SFA
factor maps actually displayed outcomes closer to discrete clusters
than to continuous variation. After adjusting for the spatial scale
in the covariance model, spFA was able to remove the oscillating
shapes observed in the first PCs sequentially.

When PCA was applied to spatially explicit simulations of
two diverging populations, PC maps failed to firmly identify
genetic discontinuities between populations. Despite a relatively
long period of isolation in simulations, the populations were not
strongly separated in PC maps due to the horseshoe effect. Com-
pared to PCA and sPCA, the spFA method had increased power to
identify genetic discontinuities where they were masked by spuri-
ous autocorrelation effects. When we applied SFA, we found that,
up to normalization of outputs, the results were similar to those
generated by clustering algorithms like structure. For simula-
tions of two diverging populations, SFA detected a main separation
between two differentiated populations, but this approach did not
correct for IBD effects within the main genetic clusters. Similarly
to structure, the results of SFA were influenced by the presence
of IBD patterns in the samples. We found that spFA alleviated this
issue, and that it produced results more robust to the choice of the
number of factors than SFA.

The methods used in this study provided quite distinct descrip-
tions of the data when they were applied to human population
samples from Central and East-Asia, and they underlined several
aspects of the data. With PCA, a typical horseshoe pattern was
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observed, but no obvious genetic discontinuities were observed.
In contrast, SFA provided evidence for two main clusters which
were also confirmed by spFA. When we used SFA with K = 3, we
obtained shapes without natural interpretations (Figure 8). SFA
detected additional discontinuities whereas the other methods
suggested that continuous genetic variation in geographic space
was predominant. We observed that SFA behaves like clustering
algorithms and did not correct for spurious clusters created by
IBD patterns. This issue makes the SFA results difficult to inter-
pret in terms of admixture and ancestral populations. The spFA
method corrected for the horseshoe pattern observed in PC plots
by removing autocorrelation effects from the second and third
axes. The method suggested that Asian population structure is
strongly influenced by IBD patterns. In the spFA plot, Hazara
of Pakistan and Uygur of northwestern China grouped together,
and were placed between Pakistani and East-Asian populations
(Rosenberg et al., 2002). These results either support the pres-
ence of admixed genomes in Hazara and Uygur populations, or
favor the hypothesis of a central Asian migration route of modern
humans in East-Asia (Zhang et al., 2007). The public availability
of data sets other than the HGDP will enable us to further assess
the utility of the method for analyzing human genetic data.

A potential limitation of the spFA approach is it’s sensitiv-
ity to the choice of the scale parameter, θ . The θ parameter
actually determines the scale of the spatial effects that could be
removed by spFA. Note that spFA is essentially performing a
standard principal component analysis when it is applied with
small values of the scale parameter. In this study, we recom-
mended exploring a grid of θ values so that IBD effects could
be removed at distinct scales sequentially. The choice of the num-
ber of factors, K, in spFA is also tied to the particular value of
θ implemented in the model. One way to determine K is by

using Tracy-Widom tests on the matrix of genotypes, G̃ (Patter-
son et al., 2006). Gradually increasing the value of θ enabled a
fine grain analysis of genetic discontinuities in human data, and
allowed us to study IBD patterns within genetic clusters. The com-
putational complexity of spFA increases linearly as a function
of the number of markers. Since it is equivalent to the com-
putation of a low rank approximation of the genotypic matrix
(lower than a standard PCA, a few seconds on standard com-
puter systems), applying spFA at multiple scales was not overly
time-consuming.

CONCLUSION
This study provided a comparison of existing methods that
attempt to correct for IBD effects in population genetic analy-
ses, and showed that each of studied approaches provided dif-
ferent insights on the data. Under equilibrium IBD, PCA was
confounded by continuous variation and the main genetic discon-
tinuities may be missed or misinterpreted. For the same data, SFA
over-estimated the number of clusters in the genetic data, creating
spurious clusters from continuous patterns. In the presence of IBD
patterns, spatial factor analysis provided clearer interpretations of
the data than PCA and SFA. In a spatially explicit framework, we
found that spFA identified genetic discontinuities more efficiently
than did PCA or SFA when these discontinuities are blurred by
noise from IBD patterns in the genetic data.
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