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Hereford is a major beef breed in the USA, and a sub-population, known as Line 1 (L1),
was established in 1934 using two paternal half-sib bulls and 50 unrelated females. L1
has since been maintained as a closed population and selected for growth to 1 year of
age. Objectives were to characterize the molecular genetic architecture of L1 (n=240) by
comparing a cross-section of L1 with the general US. Hereford population (AHA, n=311),
estimating effects of imposed selection within L1 based on allele frequencies at 50 K SNP
loci, and examining loci-specific effects of heterozygosity on the selection criterion. Ani-
mals were genotyped using the Illumina BovineSNP50 Beadchip, and SNP were mapped
to UMD3.0 assembly of the bovine genome sequence. Average linkage disequilibrium
(LD), measured by square of Pearson correlation, of adjacent SNP was 0.36 and 0.16 in L1
and AHA, respectively. Difference in LD between L1 and AHA decreased as SNP spacing
increased. Persistence of phase between L1 and AHA decreased from 0.45 to 0.14 as SNP
spacing increased from 50 to 5,000 kb. Extended haplotype homozygosity was greater in
L1 than in AHA for 95.6% of the SNP. Knowledge of selection applied to L1 facilitated
a novel approach to QTL discovery. Minor allele frequency was (FDR<0.01) affected by
cumulative selection differential at 191 out of 25,901 SNP. With the FDR relaxed to 0.05, 13
regions on BTA2, 5, 6, 9, 11, 14, 15, 18, 23, and 26 are co-located with previously identified
QTL for growth. After adjustment of postweaning gain phenotypes for fixed effects and
direct additive genetic effects, regression of residuals on genome-wide heterozygosity
was −235.3±91.6 kg. However, no SNP-specific loci where heterozygotes were signifi-
cantly superior to the average of homozygotes were revealed (FDR≥0.17). In conclusion,
genome-wide SNP genotypes clarified effects of selection and inbreeding within L1 and
differences in genomic architecture between the population segment L1 and the AHA
population.
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INTRODUCTION
Hereford is a major breed of beef cattle in the United States.
Over time, the Hereford breed has been subjected to a variety
of different selection goals. A sub-population known as Line
1 (L1) was established in 1934 by joining two paternal half-
sib bulls with 50 unrelated Hereford females. Thereafter, L1 has
been selected primarily for growth to 1 year of age and con-
tinuously maintained as a closed population (MacNeil, 2009).
Recent separation of populations can produce dramatic genomic
consequences, such as different multi-locus heterozygosity in
different genomic regions (Oleksyk et al., 2008). In addition,
strong recent bottlenecks, such as that which occurred at the
founding of L1, may cause marked founder effects (Nei et al.,
1975).

Estimates of linkage disequilibrium (LD) may identify non-
random associations of linked loci and may indicate population
divergence (de Roos et al., 2008). Additional measures, such as
extended haplotype homozygosity (EHH) may also reveal locus-
specific genetic variants associated with line divergence (Tang et al.,
2007). Recent studies of populations’ genomic architecture have
frequently targeted regions of low heterozygosity. However, a few
have identified regions of increased heterozygosity or that showed
a heterozygote advantage on survival traits (Hedrick et al., 1991;
Arkush et al., 2002).

The primary objective of this research was to characterize the
molecular genetic architecture of Line 1 Hereford cattle using 50 K
SNP; first by comparing a cross-section of L1 with the general
US. Hereford population (AHA); second, by estimating effects
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of the imposed selection on allele frequencies and; finally by
examining loci-specific effects of heterozygosity on the selection
criterion.

MATERIALS AND METHODS
ANIMALS
Two Hereford populations were used in this research: L1 located
at Fort Keogh Livestock and Range Research Laboratory, Miles
City, MT and registered Herefords sampled from breeders across
the US. The L1 population was founded by two paternal half-
sib bulls and 50 cows in 1934 and has been selected primar-
ily for growth to 1 year of age since that time. MacNeil (2009)
reviewed use of L1 since its inception. Two hundred forty ani-
mals from L1 were genotyped for this study. They included: 57
females and 62 males (born in 2007 and 2008) from nine pater-
nal half-sib families, and 121 ancestral sires that were born from
1953 to 2006. Although L1 is a closed population, it is related
to US. Hereford due to the fact that it was generated from US.
Hereford and has been influencing US. Hereford (Dickenson,
1984). To represent the general US. Hereford population reg-
istered Hereford bulls were sampled from across the US. for
use in the US. Meat Animal Research Center (MARC) 2,000
bull project (Kuehn et al., 2011). Fifty-six of these bulls were
previously used in the MARC Germplasm Evaluation program
(http://www.ars.usda.gov/Main/docs.htm?docid=6238),while the
remaining bulls (N = 255) were chosen by the American Here-
ford Association as being generally representative of the Hereford
breed. A pedigree consisting of 21,284 Herefords, including 9,419
L1 Hereford cattle was used herein.

GENOTYPES
All animals were genotyped using the Illumina BovineSNP50
Beadchip (Matukumalli et al., 2009). Chromosome information
and physical positions of SNP were mapped to UMD3.0 assem-
bly (Zimin et al., 2009). Genotypes were checked for inconsis-
tencies between sire and offspring. Before applying any quality
control on the SNP, out of 286 sire-offspring pairs with geno-
type information, 275 pairs had 5.2± 2.75 alternative homozygous
genotypes. Eleven sire-offspring pairs had more than 1,000 alter-
native homozygous genotypes. These were considered as reflecting
a pedigree error. When a pedigree error was found, an attempt was
made to establish the correct parentage among animals with their
genotypes available. Pedigree errors of six sire-offspring pairs were
thus corrected and five sire-offspring pairs were considered unre-
lated animals. In addition, less than 50 inconsistent genotypes
between sire and offspring pairs were set to missing in the off-
spring. With the genotypes from AHA and L1 animals combined,
SNP without chromosome information and physical positions,
untyped on more than 8% of animals or with a call rate less than
0.90 were removed leaving 99.9% of the original genotypes. Given
the nature of the different analyses, additional edits were employed
for investigations of LD, heterozygosity, integrated EHH, and asso-
ciation with cumulative selection differentials (CSD, detail in later
text). Excluding SNP with a minor allele frequency (MAF) less
than 2% in L1 yielded 35,385 SNP for LD estimation. In addition,
SNP pairs in complete LD (r2> 0.99, details in later text) had one
SNP removed from the pair. Numbers of SNP used in different
analyses are shown in Table 1.

Table 1 | Number (n) of SNP used to estimate linkage disequilibrium

(LD), integrated extended haplotype homozygosity, and for

regression of allele frequency on cumulative selection differential in

Line 1 Hereford (L1) and the general Hereford population (AHA).

Analysis Linkage

disequilibrium1

Integrated extended

haplotype homozygosity2

Regression3

Number of SNP Number of SNP Number of SNP

L1 35,385 50,367 25,901

AHA 35,385 50,367 NA

1 All SNP that passed quality control and had minor allele frequency (MAF)>2%

in L1 were used in estimation of LD.
2 All SNP that passed quality control were used to estimate integrated extended

haplotype homozygosity.
3 All SNP that passed quality control, had MAF>2%, and were not in LD with

another SNP on the same chromosome were used in regression analysis.

LINKAGE DISEQUILIBRIUM AND PERSISTENCE OF PHASE
To characterize L1 and AHA, LD was quantified as the square of the
Pearson correlation between SNP genotypes (r2), with genotypes
coded as 2, 1, or 0 to represent the number of copies of the minor
allele. LD was calculated for SNP pairs in the same chromosome
that had spacing between 50 to 10,000 kb. More than 91 million
SNP pairs that had different spacing were used to estimate LD
for L1 and AHA. Chromosome-wide LD was also estimated by
using average r2 of adjacent SNP. Genome-wide average distance
between adjacent SNP was 238 kb.

Genotypes were phased within each population using
BEAGLE (Browning and Browning, 2007). BEAGLE forms
directed acyclic graphs to perform localized haplotype phas-
ing. Scale and shift parameters control complexity of the
phasing model. These two parameters were set to 1 and
0.05, respectively, to fit the sample size and marker den-
sity in this study. Chromosomes were phased individu-
ally. Following de Roos et al. (2008), persistence of phase
between L1 and AHA was calculated as the correlation
of r across populations, where r is the Pearson correla-
tion between SNP genotypes within each population, using
https://www.msu.edu/∼steibelj/JP_files/LD_estimate.html. Sin-
gle nucleotide polymorphism pairs from 10 to 5,000 kb apart were
included in this analysis.

Integrated EHH has been used to estimate the differential decay
of homozygosity over physical distance. Extreme values detected
by this counting algorithm have been taken to be signatures of
recent selection. Here, the method of Tang et al. (2007) contrast-
ing the EHH profiles of L1 and AHA, as quantified by In(Rsb)′,
was used to further discern differences in genomic architecture
between the populations.

REGRESSION OF ALLELE FREQUENCY ON CUMULATIVE SELECTION
DIFFERENTIAL
Cumulative selection differentials (CSD, n= 7,569) for postwean-
ing gain in L1 were calculated following MacNeil et al. (1998): for
each individual, its CSD is the sum of its phenotypic deviation
from its contemporary group, half of its sire’s CSD and half of
its dam’s CSD. This measure reflects selection applied since the
inception of the Line 1 Hereford population. To identify loci that
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were putatively affected by selection, the number of minor alleles
at a locus was regressed on CSD for postweaning gain, one SNP
at a time. It was assumed that the random residuals were distrib-
uted N (0, Iσe

2). Two sets of putative QTL are presented from
this analysis. In the first analysis, false discovery rate (FDR) with
a critical threshold of 0.01 was employed to adjust for multiple
testing (Storey, 2002). For the second set of putative QTL, the
FDR was relaxed to 0.05, with the concurrent requirement that a
QTL related to growth was previously identified overlapping the
region. To better present results in Figure 2, if significant SNP
were within 1 Mb of each other, they were arbitrarily grouped into
single genomic regions.

HETEROZYGOSITY AND INBREEDING
Non-additive genetic effects on postweaning gain may exist in L1,
since inbreeding depression has been observed (MacNeil et al.,
1992). Empirical best linear unbiased prediction (EBLUP) that
can detect the non-additive proportion of genetic variance was
employed here by modifying the method of Gulisija et al. (2007).
Using ASReml (Gilmour et al., 2006), EBLUP for postweaning gain
were estimated for L1 (9,419 animals in pedigree; 6,790 animals
with records). The model employed was:

y = 1µ + Xβ + Zυ + e

where y represents a vector of phenotypes of postweaning gain, µ
represents a constant mean; X represents an incidence matrix of
contemporary group effects including birth year, season, sex, and
age of dam; β represents the regression coefficients for contempo-
rary group effects; Z represents an incidence matrix of individuals;
u represents a vector of coefficients for random additive genetic
animal effects and e is the random residual for each observation.
Additive genetic and residual effects were assumed to be indepen-
dent with u ∼ N

(
0, Aσ2

a

)
and e ∼ N

(
0, Iσ2

e

)
where A represents

the numerator relationship matrix.
The postweaning gain EBLUP residual vector ê was com-

puted as:

ê = y − Xβ− Z υ̂, and

was expected to be “free” of additive effects. First, the ê were
regressed on the pedigree-based inbreeding coefficients and
genome-wide heterozygosity of the individuals. Then, to estimate
the effect of genomic state (heterozygous= 1, homozygous= 0)
of SNP on postweaning gain, the ê were regressed on the genomic
state of each individual, at each locus. A FDR of 0.05 was applied
as a significance threshold.

RESULTS AND DISCUSSION
CONTRAST OF THE L1 AND AHA POPULATIONS
For L1 and AHA genotyped animals, average inbreeding coeffi-
cients were 0.29± 0.022 and 0.04± 0.048, respectively. Effective
population sizes estimated from the inter-generational change in
inbreeding based on pedigree were 56.2 and 122.1 for L1 and
AHA, respectively. Smaller effective population size and greater
level of inbreeding in L1 were caused by the stringent bottleneck
that occurred at its founding. After setting the MAF threshold at
2% (resulted in a removal of 14,777 SNP in L1 and 8,327 SNP
in AHA) and pruning SNP pairs in complete LD (resulted in a
further removal of 9,689 SNP in L1 and 2,379 SNP in AHA), L1
had 13,850 fewer remaining SNP than AHA.

LINKAGE DISEQUILIBRIUM AND PERSISTENCE OF PHASE
Linkage disequilibrium is influenced by effective population size
and recombination rate (Tenesa et al., 2007). Therefore, LD within
a population indicates characteristics of population structure (de
Roos et al., 2008; Meadows et al., 2008; Qanbari et al., 2010).
Average LD of adjacent SNP was 0.36 and 0.16 in L1 and AHA,
respectively. Chromosome-wide average r2 of two adjacent SNP
differed in different chromosomes, particularly in L1 (Figure 1A).
Both L1 and AHA had the highest LD in BTA2, 9, and 24. The aver-
age r2 values in these three chromosomes were greater than 0.48 in
L1,and greater than 0.18 in AHA. McKay et al. (2007) also observed
a non-uniform distribution of LD across the bovine genome.

Using SNP pairs of different spacing, LD within population
was estimated for L1 and for AHA (Figure 1B). Irrespective of
distance between SNP, greater LD was observed in L1 than in
AHA. The Line 1 Hereford population had a severe bottleneck
when the population was founded, and substantial LD is generated
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FIGURE 1 | Estimates of linkage disequilibrium (r2) across chromosomes (A) and marker spacing (B) for Line 1 Hereford (L1) and the general Hereford
population (AHA), and the persistence of phase between them (C).
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FIGURE 2 | Manhattan plot of extended haplotype homozygosity contrasting Line 1 Hereford cattle with a broader sample of the Hereford breed.
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FIGURE 3 | Generation mean cumulative selection differentials for
postweaning gain (kg) in Line 1 Hereford cattle.

when a population bottleneck occurs (Reich et al., 2001). As
SNP spacing increased from 50 to 10,000 kb, the average r2 of
SNP pairs decreased from 0.35± 0.005 to 0.05± 0.0003 in L1
and from 0.15± 0.004 to 0.03± 0.0004 in AHA. Small r2 val-
ues in long range spacing between SNP indicates large effective
population size in the past while large r2 values in short range
spacing between SNP indicates small effective population size in
recent time (de Roos et al., 2008). Line 1 was separated from the
general Hereford population in 1934. Thus, the effective popu-
lation size of both populations was identical prior to that time,
and the patterns of r2 reflect the recent divergence of the two
populations. The rate of decrease in LD with genetic marker dis-
tance was greater in L1 than that in AHA. This indicates that the
LD generated by the population bottleneck has rapidly broken
down with generations. It may also reflect the current breed-
ing practice that is designed to keep inbreeding low (MacNeil,
2009).

Persistence of phase was estimated to further quantify the
relationship of L1 and AHA. It decreased from 0.45 to 0.14 as
SNP spacing increased from 50 to 5,000 kb (Figure 1C). The
positive correlations of phase indicate similarity across popu-
lations, again consistent with the fact that L1 was historically
part of the general US. Hereford population and has contin-
ued to influence it. In 1984, 57% of the bulls listed in the
American Hereford Association Sire evaluation had Line 1 ances-
try (Dickenson, 1984) and as of 2010, 81% of the Hereford
population in the US. had some pedigree relationship to L1
(Vicki Leesburg, USDA-ARS, Miles City, MT, USA, personal
communication).

Both L1 and AHA are known to be under selection for increased
growth (MacNeil, 2009; American Hereford Association, 2012).
EHH was greater in L1 than in AHA for 95.6% of the SNP
(Figure 2). However, L1 confounds selection with concurrent
inbreeding. Thus, the greater EHH in L1 was thought to reflect the
difference between populations in inbreeding, with any signature
of differential selection largely masked.

QUANTITATIVE TRAIT LOCUS DISCOVERY
Allele frequency is expected to change as a result of selec-
tion (Johansson et al., 2010). CSD measure the selection
applied since the inception of a selection experiment and
show the expected response when heritability is 100% (Fal-
coner and Latyszewski, 1952). Average CSD for postwean-
ing gain per generation for genotyped L1 increased steadily
(Figure 3).

In L1, MAF was significantly (FDR< 0.01) affected by CSD at
191 out of 25,901 SNP. When the FDR was relaxed to 0.05 there
were 1,081 significant SNP clustered into 186 candidate regions
(Table S1 in Supplementary Material). As shown in Table 2, 13
of these regions on BTA2, 5, 6, 9, 11, 14, 15, 18, 23, and 26
are co-located with previously identified QTL for traits related
to growth: postweaning gain (Kneeland et al., 2004), carcass
weight (Casas et al., 2000; Kim et al., 2003; Mizoshita et al., 2005;
Takasuga et al., 2007; Setoguchi et al., 2009), average daily gain
(Li et al., 2002, 2004; Kneeland et al., 2004; Nkrumah et al.,
2007; Gutierrez-Gil et al., 2009; Marquez et al., 2009), yearling
weight (Casas et al., 2000), harvest weight (Elo et al., 1999),
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Table 2 | Genomic regions wherein the regression (b±SE) of number of minor alleles on cumulative selection differential for postweaning gain

was significant (FDR<0.05) in L1 and overlapped with previously identified QTL.

BTA Locus (Mb) b ± SE1 Traits2 Reference

2 10.6–11.5 0.14±0.03 CW, PWG Kim et al. (2003), Kneeland et al. (2004)

5 56.7–57.4 0.16±0.03 ADG Li et al. (2002), Li et al. (2004)

6 39.6–42.0 0.20±0.04 YW, CW Casas et al. (2000), Setoguchi et al. (2009)

6 52.4–63.2 0.21±0.04 GBW, ADG Kneeland et al. (2004)

9 14.9–16.0 0.18±0.05 ADG Marquez et al. (2009)

11 18.7–23.8 0.24±0.05 DMI Marquez et al. (2009)

14 19.8–23.6 0.15±0.05 PWG, CW Kneeland et al. (2004), Mizoshita et al. (2005), Takasuga et al. (2007)

15 38.0–39.9 0.19±0.05 ADG Marquez et al. (2009)

18 37.3–40.5 0.16±0.04 DMI Nkrumah et al. (2007)

23 19.2–20.2 0.16±0.05 GBW, HW Elo et al. (1999), Kneeland et al. (2004)

23 48.7–49.0 0.10±0.03 DMI Sherman et al. (2009)

26 27.9–32.5 0.19±0.059 ADG Gutierrez-Gil et al. (2009)

26 45.5–47.9 0.15±0.05 ADG, DMI Nkrumah et al. (2007)

1 The maximum regression coefficient for number of SNP minor alleles (0, 1, 2) at a locus on CSD (kg×100) for postweaning gain.
2 ADG, Average daily gain; CW, Carcass weight; DMI, dry matter intake; PWG, Postweaning gain; GBW, Preweaning gain; HW, Harvest weight; YW, 365−d weight.

preweaning gain (Kneeland et al., 2004), and dry matter intake
(Nkrumah et al., 2007; Marquez et al., 2009; Sherman et al.,
2009). For all SNP in one region, the largest regression coeffi-
cient was reported as the effect size for the region. For instance,
on BTA2 in the interval from 10.6 to 11.5 Mb, the regression
of MAF on CSD (kg× 100) was 0.14± 0.034 and this inter-
val is coincident with previously discovered QTL for postwean-
ing gain and carcass weight (Kim et al., 2003; Kneeland et al.,
2004).

HETEROZYGOSITY AND INBREEDING EFFECT ON POSTWEANING GAIN
The regression of EBLUP residuals for postweaning gain on
inbreeding coefficients (decimal) was −349.2± 68.2 kg. This is
consistent with previous results from L1 where the regression was
estimated simultaneously with the other fixed effects (MacNeil
et al., 1992). Inbreeding coefficients are expectations of alleles
being identical by decent estimated using pedigree information.
Alternatively, inbreeding can be obtained from heterozygosity
under probability theory (Kempthorne, 1969). The percentage of
homozygosity of an individual can be described as a combination
of identical by decent and identical in state alleles. In these data,
the correlation between the inbreeding coefficients and genome-
wide heterozygosity was −0.34 and the regression of EBLUP
residuals for postweaning gain on genome-wide heterozygosity
was−235.3± 91.6 kg. In this case, the regressions of EBLUP resid-
uals for postweaning gain on inbreeding and heterozygosity indi-
cate dominance effects on postweaning gain. Despite these signif-
icant indicators of effects of heterozygosity on postweaning gain,
no significant SNP-specific effects were observed (FDR≥ 0.17).
It seems plausible that inbreeding depression results from dele-
terious alleles of both large and small effects (Charlesworth and
Charlesworth, 1999; Wang et al., 1999) and that successive gen-
erations of inbreeding coupled with selection may purge alleles
with large effect, while the genetic load resulting from mildly

deleterious alleles persists (Hedrick, 1994; Wang et al., 1999).
Thus, prior generations of inbreeding in L1 coupled with selection
for postweaning gain may have purged the major deleterious
recessive alleles, hence reducing the magnitude of inbreeding
depression and making smaller locus-specific effects difficult
to detect. Experimental results (e.g., MacNeil et al., 1984; and
reviewed by Crnokrak and Barrett, 2002) partially support this
contention.

CONCLUSION
Genome-wide SNP genotypes from L1 and AHA individuals clar-
ified relationships between the population segment of L1 and the
general US. Hereford population (AHA). L1 had greater average
LD than AHA, indicated by higher correlation of SNP genotypes
within L1 and fewer haplotypes spanning the genome. The dif-
ference in LD between L1 and AHA decreased as SNP spacing
increased, indicating their relatively recent divergence. Persistence
of phase indicated that the large LD generated by the bottleneck
which occurred at the formation of L1 has eroded. Knowledge of
selection applied to L1 since its inception provided an opportunity
for a novel approach to QTL discovery. Coupled with previous
reports of QTL for growth traits in beef cattle, this approach
provided 13 candidate regions for further investigation. These
data also reveal no loci affecting postweaning growth where the
heterozygotes were significantly superior to the average of the
homozygotes.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at
http://www.frontiersin.org/Livestock_Genomics/10.3389/
fgene.2012.00285/abstract

Table S1 | Genomic regions wherein the regression (b ± SE) of number of
minor alleles on cumulative selection differential for postweaning gain
was significant (FDR < 0.05) in L1.

www.frontiersin.org December 2012 | Volume 3 | Article 285 | 5

http://www.frontiersin.org/Livestock_Genomics/10.3389/fgene.2012.00285/abstract
http://www.frontiersin.org/Livestock_Genomics/10.3389/fgene.2012.00285/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Livestock_Genomics/archive


Huang et al. Genetic architecture of line 1 Hereford

REFERENCES
American Hereford Association. (2012).

North American Hereford National
Cattle Evaluation: Genetic Trend.
Available at: http://www.hereford.
org/static/files/S12_Trend.pdf
[accessed June 5, 2012].

Arkush, K. D., Giese, A. R., Men-
donca, H. L., McBride, A. M.,
Marty, G. D., and Hedrick, P.
W. (2002). Resistance to three
pathogens in the endangered winter-
run chinook salmon (Oncorhynchus
tshawytscha): effects of inbreeding
and major histocompatibility com-
plex genotypes. Can. J. Fish. Aquat.
Sci. 59, 966–975.

Browning, S. R., and Browning, B. L.
(2007). Rapid and accurate haplo-
type phasing and missing-data infer-
ence for whole-genome association
studies by use of localized haplotype
clustering. Am. J. Hum. Genet. 81,
1084–1097.

Casas, E., Shackleford, S. D., Keele, J.
W., Stone, R. T., Kappes, S. M., and
Koohmaraie, M. (2000). Quantita-
tive trait loci affecting growth and
carcass composition of cattle segre-
gating alternate forms of myostatin.
J. Anim. Sci. 78, 560–569.

Charlesworth, B., and Charlesworth,
D. (1999). The genetic basis of
inbreeding depression. Genet. Res.
74, 329–340.

Crnokrak, P., and Barrett, S. C. H.
(2002). Perspective: purging the
genetic load: a review of the
experimental evidence. Evolution 56,
2347–2358.

de Roos, A. P. W., Hayes, B. J., Spelman,
R. J., and Goddard, M. E. (2008).
Linkage disequilibrium and persis-
tence of phase in Holstein-Friesian,
Jersey and Angus cattle. Genetics 179,
1503–1512.

Dickenson, H. H. (1984). The influence
of Line 1 in the Hereford breed. Fort
Keogh Livestock and Range Research
Station Field Day Report. Miles City,
MT: USDA-ARS.

Elo, K. T., Vilkki, J., de Koning, D. J.,
Velmala, R. J., and Maki-Tanila, A.
V. (1999). A quantitative trait locus
for live weight maps to bovine chro-
mosome 23. Mamm. Genome 10,
831–835.

Falconer, D. S., and Latyszewski, M.
(1952). The environment in relation
to selection for size in mice. J. Genet.
51, 67–80.

Gilmour, A. R., Gogel, B. J., Cullis,
B. R., and Thompson, R. (2006).
ASReml User Guide Release 2.0.
Hemel Hempstead: VSN Int. Ltd.

Gulisija, D., Gianola, D., and Weigel,
K. A. (2007). Nonparametric analy-
sis of the impact of inbreeding on

production in Jersey cows. J. Dairy
Sci. 90, 493–500.

Gutierrez-Gil, B., Williams, J. L., Homer,
D., Burton, D., Haley, C. S., and
Wiener, P. (2009). Search for quanti-
tative trait loci affecting growth and
carcass traits in a cross population of
beef and dairy cattle. J. Anim. Sci. 87,
24–36.

Hedrick, P. W. (1994). Purging inbreed-
ing depression and the probabil-
ity of extinction – full-sib mating.
Heredity 73, 363–372.

Hedrick, P. W., Whittam, T. S., and
Parham, P. (1991). Heterozygosity
at individual amino-acid sites –
extremely high-levels for Hla-a and
Hla-B Genes. Proc. Natl. Acad. Sci.
U.S.A. 88, 5897–5901.

Johansson, A. M., Pettersson, M.
E., Siegel, P. B., and Carlborg,
O. (2010). Genome-wide effects
of long-term divergent selec-
tion. PLoS Genet. 6:e1001188.
doi:10.1371/journal.pgen.1001188

Kempthorne, O. (1969). An Introduction
to Genetic Statistics. Ames: Iowa State
University Press.

Kim, J. J., Farnir, F., Savell, J., and Taylor,
J. F. (2003). Detection of quantitative
trait loci for growth and beef car-
cass fatness traits in a cross between
Bos taurus (Angus) and Bos indicus
(Brahman) cattle. J. Anim. Sci. 81,
1933–1942.

Kneeland, J., Li, C., Basarab, J., Snelling,
W. M., Benkel, B., Murdoch, B., et
al. (2004). Identification and fine
mapping of quantitative trait loci
for growth traits on bovine chromo-
somes 2, 6, 14, 19, 21, and 23 within
one commercial line of Bos taurus.
J. Anim. Sci. 82, 3405–3414.

Kuehn, L. A., Keele, J. W., Bennett, G.
L., McDaneld, T. G., Smith, T. P.
L., Snelling, W. M., et al. (2011).
Predicting breed composition using
breed frequencies of 50,000 markers
from the US meat animal research
center 2,000 bull project. J. Anim. Sci.
89, 1742–1750.

Li, C., Basarab, J., Snelling, W. M.,
Benkel, B., Murdoch, B., Hansen, C.,
et al. (2004). Assessment of posi-
tional candidate genes myf5 and igf1
for growth on bovine chromosome
5 in commercial lines of Bos taurus.
J. Anim. Sci. 82, 1–7.

Li, C., Basarab, J., Snelling, W. M.,
Benkel, B., Murdoch, B., and Moore,
S. S. (2002). The identification
of common haplotypes on bovine
chromosome 5 within commercial
lines of Bos taurus and their asso-
ciations with growth traits. J. Anim.
Sci. 80, 1187–1194.

MacNeil, M. D. (2009). Invited
review: research contributions

from seventy-five years of breeding
line 1 Hereford cattle at Miles
City, Montana. J. Anim. Sci. 87,
2489–2501.

MacNeil, M. D., Kress, D. D., Flower,
A. E., and Blackwell, R. L. (1984).
Effects of mating system in Japan-
ese quail; 2) genetic parameters,
response and correlated response to
selection. Theor. Appl. Genet. 67,
407–412.

MacNeil, M. D., Urick, J. J., New-
man, S., and Knapp, B. W. (1992).
Selection for postweaning growth
in inbred Hereford cattle: the Fort
keogh, Montana line 1 example. J.
Anim. Sci. 70, 723–733.

MacNeil, M. D., Urick, J. J., and Snelling,
W. M. (1998). Comparison of selec-
tion by independent culling levels
for below-average birth weight and
high yearling weight with mass selec-
tion for high yearling weight in line
1 Hereford cattle. J. Anim. Sci. 76,
458–467.

Marquez, G. C., Enns, R. M., Grosz,
M. D., Alexander, L. J., and
Macneil, M. D. (2009). Quanti-
tative trait loci with effects on
feed efficiency traits in Here-
ford x composite double back-
cross populations. Anim. Genet. 40,
986–988.

Matukumalli, L. K., Lawley, C. T., Schn-
abel, R. D., Taylor, J. F., Allan, M.
F., Heaton, M. P., et al. (2009).
Development and characterization
of a high density SNP genotyping
assay for cattle. PLoS ONE 4:e5350.
doi:10.1371/journal.pone.0005350

McKay, S. D., Schnabel, R. D., Mur-
doch, B. M., Matukumalli, L. K.,
Aerts, J., Coppieters,W., et al. (2007).
Whole genome linkage disequilib-
rium maps in cattle. BMC Genet.
8:74. doi:10.1186/1471-2156-8-74

Meadows, J. R. S., Chan, E. K. F., and
Kijas, J. W. (2008). Linkage dise-
quilibrium compared between five
populations of domestic sheep. BMC
Genet. 9:61. doi:10.1186/1471-2156-
9-61

Mizoshita, K., Takano, A., Watanabe,
T., Takasuga, A., and Sugimoto, Y.
(2005). Identification of a 1.1-Mb
region for a carcass weight QTL
on bovine chromosome 14. Mamm.
Genome 16, 532–537.

Nei, M., Maruyama, T., and
Chakraborty, R. (1975). The
bottleneck effect and genetic vari-
ability in populations. Evolution 29,
1–10.

Nkrumah, J. D., Sherman, E. L., Li, C.,
Marques, E., Crews, D. H., Bartusiak,
R., et al. (2007). Primary genome
scan to identify putative quantita-
tive trait loci for feedlot growth

rate, feed intake, and feed efficiency
of beef cattle. J. Anim. Sci. 85,
3170–3181.

Oleksyk, T. K., Zhao, K., De La Vega,
F. M., Gilbert, D. A., O’Brien,
S. J., and Smith, M. W. (2008).
Identifying selected regions from
heterozygosity and divergence
using a light-coverage genomic
dataset from two human pop-
ulations. PLoS ONE 3:e1712.
doi:10.1371/journal.pone.0001712

Qanbari, S., Pimentel, E. C., Tetens, J.,
Thaller, G., Lichtner, P., Sharifi, A. R.,
et al. (2010). The pattern of linkage
disequilibrium in German Holstein
cattle. Anim. Genet. 41, 346–356.

Reich, D. E., Cargill, M., Bolk, S., Ire-
land, J., Sabeti, P. C., and Richter,
D. J. (2001). Linkage disequilibrium
in the human genome. Nature 411,
199–204.

Setoguchi, K., Furuta, M., Hirano,
T., Nagao, T., Watanabe, T., Sug-
imoto, Y., et al. (2009). Cross-
breed comparisons identified a crit-
ical 591-kb region for bovine car-
cass weight QTL (CW-2) on chro-
mosome 6 and the Ile-442-Met sub-
stitution in NCAPG as a posi-
tional candidate. BMC Genet. 10:43.
doi:10.1186/1471-2156-10-43

Sherman, E. L., Nkrumah, J. D., Li,
C., Bartusiak, R., Murdoch, B.,
and Moore, S. S. (2009). Fine
mapping quantitative trait loci for
feed intake and feed efficiency
in beef cattle. J. Anim. Sci. 87,
37–45.

Storey, J. D. (2002). A direct approach
to false discovery rates. J. R. Stat.
Soc. Series B Stat. Methodol. 64,
479–498.

Takasuga, A., Watanabe, T., Mizoguchi,
Y., Hirano, T., Ihara, N., Takano,
A., et al. (2007). Identification of
bovine QTL for growth and car-
cass traits in Japanese black cattle by
replication and identical-by-descent
mapping. Mamm. Genome 18,
125–136.

Tang, K., Thornton, K. R., and Stonek-
ing, M. (2007). A new approach
for using genome scans to detect
recent positive selection in the
human genome. PLoS Biol. 5:e171.
doi:10.1371/journal.pbio.0050171

Tenesa, A., Navarro, P., Hayes, B.
J., Duffy, D. L., Clarke, G. M.,
Goddard, M. E., et al. (2007).
Recent human effective popula-
tion size estimated from linkage
disequilibrium. Genome Res. 17,
520–526.

Wang, J. L., Hill, W. G., Charlesworth,
D., and Charlesworth, B.
(1999). Dynamics of inbreed-
ing depression due to deleterious

Frontiers in Genetics | Livestock Genomics December 2012 | Volume 3 | Article 285 | 6

http://www.hereford.org/static/files/S12_Trend.pdf
http://www.hereford.org/static/files/S12_Trend.pdf
http://dx.doi.org/10.1371/journal.pgen.1001188
http://dx.doi.org/10.1371/journal.pone.0005350
http://dx.doi.org/10.1186/1471-2156-8-74
http://dx.doi.org/10.1186/1471-2156-9-61
http://dx.doi.org/10.1186/1471-2156-9-61
http://dx.doi.org/10.1371/journal.pone.0001712
http://dx.doi.org/10.1186/1471-2156-10-43
http://dx.doi.org/10.1371/journal.pbio.0050171
http://www.frontiersin.org/Livestock_Genomics
http://www.frontiersin.org/Livestock_Genomics/archive


Huang et al. Genetic architecture of line 1 Hereford

mutations in small popula-
tions: mutation parameters and
inbreeding rate. Genet. Res. 74,
165–178.

Zimin, A. V., Delcher, A. L., Florea,
L., Kelley, D. R., Schatz, M. C.,
Puiu, D., et al. (2009). A whole-
genome assembly of the domestic
cow, Bos taurus. Genome Biol. 10,
R42.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 06 September 2012; accepted:
21 November 2012; published online: 14
December 2012.

Citation: Huang Y, Maltecca C, Mac-
Neil MD, Alexander LJ, Snelling WM
and Cassady JP (2012) Using 50 K sin-
gle nucleotide polymorphisms to elu-
cidate genomic architecture of line 1
Hereford cattle. Front. Gene. 3:285. doi:
10.3389/fgene.2012.00285
This article was submitted to Frontiers
in Livestock Genomics, a specialty of
Frontiers in Genetics.

Copyright © 2012 Huang , Maltecca,
MacNeil, Alexander, Snelling and Cas-
sady. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

www.frontiersin.org December 2012 | Volume 3 | Article 285 | 7

http://dx.doi.org/10.3389/fgene.2012.00285
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Livestock_Genomics/archive

	Using 50 K single nucleotide polymorphisms to elucidate genomic architecture of line 1 Hereford cattle
	Introduction
	Materials and methods
	Animals
	Genotypes
	Linkage disequilibrium and persistence of phase
	Regression of allele frequency on cumulative selection differential
	Heterozygosity and inbreeding

	Results and discussion
	Contrast of the L1 and AHA populations
	Linkage disequilibrium and persistence of phase
	Quantitative trait locus discovery
	Heterozygosity and inbreeding effect on postweaning gain

	Conclusion
	Supplementary material
	References


