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The numerous genome sequencing projects produced unprecedented amount of data pro-
viding significant information to the discovery of novel non-coding RNA (ncRNA). Several
ncRNAs have been described to control gene expression and display important role during
cell differentiation and homeostasis. In the last decade, high throughput methods in con-
junction with approaches in bioinformatics have been used to identify, classify, and evaluate
the expression of hundreds of ncRNA in normal and pathological states, such as cancer.
Patient outcomes have been already associated with differential expression of ncRNAs
in normal and tumoral tissues, providing new insights in the development of innovative
therapeutic strategies in oncology. In this review, we present and discuss bioinformatics
advances in the development of computational approaches to analyze and discover ncRNA
data in oncology using high throughput sequencing technologies.
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INTRODUCTION
The ENCODE project discovered that most of the human genome
is transcribed, but only a tiny fraction of human DNA encode
for proteins (ENCODE Project Consortium et al., 2007; Elgar and
Vavouri, 2008). The remaining transcriptome is defined as non-
coding RNA (ncRNA) and is divided into distinct classes, each
of them with its own three-dimensional folding and presenting a
specific function. Some ncRNA classes are known for years, such
as ribosomal and transport RNAs (essential to translation); small
nucleolar RNAs (snoRNAs; biogenesis and control of ribosome
activity); and small nuclear RNAs (to promote splicing of pre-
mRNAs). Recently, additional ncRNA classes have been described
and shown to be able to repress gene expression (microRNAs,
miRNA); to regulate cellular proliferation, apoptosis (small inter-
fering RNAs, siRNAs), and imprinting (long non-coding RNAs,
lncRNA); and also to inhibit transposon and DNA methylation
(PIWI-interacting RNAs, piRNA; for a detailed description of the
known ncRNAs, see Eddy, 2001; Mitra et al., 2012).

The most studied ncRNA class in oncology is miRNA. These
small RNAs have on average 22 nucleotides in length and mediate
gene silencing by partially paring with specific regions of messen-
ger RNAs (mRNA) to prevent its translation (Wu et al., 2012). The
miRNA target genes are usually related to fundamental cellular
processes like proliferation, differentiation, apoptosis, and devel-
opment (Schulte et al., 2010). Aberrations in miRNAs expression
levels have been extensively studied in several types of cancer as
they may act as tumor suppressor genes or oncogenes (Meiri et al.,
2010).

Additionally, two ncRNA classes with special attention in stud-
ies in oncology are lncRNA and piRNA. The lncRNAs are more
than 200 nucleotides long and although most of them have not
been fully characterized, they have been related to the regulation
of several cellular processes such as epigenetics, differentiation,

proliferation, and nuclear import (Tahira et al., 2011). Recent stud-
ies reported alterations in different lncRNAs in several types of
cancer (Reis et al., 2004; Guffanti et al., 2009; Cheng et al., 2011;
Cui et al., 2011; Esposito et al., 2011; Prensner et al., 2011; Tahira
et al., 2011; Yang et al., 2012a,b). The piRNA class has also been
related to have a possible involvement in the biogenesis of can-
cer. The piRNAs interact with PIWI proteins in order to promote
silencing of transposable elements and maintain DNA integrity
(Cheng et al., 2011).

Since 1977, when the first genome was sequenced, the DNA
sequencing technology has been evolving to higher throughput
and lower cost (Kircher and Kelso, 2010). Current high through-
put sequencing (HTS), also known as next-generation sequencing,
provides the opportunity to obtain a more accurate profiling with
higher resolution, increased throughput, sequencing depth, and
low experimental complexity (Prensner et al., 2011; Zhou et al.,
2011). One characteristic of this technology is the amount of
data produced, making methods in bioinformatics essential for
its analysis.

Bioinformatics emerged as a multidisciplinary discipline which
aimed to analyze biological data using programming techniques
and the computational processing power. The first studies in
Bioinformatics were performed in the early 1960s, when the first
computational approaches were used to address gene and pro-
tein sequences (for a time line review, see Hagen, 2000). The
term bioinformatics was coined by Hesper and Hogeweg (1970) as
“the study of informatics processes in biotic systems” (Hogeweg,
2011). However, after the emergence of high throughput meth-
ods in molecular biology and the establishment of the Human
Genome Program in 1990, the definition of bioinformatics has
shifted to assist in the management, storage, visualization, and
analysis of large amounts of data. In conjunction to the develop-
ment of bioinformatics tools, many molecular biology techniques
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were created in the last two decades such as qPCR, microar-
ray, tilling array and SAGE, which permitted to quantify gene
expression. A large number of studies have been taken using mol-
ecular biology techniques to produce large amounts of raw data
and bioinformatics tools to assist the biological interpretation
of the findings. An example of the importance of bioinformat-
ics to the science was the announcement of the draft of the
human genome in 2001, which was presented after the develop-
ment of a computational tool to assemble the unsorted fragments
of the human genome (Kent and Haussler, 2001; Lander et al.,
2001).

As depicted in Figure 1, bioinformatics can assist two types
of research: disease-oriented (e.g., cancer) and methodologically
driven (e.g., HTS). In the former, several technologies can be
used to study distinct biological patterns and then a systems biol-
ogy approach is taken to assist in the comprehension of cancer.
In the latter, an unique molecular biology technique is used to
answer a specific interrogation, for example, the expression pat-
tern of human genes after a group of patients received a standard
treatment against a specific cancer type.

In this review, we present some examples of ncRNA discov-
ered, its potential to be used as cancer biomarkers and the role and
challenges in bioinformatics to analyze HTS data.

WHY STUDYING NON-CODING RNAs IN CANCER?
Calin et al. (2002) documented the first differentially expressed
ncRNA in cancer samples. The small RNAs miR-15 and miR-16
were described to be deleted or down regulated in more than half
of the patients with Chronic Lymphocytic Leukemia (CLL) and
B-cell CLL. The absence of those genes led to an over expression
of the Bcl-2 gene, preventing apoptosis. Two years later, additional
data revealed that some miRNAs genes are located at fragile and
frequently altered sites in cancer, including regions with amplifi-
cations, loss of heterozygosity, or breakpoints (Calin et al., 2004).
Since then, several other reports have presented alterations related
to ncRNAs in different cancer samples.

One of the first approaches to associate ncRNA and oncology
was performed by Mishra et al. (2007). The authors evaluated
polymorphisms in the human dihydrofolate reductase (DHFR)

FIGURE 1 |The disease-oriented and methodological-driven types of
research assisted by bioinformatics.

mRNA binding site for miR-24. As result, the polymorphism led
to the loss of miR-24 function and resulted in DHFR overex-
pression, increasing resistance to chemotherapy. Among miRNAs,
the oncogene miR-21 has been extensively studied (Dillhoff et al.,
2008; Frankel et al., 2008; Krichevsky and Gabriely, 2009; Li et al.,
2009a,b; Rabinowits et al., 2009; Ribas et al., 2009; Seike et al.,
2009; Wickramasinghe et al., 2009; Iliopoulos et al., 2010). This
miRNA appears over expressed in different tumor samples and
targets PTEN, PDCD4, TPM1, and Maspin human genes, promot-
ing growth, migration, and invasion in different tumor types (Zhu
et al., 2008).

Regarding lncRNAs, recently, a single nucleotide polymor-
phism located in the ANRIL gene was associated with the number
of plexiform neurofibromas in neurofibromatosis type 1 patients.
Moreover, one of its allele was associated with low levels of ANRIL,
suggesting a relation between the ANRIL and the susceptibility to
plexiform neurofibromas (Pasmant et al., 2011). In addition, in
a recent review, Gustschner and Diederichs (2012) were able to
link cellular processes influenced by lncRNAs to the hallmarks of
cancer.

Several studies associating cancer and ncRNA aim to discover
molecular signatures for diagnosis and prognosis. In this direction,
cancer biomarkers are molecular features that are produced either
by the tumor or by the host as a response due to the change of
the default cell metabolism. Examples of possible biomarkers are
mutations and alterations in gene expression and epigenetics (for
a deep view of cancer epigenetics, see Brait and Sidransky, 2011).
The identification of specific cancer biomarkers may provide para-
meters for cancer early detection, diagnosis, prognosis, prediction
of response to anticancer treatments, prediction of recurrence,
and identification of putative drug targets. However, due to cancer
complexity, it has been recently suggested that single biomarker
may not be adequate for clinical practice and it is suggested to
use a set of biomarkers in a panel (Tainsky, 2009). The study of
Hennessey et al. (2012) compared the miRNA expression profile
in the serum of non-small cell lung cancer (NSLC) patients and
healthy individuals. The authors proposed the combination of the
expression levels of miR-15b and miR-27b would be able to dis-
criminate the healthy and the sick individuals. Another study in
NSLC was performed by Chen et al. (2012) in which it is sug-
gested a 10 miRNA panel to differentiate tumor types. Wu et al.
(2012) analyzed the serum of 42 breast cancer patients and were
able to detect more than 800 circulating miRNAs and associate
them with tumor status. The low levels of miRNA miR-375 and
high levels of miRNA miR-122 have been suggested as biomark-
ers for predicting metastasis in early patients. In this direction,
Liu et al. (2011) compared the expression of miRNAs in the
serum of 20 patients with gastric cancer against 20 normal sam-
ples. Among the 19 over expressed miRNA identified, the miR-1,
miR-20a, miR-27a, miR-34, and miR-423-5p have been identified
as potential biomarkers for gastric cancer diagnostics and tumor
profiling.

Another aspect of ncRNA and cancer is the possibility to asso-
ciate them with drug resistance. A very large effort to comprehend
the role of drug activity and resistance in cancer cell lines was per-
formed by Liu et al. (2010). The microarray technology has been
used to evaluate the mRNA and miRNA expression profiling of
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the 60 cancer cell lines of the National Cancer Institute Develop-
mental Therapeutics Program, also known as the NCI-60 panel.
The authors used bioinformatics approaches to analyze and cluster
some cell groups according to their tissue of origin and to associate
the levels of mRNAs and miRNAs with sensitivity or resistance to
many drugs routinely used in the clinic. To facilitate the visualiza-
tion of the data produced, the authors developed the CellMiner, a
web based tool very useful to clinicians and researchers from basic
to applied research (Reinhold et al., 2012).

The aforementioned studies exemplify how miRNA are
involved in cancer development and progression. Another advan-
tage of analyzing small ncRNA profile in cancer regards the distinct
types of samples may be use to study it, from fresh tissues, body
fluids (including blood, urine, and saliva), and formalin-fixed,
paraffin-embedded (FFPE) tissues (Lussier et al., 2012). Therefore,
the study of ncRNAs and its expression profiling in cancer cells may
help understand the mechanisms of the disease and improve diag-
nostics and prognostics by personalizing cancer treatment (Hu
et al., 2010).

WHY USING HTS FOR ncRNA PROFILING IN CANCER?
The most common approach used to study ncRNA is to first pro-
duce large-scale profiling on microarray followed by validation by
more specific techniques such as microarray with fewer probes
or multiplexed RT-PCR. Regarding ncRNAs, miRNA microarrays
provide an overview of the set of miRNAs in a sample and can be
further validated by northen blot, Rnase protection assay, primer
extension assay, quantitative RT-PCR, and in situ hybridization
(Tainsky, 2009). However, with the advent of HTS technology, it
is possible not only to infer the expression level of ncRNA, but
also to detect uncharacterized ones. Another advantage of HTS
over other existing expression profiling technologies is the fact
that the process requires no previous information about the tran-
scripts that will have its expression quantified (Isakov et al., 2012).
This characteristic of HTS is suggestive for its use in the quantifi-
cation of the heterogeneous transcriptome of cancer (Meyerson
et al., 2010). Distinct from other techniques, HTS does not use
specific or random probes, instead, the RNA molecules from the
sample are linked to adaptors and amplified by PCR (McCormick
et al., 2011), permitting the sequencing of the exact transcript on
a single nucleotide resolution (Zhou et al., 2011). This step allows
the identification of variations in length or composition, dele-
tions, duplications, low abundant, and novel transcripts present
in cancer samples (Meyerson et al., 2010). Figure 2 depicts some
advantages of HTS over other techniques and how bioinformatics
is essential to analyze them.

A comparison between the expression profile using HTS and
microarray was performed by Weng et al. (2010). The authors
used HTS technology to evaluate the profile of small RNAs in
three paired clear cell renal cell carcinoma (ccRCC) FFPE samples
and performed miRNA microarray and RT-PCR to validate the
results from the former. Besides the known miRNA genes, the HTS
experiments were able to reveal million of short sequences that
included sequences from snoRNAs, sRNA, snRNA, tRNAs, rRNAs,
introns, exons, and several others, including unknown nucleotide
sequences. Bioinformatics techniques were used to cluster the
miRNA detected and to distinguish between tumor and normal

FIGURE 2 | Advantages of Bioinformatics and HTS over other
techniques.

samples. The miRNA microarray were able to detect up to 453
miRNAs, while the HTS could identify up to 598 miRNAs and
both platforms showed correlated expression levels that were val-
idated by RT-PCR in seven randomly chosen altered miRNAs. As
can be observed, HTS let to the quantification of 145 additional
ncRNAs not present in the microarray experiment.

Several ncRNA HTS studies revealed putative novel ncRNAs
(Jima et al., 2010; Keller et al., 2011; Prensner et al., 2011). Deep
sequencing of the enriched Poly(A) transcriptome was used to
evaluate the expression of both protein coding and lncRNAs in
cancer samples by Prensner et al. (2011) in 102 prostate tissues
and cell lines, including normal samples and benign, localized, and
metastatic samples. The authors were able to describe the novel
lncRNA PCAT-1, over expressed in metastatic samples. Further
experiments pointed it as a prostate specific regulator of cell pro-
liferation that targets the Policomb Repressive Complex 2 (PRC2).
Jima et al. (2010) evaluated small ncRNAs in normal and malig-
nant B cells. The authors proposed a panel of known and novel
miRNAs to distinguish between the subgroups of lymphoma and
found that one previously annotated miRNA cluster has its expres-
sion levels inversely correlated with its putative targets SMAD2 and
SMAD3, known mediators of the transforming growth factor-β
(TGF-β) signaling pathway. Keller et al. (2011) evaluated the miR-
NAs differentially expressed in the blood of NSLC patients and
found some unknown miRNAs, including novel mature forms
from known precursors.

Another example of HTS as tool to the identification of novel
small ncRNA class is found in the study of Meiri et al. (2010). The
authors used HTS to evaluate the miRNA transcriptome of 23 solid
tumor samples, including breast, bladder, colon, and lung. They
discovered 49 novel miRNA and sequence variants with different
expression patterns among the samples and identified a novel class
of small ncRNAs derived from Y-RNAs and endogenous siRNAs.

Most of the HTS studies published so far have tried to iden-
tify miRNA to use as diagnostic or prognostic biomarkers in solid
tumors or in circulation. The two studies by Wu et al. (2012) and
Liu et al. (2011) referred to in the previous section used HTS to
infer their candidate biomarkers. Martens-Uzunova et al. (2012)
and Ryu et al. (2011) went further. Martens-Uzunova et al. (2012)
used the miRNA expression found in one organ-confined and
one metastatic lymph node tumor samples of prostate cancer
to create a miR-classifier that was able to correctly distinguish
89% of the prostate cancer cell samples. Besides miRNA, the
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experiment was able to find snoRNAs and tRNAs with altered
expression levels and novel miRNA with very low counts. Ryu
et al. (2011) applied a bioinformatics approach to validate the
novel miRNAs in breast cancer cell lines. The authors obtained
189 putative novel miRNAs, considering thermodynamics sta-
bility, presence of complementary sequences, and phylogenetic
conservation.

There are several HTS platforms commercially available, each
with its own characteristics such as data throughput, read length,
error rate, and price (Zhou et al., 2011). Therefore, the choice of
the platform to be used must be according to its characteristics and
the needs of the experiment. Kircher and Kelso (2010) reviewed
the sequencing technologies of some HTS platforms and Toedling
et al. (2012) present the comparison of different sequencing proto-
cols and the results obtained. The authors recommend comparing
data generated only by the same protocol.

HOW COMPUTATIONAL PROCEDURES CAN AID ncRNA HTS
PROFILING?
High throughput sequencing experiments generate a large amount
of data, hence bioinformatics methods are necessary for the proper
storage, visualization, and analysis. After sequencing, one or more

text files are produced in the fasta, fastq or csfasta, and qual for-
mats, depending on the equipment settings and platform used.
These files contain the nucleotides sequenced for each read and a
quality score for each base/color call (Isakov and Shomron, 2011).
Usually, the sequencer manufacturer provides software able to
process this data in the very beginning steps toward publication.
In this section, we will discuss available independent tools for each
step of the downstream analysis. Figure 3 shows some of the steps
for HTS analysis.

Among the sequenced data, it is common to find reads with
miscalled bases, unidentified bases, poor quality, and adaptor con-
tamination. Those artifacts must be removed before alignment to
avoid wrong mapping and also to save computational time (Patel
and Jain, 2012).

For the removal of low quality reads and unidentified bases,
some authors use their own script as described, for example, by
Meiri et al. (2010). However, other studies use public available
toolkits, like Fastx-toolkit (Gordon and Hannon, unpublished)
and QC Toolkit (Patel and Jain, 2012). The aforementioned tools
are a collection of programs for processing short reads fastq and
fasta files and reporting the quality of sequencing run, filtering
reads for their quality, and removing unknown nucleotides.

FIGURE 3 | Steps for HTS analysis.
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If the aim is to sequence short RNAs (sRNAs), most probably
the size of the desired sRNA is smaller than the read’s length (Mar-
tin, 2011). In this case, a subsequence of the adaptor used in the
sequencing process will be present in the final result and, because
it does not belong to the sequenced genome, it must be removed
(McCormick et al., 2011). Both of the toolkits mentioned above
can remove those sequences. Other tools include the Cutadapt pro-
gram (Martin, 2011), the Bioconductor’s package for short read
processing called Biostrings (Pàges et al., 2012) and the aligners
Novoalign (Hercus, 2008) and SOAP (version 1; Li et al., 2008).
Table 1 presents some preprocessing alignment tools. The Biocon-
ductor’s packages Biostrings (Pàges et al., 2012) and ShortRead
(Morgan et al., 2009) together can assess the quality and remove
adaptor sequence from fasta and fastq files, but they require user
knowledge of programming language R and Bioconductor. The
Cutadapt algorithm can remove the adaptor sequence from the
reads obtained by the major sequencing platforms, but, differently
from the aforementioned algorithms, it cannot access or filter low
quality reads (Martin, 2011). Regarding the mentioned aligners,
its adaptor removal propriety is linked to the alignment algorithm;
therefore they cannot be applied if the user wishes to use another
alignment tool.

The next step of the analysis is aligning sequence reads onto the
genome of the reference organism. This can be a computation-
ally demanding task due to the great volume of short sequences
produced and also nucleotide and structural variance, sequenc-
ing errors, RNA editing, and epigenetic modifications (Isakov and
Shomron, 2011), especially for the traditional alignment tools (Lee
et al., 2011). Hence, a new generation of short read aligners has
been developed, saving computational time by indexing the read
sequences, or the genome prior alignment (Lee et al., 2011). Sev-
eral aspects of the aligner must be considered: memory and time
requirements and limitations, and how the tool is adequate to the
task (Isakov and Shomron, 2011). For instance, many short read
aligners can be programmed to return the results of the reads
whose first part perfectly matches the reference genome, which
allows to search for potential isoforms of miRNA (Motameny
et al., 2010). In this direction, the Novoalign software has a special
option to align miRNA in which it searches for regions comple-
mentary to the reads near the mapped loci (Hercus, 2008). Most
sequence aligners generate results in the sam file format which
can be processed by the SAMtools kit (Li et al., 2009c; Isakov and
Shomron, 2011). One thing worth noticing is that when a short

sequence is aligned to a large and complex genome with repeti-
tive regions, such as the human genome, is expected to find reads
mapped in multiple locations in the genome (McCormick et al.,
2011). Most software does not report such results as default, result-
ing in the loss of some sequences (Motameny et al., 2010). Other
strategies to manipulate such reads are to divide their count by all
putative loci and their estimate a proportion according to the lev-
els of uniquely mapped reads in neighbor loci (McCormick et al.,
2011). Some alignment tools for HTS data are shown in Table 2
and were evaluated by Ruffalo et al. (2011).

As important as the aligner, is the database to map the processed
reads. There are several genome and ncRNA databases available,
but the most commonly used sequence databases for studying
cancer are the following: the human genome hg18 assembly pro-
vided by the UCSC Genome Bioinformatics group (Dreszer et al.,
2012), miRBase (Kozomara and Griffiths-Jones, 2011) and Rfam
(Gardner et al., 2011). It is important to notice that the human
genome sequence in the hg18 version provided through the UCSC
Genome Browser website is identical to the NCBI36 version.
Table 3 exemplifies some of these databases.

Regarding ncRNA analysis, it is important to use annotation
databases having information regarding the annotation of pre-
diction and experimentally defined ncRNAs. The UCSC Table
Browser provides open accesses to high quality human genome
annotation including alignment of RefSeq genes, mRNAs and EST
from GenBank and also other gene and gene prediction tracks
such as Ensembl Genes (Karolchik et al., 2004). Currently, this
tool is under migration to the latest version of the human genome
sequence (hg19/NCBI37; Dreszer et al., 2012). One another impor-
tant source of annotation files for studying ncRNA is ncRNA.org,
which is part of the Functional RNA database and is an extended
mirror of the UCSC Genome Browser. NcRNA.org displays infor-
mation about functional ncRNAs and associated elements in the
hg17 and hg18 versions of the human genome (Mituyama et al.,
2009). Another frequently database used in studies in oncology and
HTS is the miRBase (Kozomara and Griffiths-Jones, 2011). This
database is the primary source for miRNA sequence and anno-
tation. The miRBase effort has the objective to provide curated
nomenclature scheme for known and novel miRNAs, to act as cen-
tral repository for mature and precursor miRNA sequence and also
to provide access to the primary evidence that supports miRNA
annotations. Another database used in researches that go beyond
the miRNA family is named Rfam. This database maintains

Table 1 | Preprocessing alignment tools.

Name Site Description Authors

Fastx-toolkit http://hannonlab.cshl.edu/fastx_toolkit/ FASTA/FASTQ file processing Gordon and Hannon

(unpublished)

QC tools http://www.nipgr.res.in/ngsqctoolkit.html Ilumina and Roche 454 FASTQ file processing Patel and Jain (2012)

Cutadapt http://code.google.com/p/cutadapt/ Removes adapter sequence Martin (2011)

ShortRead http://bioconductor.org/packages/2.10/bioc/html/ShortRead.html FASTA/FASTQ file processing Morgan et al. (2009)

Biostrings http://bioconductor.org/packages/2.10/bioc/html/Biostrings.html String objects representing biological

sequences, and matching algorithms

Pàges et al. (2012); R

package version 2.24.1
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Table 2 | Alignment tools.

Name Site Authors

Soap http://soap.genomics.org.cn/soapaligner.html Li et al. (2008)

Bwa http://bio-bwa.sourceforge.net/ Li and Durbin

(2009)

Bowtie http://bowtie-bio.sourceforge.net/index.shtml Langmead

et al. (2009)

Novoalign http://www.novocraft.com/main/index.php Hercus (2008)

Table 3 | Sequence databases.

Name Site Description Authors

UCSC

hg18/NCBI36

http://genome.

ucsc.edu/

Human genome

sequence

International Human

Genome Sequencing

Consortium

ncRNA.org http://www.

ncrna.org/

ncRNA database

sequence

Mituyama et al.

(2009)

miRBase http://www.

mirbase.org/

miRNA database

sequence

Kozomara and

Griffiths-Jones (2011)

Rfam http://rfam.

sanger.ac.uk/

ncRNA database

sequence

Gardner et al. (2011)

automated and curated sequences, alignments, secondary struc-
ture, and annotations of several ncRNAs families. Each family
represents a set of RNA sequences that share a common ancestral
(Gardner et al., 2011).

All the aforementioned tools require Linux and programming
knowledge from the end user. Aiming to assist small to medium
bioinformatics research groups to analyze miRNA HTS, several
pipelines have been developed for processing raw files, identify
novel transcripts, calculate differential expression, and provide fast
annotation of genomic coordinates and single nucleotide varia-
tions (revised by Li et al., 2012; Table 4). One exception is the
RandA pipeline (Isakov et al., 2012), that uses the whole Rfam
database, and can be applied to different ncRNAs. Segtor (Renaud
et al., 2011) is another tool that works to assist in one important
step in the biological interpretation effort of every HTS experi-
ment. Segtor allows the fast annotation of sequences from a given
HTS experiment and provide a list of ncRNA genes affected by
multiple types of nucleotide polymorphisms.

One of the advantages of HTS over other profile techniques
resides in the fact that its quantification is based on how many
reads were mapped in the same region/transcript. However, the
read count is subject to sample and experimental variation, there-
fore, they must be normalized to be compared to other samples
(Datta et al., 2010). There are several normalization methods,
like linear total count scaling, quantile-based, trimmed mean of
M value, two-step non-linear regression and others, each with
its own advantages and disadvantages (McCormick et al., 2011).
One of the most common normalization methods is to com-
pute the RPKM (reads per kilobase per million) of each unique

reads (Motameny et al., 2010). Some of the mentioned meth-
ods can be applied using the Bioconductor’s package easyRNASeq
(Delhomme et al., 2012). This process must not include the
sequencing errors that passed the initial filters and it is also rec-
ommended to remove reads with low counts (Motameny et al.,
2010).

After normalization, the appropriate statistical method can be
applied to find differentially expressed ncRNAs. Microarray is a
method widely used for large-scale quantification of gene expres-
sion. However, raw data from microarray and HTS differ because
the former provides continuous values and the latter discrete
values for measuring gene expression. Hence, well-established sta-
tistical methods used for the detection of differentially expressed
genes in microarray data cannot be applied for HTS studies. Some
examples of packages and softwares for HTS analysis are the Bio-
conductor’s packages DESeq (Anders and Huber, 2010), EdgeR
(Robinson et al., 2010), based on the negative binomial distri-
bution, and baySeq (Hardcastle and Kelly, 2010), which uses a
statistical Bayesian approach. Some authors also prefer to use vari-
ations of the Poison’s distribution like the Two-Stage Poison Model
(Auer and Doerge, 2011). Recently, some articles were published
comparing the performance of some of the aforementioned dif-
ferential expression Bioconductor packages and other softwares
based on simulated and real data (Kvam et al., 2012; Robles et al.,
2012; Vijay et al., 2012). Table 5 presents some Bioconductor’s
packages for normalization or differential expression analysis of
HTS data.

It is interesting to further validate any novel transcripts discov-
ered. Computational and experimental techniques for gene finding
are difficult to be applied to ncRNAs, due to their specific func-
tion and the fact that they do not have the same characteristics
as the well known protein coding genes (Mendes et al., 2009).
Concerning ncRNAs, most of the gene finding tools is directed to
miRNA genes (revised by Oulas et al., 2011). A tool constructed
specially to validate novel miRNAs found by HTS experiments
is mirDeep (Friedländer et al., 2008; Table 6). This tool searches
for reads that form the precursor miRNA and uses the folding
algorithm of the Vienna package to evaluate the possibility of a
hairpin structure (Friedländer et al., 2008). As mentioned, the
structure of ncRNA families is well conserved and is usually used
to assist as an additional step toward confirming a new or a known
ncRNA.

There are several folding algorithms to predict RNA secondary
structure (Table 7). Among the most well known are the Vien-
naRNA package (Lorenz et al., 2011), Mfold (Zuker, 2003) and
Rfold (Kiryu et al., 2008). The ViennaRNA package uses thermo-
dynamic parameters and dynamic programming to predict the
secondary structure. It also provides information about centroid
and maximum expected accuracy structures derived from base
paring probabilities (Lorenz et al., 2011). The web version contains
the most used tools and can be applied to obtain a putative sec-
ondary structure of a specific sequence or the consensus structure
of a group of sequences (Hofacker, 2003). The Mfold algorithm
uses free energy data to predict the minimum free energy for differ-
ent foldings based on several user defined parameters. The output
of Mfold includes structure plots, single strand frequency plots,
and energy plots (Zuker, 2003). Another tool to predict secondary
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Table 4 | Pipelines for HTS analysis.

Name Site Description Authors

miRExpress http://mirexpress.mbc.nctu.edu.tw/ miRNA profiling Wang et al. (2009)

RandA http://ibis.tau.ac.il/RandA/ ncRNA profiling and differential expression Isakov et al. (2012)

mirAnalyzer http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php miRNA profiling and gene discovery Hackenberg et al. (2009)

miRNAkey http://ibis.tau.ac.il/miRNAkey/ miRNA profiling and differential expression Ronen et al. (2010)

Table 5 | Bioconductor’s packages for normalization and differential expression of HTS data.

Name Site Description Authors

easyRNASeq http://bioconductor.org/packages/

2.10/bioc/html/easyRNASeq.html

Count summarization and normalization for

RNA-seq data

Delhomme et al. (2012)

DESeq http://bioconductor.org/packages/

2.10/bioc/html/DESeq.html

Differential gene expression analysis based on

the negative binomial distribution

Anders and Huber (2010)

edgeR http://bioconductor.org/packages/

2.10/bioc/html/edgeR.html

Empirical analysis of digital gene expression

data in R

Robinson et al. (2010)

baySeq http://www.bioconductor.org/packages/

release/bioc/html/baySeq.html

Normalization and differential gene expression

by Bayesian methods

Hardcastle and Kelly (2010)

Table 6 | miRNA gene discovery for HTS.

Name Site Authors

miRDeep http://www.mdc-berlin.de/en/research/

research_teams/systems_biology_of_gene_

regulatory_elements/projects/

miRDeep/index.html

Friedländer

et al. (2008)

Table 7 | Secondary structure prediction tools.

Name Site Authors

Mfold http://www.bioinfo.rpi.edu/

applications/mfold

Zuker (2003)

ViennaRNA

package

http://www.tbi.univie.ac.at/∼ivo/RNA/ Lorenz et al. (2011)

Rfold http://www.ncrna.org/software/Rfold/ Kiryu et al. (2008)

structure of RNAs is the Rfold algorithm which performs base
paring probabilities (Kiryu et al., 2008).

Other additional step in the interpretation of HTS ncRNA
experiments includes finding the protein coding genes targeted
by the detected ncRNAs. Even for the most studied ncRNA class,
miRNAs, this is a complex task, due to their small size and few base
pairing to their targets. The currently available tools rely on known
properties like paring pattern, thermodynamic stability, and con-
servation to predict putative targets (Min and Yoon, 2010). There
are several databases and software for miRNA target recognition
(Table 8). Among them, may be cited Miranda (John et al., 2004),

Pictar (Krek et al., 2005), and Diana-microT (Maragkakis et al.,
2009; for a complete view of such databases, see, Yousef et al.,
2009). The Miranda algorithm was used to predict miRNA tar-
gets presented in the microRNAs.org database (Betel et al., 2008).
This algorithm uses the binding energy, complementary pattern,
evolutionary conservation, and position of the binding site in the
mRNA. Also, is the unique program which is available for down-
load (John et al., 2004). The Pictar algorithm uses the type of
paring between miRNA and mRNA, the free energy of the paring
and target site conservation to generate a probability and a score
of the putative target site (Krek et al., 2005). The DIANA-microT
algorithm uses the type of paring and the conservation to calcu-
late a score for each predicted binding site. This score is compared
to the score obtained by using random miRNAs to calculate a
signal-to-noise ratio (Maragkakis et al., 2009).

The visualization of the reads aligned to the reference genome
is another important set of tools for projects working with HTS.
Data visualization permits to researchers to investigate HTS exper-
iments in a user friendly way (Zhou et al., 2011). Several tools
were developed for visualization of HTS experiments, some of
them were listed by Lee et al. (2011), among them are Integrated
Genomics Viewer (IGV; Thorvaldsdottir et al., 2012), Artemis
(Carver et al., 2012), and Tablet (Milne et al., 2010). Also, the
UCSC and Ensembl genome browsers have been updated to sup-
port HTS data. The downside of using a web viewer is uploading
large amount of data (Fiume et al., 2010). Table 9 shows some
bioinformatics tools for visualization of HTS experiments.

CHALLENGES IN BIOINFORMATICS OF ncRNA AND HTS
The management of the data produced by HTS methods is the first
challenge in bioinformatics. Many gigabytes of raw data may be
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Table 8 | miRNA target prediction tools and databases.

Name Site Description Authors

TargetScan http://www.targetscan.org/ miRNA target prediction algorithm Lewis et al. (2003)

DIANA-microT http://diana.cslab.ece.ntua.gr/microT/ miRNA target prediction algorithm Maragkakis et al. (2009)

RNA Hybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/ Tool for finding the minimum free energy hybridization

of a long and a short RNA

Rehmsmeier et al. (2004)

miRDB http://mirdb.org/miRDB/ Database for miRNA target prediction by MirTarget2

and functional annotation

Wang and El Naqa (2008)

microRNA.org http://www.microrna.org/microrna/home.do Database of miRNA target prediction by the miRanda

algorithm

Betel et al. (2008)

TarBase http://diana.cslab.ece.ntua.gr/tarbase/ Manually curated database of experimentally

supported microRNA targets

Papadopoulos et al. (2009)

miR2Disease http://www.mir2disease.org/ Manually curated database of miRNA deregulation in

various human diseases

Jiang et al. (2009)

miRecords http://mirecords.biolead.org/index.php Database of experimentally validated miRNA targets

and integration of predicted miRNA targets produced

by 11 miRNA target prediction programs

Xiao et al. (2009)

Table 9 |Tools for visualizations of HTS experiments.

Name Site Authors

BamView http://bamview.sourceforge.net/ Carver et al. (2012)

IGV http://www.broadinstitute.org/igv/ Thorvaldsdottir et al. (2012)

Artemis http://www.sanger.ac.uk/

resources/software/artemis/

Carver et al. (2012)

Savant http://genomesavant.com/savant/ Fiume et al. (2010)

Tablet http://bioinf.scri.ac.uk/tablet/ Milne et al. (2010)

produced during a regular project aiming to detect the expression
profile of ncRNAs in oncology and this amount may increase if it is
considered data of mapped reads and all annotation databases used
to analyze them. Furthermore, the hardware and network speed
may be taken into account for appropriate analysis prior starting
a HTS project. Other important challenge in Bioinformatics is to
create protocols to assist in the analysis of ncRNA data. There are

some efforts to assist protein coding genes in HTS data, but none
was taken to ncRNA genes (Trapnell et al., 2012). Almost every
article analyzing ncRNA expression profile using HTS methods
present distinct normalization and statistical approaches. Finally,
since Bioinformatics is still an emerging field of knowledge, there is
few groups with graduate students developing innovative projects
in bioinformatics and ncRNAs. In conclusion, there are three
major limitations in bioinformatics of HTS projects: data man-
agement, analysis, and visualization; definition of protocols to data
analysis; and professionals with expertise in ncRNA analysis.
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