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Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity
in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most
consistent, and best documented positive impact on lifespan are those that disrupt growth
hormone (GH) release or actions. These mutations lead to major alterations in IIS but also
have a variety of effects that are not directly related to the actions of insulin or insulin-
like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the
GH receptor gene, as well as Ames dwarf (Prop1df) and Snell dwarf (Pit1dw) mice lacking
GH (along with prolactin and TSH), are diminutive in size and have major alterations in
body composition and metabolic parameters including increased subcutaneous adiposity,
increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased
adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature
is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that
both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight
than sex- and age-matched normal animals from the same strain. They also have reduced
respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as
an energy source. Differences in oxygen consumption (VO2) were seen in animals fed
or fasted during the measurements as well as in animals that had been exposed to 30%
calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of
30◦C, VO2 did not differ between GHR-KO and normal mice.Thus, the increased metabolic
rate of the GHR-KO mice, at a standard animal room temperature of 23◦C, is apparently
related to increased energy demands for thermoregulation in these diminutive animals. We
suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation
contribute to the extended longevity of GHR-KO mice.
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INTRODUCTION: GROWTH HORMONE-RELATED MOUSE
MUTANTS
Studies of hypopituitary, growth hormone (GH) deficient, and
GH-resistant mice provided evidence that deletion of GH signals
can produce an impressive extension of longevity (Brown-Borg
et al., 1996; Flurkey et al., 2001; Coschigano et al., 2003). Mice
lacking GH or GH receptors show numerous symptoms of delayed
aging, are partially protected from age-related diseases, and outlive
their normal siblings by 30–65% depending on genetic back-
ground, sex, and diet composition (reviewed in Bartke, 2011;
Bartke, 2012; Brown-Borg and Bartke, 2012). Candidate mech-
anisms linking the absence of GH signals with extension of
longevity include altered expression of numerous genes related
to glucose homeostasis, protein synthesis, lipogenesis, lipoly-
sis, and energy metabolism (Tsuchiya et al., 2004; Al-Regaiey
et al., 2005; Papaconstantinou et al., 2005; Masternak and Bartke,
2007). Apparently, anti-aging effects of reduced GH signaling
involve metabolic adjustments of which some resemble those that
mediate the effects of calorie restriction (CR) on aging and
longevity (Tsuchiya et al., 2004; Al-Regaiey et al., 2005; Bonkowski
et al., 2009).

In this brief review, we will discuss metabolic characteristics of
GH-deficient and GH-resistant mice which are likely to represent
mechanisms of their extended longevity. Metabolic characteristics

of other long-lived mutants, gene knockouts and transgenics as
well as phenotypes of mice from strains with different longevity are
outside the scope of this article, and the reader is referred to other
reviews (Brown-Borg, 2006; Chen et al., 2010; Yuan et al., 2011).

ROLE OF IMPROVED INSULIN SIGNALING
Improved action of insulin on carbohydrate homeostasis is among
the key metabolic alterations in long-lived GH-related mutants.
GH receptor disrupted GHR-KO mice with profound GH resis-
tance (Zhou et al., 1997), GH releasing hormone disrupted
(GHRH-KO) mice with isolated GH deficiency (Alba and Salva-
tori, 2004), and hypopituitary Ames (Prop1df ) and Snell (Pit1dw)
dwarf mice with deficiency of GH, along with prolactin and thy-
rotropin (Bartke, 2011; Brown-Borg and Bartke, 2012; Bartke et al.,
in press), have reduced insulin levels and enhanced insulin sen-
sitivity (Zhou et al., 1997; Bonkowski et al., 2006; Bartke, 2011;
Bartke, 2012; Brown-Borg and Bartke, 2012; Spong and Bartke,
unpublished). Since hypoinsulinemia promotes insulin sensitivity
and vice versa, it could be debated which of these characteristics is
primary and which is secondary. However, available evidence sug-
gests that reduction in GH signals affects both the secretion and
actions of insulin. GH and insulin-like growth factor I (IGF-I), a
key mediator of GH action, promote development and secretory
function of insulin-producing beta cells in the islets of Langerhans

www.frontiersin.org December 2012 | Volume 3 | Article 288 | 1

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Journal/Abstract.aspx?ART_DOI=10.3389/fgene.2012.00288&name=Genetics_of_Aging&x=y
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AndrzejBartke&UID=36195
http://community.frontiersin.org/people/ReyhanWestbrook/75247
mailto:abartke@siumed.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00288” — 2012/12/11 — 21:34 — page 2 — #2

Bartke and Westbrook Metabolic characteristics of long-lived mice

in the pancreas. Islet volume is reduced in GHR-KO mice (Guo
et al., 2005), and the number of large islets is reduced in Ames
dwarf mice (Parsons et al., 1995). Insulin sensitivity is negatively
regulated by GH by a variety of mechanisms including reduced
adiponectin levels, enhanced mammalian target of rapamycin
(mTOR) signaling, and alterations in serum lipid profiles as well as
ectopic fat accumulation. Many of these effects of GH on insulin
signaling are mediated by enhanced inhibitory (serine) phospho-
rylation of insulin receptor substrate 1 (IRS-1; Aguirre et al., 2002;
Ishizuka et al., 2004; Adochio et al., 2009). All of these mecha-
nisms appear to be involved in improving insulin sensitivity in
GH-related mouse mutants (Al-Regaiey et al., 2005; Wang et al.,
2006; Bonkowski et al., 2009; List et al., 2011).

ROLE OF ADIPOSE TISSUE AND ITS PRODUCTS IN THE
METABOLIC PROFILE OF GH-RELATED MUTANTS
We have recently obtained evidence that enhanced insulin sensi-
tivity of long-lived GHR-KO mice is due to the altered secretory
profile of intra-abdominal (“visceral”) adipose tissue and, in par-
ticular, to enhanced adiponectin secretion by these fat depots.
It is well documented that adiponectin is an important insulin
sensitizer. In comparison to normal mice, GHR-KO mutants have
increased levels of adiponectin in the epididymal fat and in periph-
eral circulation (Al-Regaiey et al., 2005; List et al., 2011). To assess
the impact of altered secretory activity of visceral fat on insulin
signaling, we have compared the impact of removing most of this
tissue on insulin and glucose tolerance in these mutants versus nor-
mal mice. We removed as much of the epididymal and perinephric
(retroperitoneal) fat pads as was possible without endangering
blood supply to the testes and the adrenals. In normal mice this
resulted in significant improvements in insulin and glucose tol-
erance (Masternak et al., 2012) as expected from previous studies
in this and other species (Shi et al., 2007; Muzumdar et al., 2008).
Plasma adiponectin levels were not altered, indicating that in these
animals circulating adiponectin is derived primarily from subcu-
taneous fat, or that other fat depots readily compensate for the
consequences of removing visceral fat. In sharp contrast to these
findings, visceral fat removal in GHR-KO mice reduced circulating
adiponectin levels and reduced, rather than enhanced, tolerance
to injected insulin or glucose (Masternak et al., 2012). Apparently,
visceral fat is a major source of adiponectin in these animals and
visceral fat-derived adiponectin importantly contributes to or per-
haps accounts for enhanced insulin sensitivity of GHR-KO mice.
In addition to differences in the levels of adiponectin, the lev-
els of interleukin 6 (IL-6), which promotes insulin resistance, are
reduced in both epididymal and perinephric fat of GHR-KO as
compared to normal mice (Masternak et al., 2012). Altered IL-6
levels may have also contributed to the differential impact of vis-
ceral fat removal on insulin sensitivity in GHR-KO versus normal
mice.

INTERACTIONS OF CALORIE RESTRICTION AND GH-RELATED
MUTATIONS
Association of reduced insulin levels and enhanced insulin sen-
sitivity with extension of longevity was shown in a comparison
of GH-related mutants (GHR-KO, GHRH-KO, Prop1df , Pit1dw)
with their normal siblings and in studies of the interaction of

some of these “longevity genes” with CR (Masternak et al., 2009).
Strikingly, CR improves insulin signaling in Ames dwarf mice, in
which it also extends longevity (Bartke et al., 2001; Masternak et al.,
2009), but has no such effect in GHR-KO mice or in GHRH-KO
males in which effects of CR on longevity are absent or mini-
mal (Bonkowski et al., 2006, 2009; Spong, Salvatori, and Bartke,
unpublished). Moreover, longevity is not enhanced in transgenic
mice overexpressing a GH antagonist in which insulin levels are
not suppressed (Coschigano et al., 2003). It deserves emphasis that
a reduction in insulin levels and enhancement of insulin sensitiv-
ity are among the most consistently observed responses to CR in
different mammalian species ranging from mice and rats to non-
human primates and humans (Fontana et al., 2004; Anderson and
Weindruch, 2012).

In contrast to the strong association of improved insulin sig-
naling with extended longevity in GH-related mutants, several
mutations affecting events “downstream” from GH and/or IGF-I
receptors are long-lived and insulin resistant (Kurosu et al., 2005;
Selman et al., 2009). Further work, including examination of
insulin signaling at different stages of life history will be needed to
reconcile these findings but possible explanations include the well-
documented opposite effects of GH and IGF-I on insulin signaling,
as well as a possibility that insulin resistance may mimic some of
the effects of hypoinsulinemia by protecting the cells from exces-
sive insulin stimulation (Taguchi et al., 2007; Selman et al., 2009).

INFLAMMATION MARKERS AND METABOLIC
ADJUSTMENTS
In addition to influencing glucose homeostasis, suppression of
GH signaling promotes β oxidation of fatty acids. Fatty acid oxi-
dation is promoted by the direct or indirect actions of peroxisome
proliferator activator receptor α (PPARα), PPARγ coactivator
1α (PGC1α), fibroblast growth factor 21 (FGF-21), adiponectin,
and AMP-activated protein kinase (AMPK) – and GH negatively
regulates the expression or activation of each of these factors (Al-
Regaiey et al., 2005; Masternak and Bartke, 2007; Bonkowski et al.,
2009; Louis et al., 2010). Increases in the levels of adiponectin
and activation of AMPK in GH-resistant and GH-deficient ani-
mals also reduce pro-inflammatory signals by inhibiting nuclear
factor kappa B (NFκB) signaling (Salminen et al., 2011; Mas-
ternak and Bartke, 2012). The resulting shift in the balance of
pro- and anti-inflammatory cytokines constitutes yet another
potential mechanism of enhancing insulin sensitivity (Salmi-
nen et al., 2011). Association of an altered balance of pro- and
anti-inflammatory markers with shifts in carbohydrate and lipid
homeostasis in long-lived GH-related mutants can thus be related
to the involvement of the same mediators of GH action in the
control of inflammation and metabolism.

MITOCHONDRIAL FUNCTION AND OXIDATIVE METABOLISM
Enhanced hepatic expression of PGC1α and reduced serum lipid
levels in GH-resistant mice (Al-Regaiey et al., 2005; List et al., 2011)
suggest alterations in the number and function of mitochondria.
PGC1α is a key regulator of mitochondrial biogenesis, and mito-
chondrial utilization of fatty acids as a metabolic fuel has a major
impact on lipid homeostasis and circulating lipid levels.
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There is little information on the number or morphology of
mitochondria in long-lived GH-related mutants, while available
data suggest lack of major changes in mitochondrial density in
the liver or muscle of GHR-KO mice (Westbrook et al., unpub-
lished). In Ames dwarf mice, generation of reactive oxygen species
(ROS) by the skeletal muscle mitochondria is reduced, suggesting
improved mitochondrial efficiency (Brown-Borg, 2006).

We are using indirect calorimetry to study the impact of GH
signaling on energy metabolism. Twenty-four hour recordings of
oxygen consumption and carbon dioxide output revealed that oxy-
gen consumption (VO2) per gram of body weight is significantly
increased and respiratory quotient (RQ) significantly reduced in
Ames dwarf and GHR-KO mice (Westbrook et al., 2009).

These differences were present whether the animals were fed
ad libitum or fasted during the recording (Westbrook et al., 2009).
Moreover, similar differences between GHR-KO and normal mice
were detected after exposing the animals to a prolonged period of
caloric restriction or every-other-day-feeding (Westbrook et al.,
unpublished). Interestingly, opposite changes (reduced VO2 and
increased RQ) were seen in giant PEPCK-bGH transgenic mice
which are hypersomatotropic, hyperinsulinemic, insulin resistant,
and short-lived (Bartke,2003; Westbrook et al., 2009). The increase
of VO2 in GHR-KO and Ames dwarf mice was apparently not
due to expressing the data per unit of body mass, because dif-
ferences between mutant and normal animals were, if anything,
magnified when the data were recalculated per unit of lean body
mass (as determined by DEXA in age- and sex-matched mice;
Westbrook, 2012).

Detecting this increase in VO2 was not anticipated particu-
larly in Ames dwarf mice which are hypothyroid and hypothermic
and have reduced spontaneous locomotor activity (Bartke, 2011;
Bartke, 2012; Brown-Borg and Bartke, 2012). Moreover, VO2 was
reported to be reduced in Snell dwarf mice which phenotypically
resemble the Ames dwarfs (Benedict and Lee, 1936). We suspected
that the increase of VO2 in GH-related mutants could reflect
increased energy expenditure for thermogenesis needed to com-
pensate for increased heat loss. Increased radiation of heat would
be expected in these diminutive animals because of the increased
body surface to mass ratio. To test the validity of this explanation,
we have compared VO2 in GHR-KO and normal mice at a ther-
moneutral ambient temperature of 30◦C. Under these conditions,
VO2 of the mutants greatly declined from the values measured at
lower temperature and no longer differed from the normal ani-
mals (Westbrook et al., unpublished). We conclude that increased
VO2 in long-lived dwarf mice reflects increased energy demand for
thermogenesis under conditions imposed by housing at the stan-
dard animal room ambient temperature (approximately 22◦C).
It is an intriguing possibility that this increase in energy expen-
diture might contribute to slow aging and extended longevity of
these mutants. Koizumi et al. (1996) reported that the beneficial
impact of CR on cancer incidence and longevity in mice can be
reduced or eliminated by housing the animals at a thermoneutral
temperature. However, these authors suggested that the effects of
thermoneutral temperature in their study were due to eliminating
torpor which was a common (daily) occurrence under the condi-
tions of fairly severe CR they employed (Koizumi et al., 1996). We
very rarely observe torpor in our animals.

Since metabolic rate declines during aging, an increase in VO2

in long-lived mutant mice could be viewed either as a potential
mechanism of extended longevity or as a “biomarker” of delayed
and/or slower aging. Association of increased metabolic rate with
improved life expectancy might be due to the benefits of increased
uncoupling of mitochondrial electron transport from ATP pro-
duction (Brand, 2000) and activation of AMPK. Reduced mTOR
signaling and S6K activity in Ames dwarf and GHRKO mice
(reviewed in Bartke, 2011) may provide yet another link between
the regulation of aging, oxidative metabolism, and energy sub-
strate utilization. It was recently reported that a leucine-deficient
diet which suppresses hypothalamic S6KI activity produces an
increase in VO2 per unit of body mass and a reduction in RQ;
these are alterations similar to those we detected in long-lived
dwarf mice (Xia et al., 2012). Examples of the association of
increased VO2 and reduced RQ with resistance to detrimental
effects of high fat diet are provided in the next section of this
article.

ALTERED USAGE OF ENERGY SUBSTRATES
In addition to demonstrating an increase in VO2, indirect
calorimetry studies of Ames dwarf and GHR-KO mice revealed
another metabolic characteristic of these long-lived animals,
namely a reduction of RQ. As was the case with VO2, these
differences were detected during both dark (active) and light
(resting) parts of the 24-h period, were present in both fully
fed and fasted animals, and were opposite to changes mea-
sured in short-lived giant PEPCK-GH transgenics (Westbrook
et al., 2009). Reduced RQ values indicate increased reliance on
fat, as opposed to carbohydrate, as a metabolic fuel and thus
denote an important shift in mitochondrial function. Increased
“fat burning” by mitochondria is believed to be associated with
improved metabolic efficiency and reduced production of poten-
tially harmful ROS (Lopez-Lluch et al., 2006; Ukropcova et al.,
2007; Anderson and Weindruch, 2010). Similar metabolic adjust-
ments are associated with extension of longevity in animals
exposed to CR (Anderson and Weindruch, 2010). Moreover,
reduced RQ and enhanced VO2 were associated with protection
from high fat diet-induced obesity, glucose intolerance and dia-
betes in mice with ablated agouti-related protein (AgRP) produc-
ing neurons and in retinaldehyde dehydrogenase 1a1 knock-out
mice (Joly-Amado et al., 2012; Kiefer et al., 2012). Likely mech-
anisms of increased β oxidation of fatty acids in GHRKO and
Ames dwarf mice include increases in adiponectin levels (Al-
Regaiey et al., 2005; List et al., 2011), activation of AMPK (Al-
Regaiey et al., 2005), and expression of hepatic PPARα (Masternak
and Bartke, 2007).

In contrast, to findings in Ames dwarf and GHR-KO mice,
extended longevity in mice with fat-specific deletion of insulin
receptors, as well as improvement of the metabolic profile of obese
mice after gastric bypass, are associated with increases in both VO2

and RQ (Katic et al., 2007; Nestoridi et al., 2012). From the data
that are currently available, it is difficult to determine whether
the association of increased VO2 and reduced RQ in long-lived
GH-related mutants is in any way related to the uncommon asso-
ciation of increased obesity with reduced insulin and increased
adiponectin levels in these animals.
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FIGURE 1 | Metabolic alterations in GH-deficient and GH-resistant mice; possible mechanisms of extended longevity.

SUMMARY AND RELATIONSHIP TO REGULATION OF
HUMAN AGING
The remarkable extension of longevity in mice lacking GH or GH
receptors appears to be due to multiple interacting mechanisms
including reduced activation of growth-promoting pathways,
greater stress resistance, reduced inflammation, increased reser-
voir of pluripotent stem cells, and improved genome maintenance
(Flurkey et al., 2001; Coschigano et al., 2003; Murakami et al., 2003;
Garcia et al., 2008; Bokov et al., 2009; Bartke, 2011; Ratajczak et al.,
2011; Bartke, 2012; Brown-Borg and Bartke, 2012). Data summa-
rized in this article indicate that alterations in energy metabolism
and improved insulin control of carbohydrate homeostasis have to
be added to this list. In fact, these metabolic adaptations may rep-
resent key features of the “longevous” phenotype of these animals
and important mechanisms of the extension of both healthspan
and lifespan in GH-related mutants (Figure 1).

Importantly, many of the metabolic features of long-lived
mutant mice described in this article have been associated

with extended human longevity. Comparisons between cen-
tenarians and elderly individuals from the same population
and between the offspring of exceptionally long-lived people
and their partners indicate that reduced insulin, improved
insulin sensitivity, increased adiponectin, and reduced pro-
inflammatory markers consistently correlate with improved life
expectancy (Kojima et al., 2004; Atzmon et al., 2006; Baranowska
et al., 2006; Bonafè and Olivieri, 2009; Rozing et al., 2011; Wijsman
et al., 2011).

ACKNOWLEDGMENTS
Our studies and preparation of this article were supported by
NIA through grants P01 AG031736, R01 AG019899, and R21
AG038850, by the Ellison Medical Foundation and by the SIU
Geriatrics Research Initiative. We apologize to those whose work
pertinent to this topic was not cited due to space and scope
limitations or inadvertent omission.

REFERENCES
Adochio, R., Leitner, J. W., Hedlund,

R., and Draznin, B. (2009). Rescuing
3t3-L1 adipocytes from insulin resis-
tance induced by stimulation of Akt-
mammalian target of rapamycin/P70
S6 kinase (S6k1) pathway and serine
phosphorylation of insulin receptor
substrate-1: effect of reduced expres-
sion of p85alpha subunit of phos-
phatidylinositol 3-kinase and S6k1

kinase. Endocrinology 150, 1165–
1173.

Aguirre, V., Werner, E. D., Giraud, J.,
Lee, Y. H., Shoelson, S. E., and White,
M. F. (2002). Phosphorylation of
Ser307 in insulin receptor substrate-
1 blocks interactions with the insulin
receptor and inhibits insulin action.
J. Biol. Chem. 277, 1531–1537.

Alba, M., and Salvatori, R. (2004).
A mouse with targeted ablation

of the growth hormone-releasing
hormone gene: a new model
of isolated growth hormone defi-
ciency. Endocrinology 145, 4134–
4143.

Al-Regaiey, K. A., Masternak, M.
M., Bonkowski, M., Sun, L., and
Bartke, A. (2005). Long-lived growth
hormone receptor knockout mice:
interaction of reduced insulin-like
growth factor I/insulin signaling

and caloric restriction. Endocrinology
146, 851–860.

Anderson, R., and Weindruch, R.
(2010). Metabolic reprogramming,
caloric restriction and aging. Trends
Endocrinol. Metab. 21, 134–141.

Anderson, R., and Weindruch, R.
(2012). The caloric restriction
paradigm: implications for healthy
human aging. Am. J. Hum. Biol. 24,
101–106.

Frontiers in Genetics | Genetics of Aging December 2012 | Volume 3 | Article 288 | 4

http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00288” — 2012/12/11 — 21:34 — page 5 — #5

Bartke and Westbrook Metabolic characteristics of long-lived mice

Atzmon, G., Rincon, M., Schechter, C.
B., Shuldiner, A. R., Lipton, R. B.,
Bergman, A., et al. (2006). Lipopro-
tein genotype and conserved pathway
for exceptional longevity in humans.
PLoS Biol. 4:e113. doi: 10.1371/jour-
nal.pbio.0040113

Baranowska, B., Bik, W., Baranowska-
Bik, A., Wolinska-Witort, E., Szybin-
ska, A., Martynska, L., et al. (2006).
Neuroendocrine control of metabolic
homeostasis in Polish centenarians.
J. Physiol. Pharmacol. 57(Suppl. 6),
55–61.

Bartke, A. (2003). Can growth hor-
mone (Gh) accelerate aging? evidence
from Gh-transgenic mice. Neuroen-
docrinology 78, 210–216.

Bartke, A. (2011). Single-gene muta-
tions and healthy ageing in mammals.
Philos. Trans. R. Soc. Lond. B Biol. Sci.
366, 28–34.

Bartke, A. (2012). Healthy aging: is
smaller better? - a mini-review.
Gerontology 58, 337–343.

Bartke, A., Sun, L., and Longo, V.
(in press). Somatotropic signaling;
trade-offs between growth, repro-
ductive development and longevity.
Physiol. Rev.

Bartke, A., Wright, J. C., Mattison, J. A.,
Ingram, D. K., Miller, R. A., and Roth,
G. S. (2001). Extending the lifespan of
long-lived mice. Nature 414, 412.

Benedict, F. G., and Lee, R. C. (1936).
La production de chaleur de la souris.
etude de plusieurs races de souris.
Ann. Physiol. Physicochim. Biol. 12,
983–1064.

Bokov, A. F., Lindsey, M. L., Khodr,
C., Sabia, M. R., and Richardson, A.
(2009). Long-lived Ames dwarf mice
are resistant to chemical stressors. J.
Gerontol. A Biol. Sci. Med. Sci. 64,
819–827.

Bonafè, M., and Olivieri, F. (2009).
Genetic polymorphism in long-lived
people: cues for the presence of an
insulin/IGF-pathway-dependent net-
work affecting human longevity. Mol.
Cell. Endocrinol. 299, 118–123.

Bonkowski, M. S., Dominici, F. P.,
Arum, O., Rocha, J. S., Al Regaiey,
K. A., Westbrook, R., et al. (2009).
Disruption of growth hormone
receptor prevents calorie restriction
from improving insulin action and
longevity. PLoS ONE 4:e4567. doi:
10.1371/journal.pone.0004567

Bonkowski, M. S., Rocha, J. S., Mas-
ternak, M. M., Al Regaiey, K. A.,
and Bartke, A. (2006). Targeted dis-
ruption of growth hormone receptor
interferes with the beneficial actions
of calorie restriction. Proc. Natl.
Acad. Sci. U.S.A. 103, 7901–7905.

Brand, M. D. (2000). Uncoupling to
survive? The role of mitochondrial

inefficiency in ageing. Exp. Gerontol.
35, 811–820.

Brown-Borg, H. M. (2006). Longevity
in mice: is stress resistance a common
factor? Age (Dordr.) 28, 145–162.

Brown-Borg, H. M., and Bartke, A.
(2012). GH and IGF1: roles in
energy metabolism of long-living GH
mutant mice. J. Gerontol. A Biol. Sci.
Med. Sci. 67, 652–660.

Brown-Borg, H. M., Borg, K. E.,
Meliska, C. J., and Bartke, A. (1996).
Dwarf mice and the ageing process.
Nature 384, 33.

Chen, Y. F., Wu, C. Y., Kao, C. H.,
and Tsai, T. F. (2010). Longevity and
lifespan control in mammals: lessons
from the mouse. Ageing Res. Rev.
9(Suppl. 1), S28–S35.

Coschigano, K., Holland, A., Riders,
M., List, E., Flyvbjerg, A., and
Kopchick, J. (2003). Deletion, but
not antagonism, of the mouse growth
hormone receptor results in severely
decreased body weights, insulin, and
insulin-like growth factor I levels
and increased life span. Endocrinology
144, 3799–3810.

Flurkey, K., Papaconstantinou, J.,
Miller, R. A., and Harrison, D.
E. (2001). Lifespan extension and
delayed immune and collagen aging
in mutant mice with defects in growth
hormone production. Proc. Natl.
Acad. Sci. U.S.A. 98, 6736–6741.

Fontana, L., Meyer, T., Klein, S., and
Holloszy, J. (2004). Long-term calo-
rie restriction is highly effective in
reducing the risk for atherosclerosis
in humans. Proc. Natl. Acad. Sci.
U.S.A. 101, 6659–6663.

Garcia, A. M., Busuttil, R. A., Calder,
R. B., Dollé, M. E., Diaz, V., McMa-
han, C. A., et al. (2008). Effect of
Ames dwarfism and caloric restric-
tion on spontaneous DNA mutation
frequency in different mouse tissues.
Mech. Ageing Dev. 129, 528–533.

Guo, Y., Lu, Y., Houle, D., Robertson, K.,
Tang, Z., Kopchick, J., et al. (2005).
Pancreatic islet-specific expression of
an insulin-like growth factor-I trans-
gene compensates islet cell growth
in growth hormone receptor gene-
deficient mice. Endocrinology 146,
2602–2609.

Ishizuka, T., Kajita, K., Kawai, Y., Kanoh,
Y., Miura, A., Ishizawa, M., et al.
(2004). Protein kinase C (PKC) beta
modulates serine phosphorylation of
insulin receptor substrate-1 (IRS-1)
– effect of overexpression of PKC-
beta on insulin signal transduction.
Endocr. Res. 30, 287–299.

Joly-Amado, A., Denis, R. G., Castel, J.,
Lacombe, A., Cansell, C., Rouch, C.,
et al. (2012). Hypothalamic AgRP-
neurons control peripheral substrate

utilization and nutrient partitioning.
EMBO J. 31, 4276–4288.

Katic, M., Kennedy, A. R., Leykin, I.,
Norris, A., McGettrick, A., Gesta,
S., et al. (2007). Mitochondrial gene
expression and increased oxidative
metabolism: role in increased lifes-
pan of fat-specific insulin recep-
tor knock-out mice. Aging Cell 6,
827–839.

Kiefer, F., Orasanu, G., Nallamshetty,
S., Brown, J., Wang, H., Luger, P.,
et al. (2012). Retinaldehyde dehy-
drogenase 1 coordinates hepatic glu-
coneogenesis and lipid metabolism.
Endocrinology 153, 3089–3099.

Koizumi, A., Wada, Y., Tuskada, M.,
Kayo, T., Naruse, M., Horiuchi, K.,
et al. (1996). A tumor preventive
effect of dietary restriction is antago-
nized by a high housing temperature
through deprivation of torpor. Mech.
Ageing Dev. 92, 67–82.

Kojima, T., Kamei, H., Aizu, T., Arai,
Y., Takayama, M., Nakazawa, S.,
et al. (2004). Association analysis
between longevity in the Japanese
population and polymorphic vari-
ants of genes involved in insulin and
insulin-like growth factor 1 signaling
pathways. Exp. Gerontol. 39, 1595–
1598.

Kurosu, H., Yamamoto, M., Clark, J. D.,
Pastor, J. V., Nandi, A., Gurnani, P.,
et al. (2005). Suppression of aging in
mice by the hormone Klotho. Science
309, 1829–1833.

List, E. O., Sackmann-Sala, L., Berry-
man, D. E., Funk, K., Kelder, B.,
Gosney, E. S., et al. (2011). Endocrine
parameters and phenotypes of the
growth hormone receptor gene dis-
rupted (GHR−/−) mouse. Endocr.
Rev. 32, 356–386.

Lopez-Lluch, G., Hunt, N., Jones, B.,
Zhu, M., Jamieson, H., Hilmer,
S., et al. (2006). Calorie restric-
tion induces mitochondrial biogene-
sis and bioenergetic efficiency. Proc.
Natl. Acad. Sci. U.S.A. 103, 1768–
1773.

Louis, A., Bartke, A., and Masternak, M.
(2010). Effects of growth hormone
and thyroxine replacement therapy
on insulin signaling in Ames dwarf
mice. J. Gerontol. A Biol. Sci. Med.
Sci. 65, 344–352.

Masternak, M. M., and Bartke, A.
(2007). PPARs in calorie restricted
and genetically long-lived mice.
PPAR Res. 2007, 28436.

Masternak, M., and Bartke, A. (2012).
Growth hormone, inflammation and
aging. Pathobiol. Aging Age Relat. Dis.
2, 1.

Masternak, M. M., Bartke, A., Wang.
F., Spong, A., Gesing, A., Fang, Y.,
et al. (2012). Metabolic effects of

intra-abdominal fat in GHRKO mice.
Aging Cell 11, 73–81.

Masternak, M. M., Panici, J. A.,
Bonkowski, M. S., Hughes, L. F., and
Bartke, A. (2009). Insulin sensitivity
as a key mediator of growth hormone
actions on longevity. J. Gerontol. A
Biol. Sci. Med. Sci. 64, 516–521.

Murakami, S., Salmon, A., and Miller, R.
A. (2003). Multiplex stress resistance
in cells from long-lived dwarf mice.
FASEB J. 17, 1565–1566.

Muzumdar, R., Allison, D. B., Huffman,
D. M., Ma, X., Atzmon, G., Einstein, F.
H., et al. (2008). Visceral adipose tis-
sue modulates mammalian longevity.
Aging Cell 7, 438–440.

Nestoridi, E., Kvas, S., Kucharczyk, J.,
and Stylopoulos, N. (2012). Resting
energy expenditure and energetic cost
of feeding are augmented after Roux-
en-Y gastric bypass in obese mice.
Endocrinology 153, 2234–2244.

Papaconstantinou, J., Deford, J. H., Ger-
stner, A., Hsieh, C. C., Boylston, W.
H., Guigneaux, M. M., et al. (2005).
Hepatic gene and protein expression
of primary components of the IGF-
I axis in long lived Snell dwarf mice.
Mech. Ageing Dev. 126, 692–704.

Parsons, J. A., Bartke, A., and Sorenson,
R. L. (1995). Number and size of islets
of Langerhans in pregnant, human
growth hormone-expressing trans-
genic, and pituitary dwarf mice: effect
of lactogenic hormones. Endocrinol-
ogy 136, 2013–2021.

Ratajczak, J., Shin, D. M., Wan, W., Liu,
R., Masternak, M. M., Piotrowska, K.,
et al. (2011). Higher number of stem
cells in the bone marrow of circulat-
ing low Igf-1 level Laron dwarf mice –
novel view on Igf-1, stem cells and
aging. Leukemia 25, 729–733.

Rozing, M. P., Mooijaart, S. P., Beek-
man, M., Wijsman, C. A., Maier, A.
B., Bartke, A., et al. (2011). C-reactive
protein and glucose regulation in
familial longevity. Age (Dordr.) 33,
623–630.

Salminen, A., Hyttinen, J. M., and
Kaarniranta, K. (2011). AMP-
activated protein kinase inhibits
NF-κB signaling and inflammation:
impact on healthspan and lifespan. J.
Mol. Med. (Berl.) 89, 667–676.

Selman, C., Tullet, J. M., Wieser, D.,
Irvine, E., Lingard, S. J., Choudhury,
A. I., et al. (2009). Ribosomal pro-
tein S6 kinase 1 signaling regulates
mammalian life span. Science 326,
140–144.

Shi, H., Strader, A. D., Woods, S. C., and
Seeley, R. J. (2007). The effect of fat
removal on glucose tolerance is depot
specific in male and female mice. Am.
J. Physiol. Endocrinol. Metab. 293,
E1012–E1020.

www.frontiersin.org December 2012 | Volume 3 | Article 288 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/Genetics_of_Aging/archive


“fgene-03-00288” — 2012/12/11 — 21:34 — page 6 — #6

Bartke and Westbrook Metabolic characteristics of long-lived mice

Taguchi, A., Wartschow, L. M., and
White, M. F. (2007). Brain IRS2
signaling coordinates life span and
nutrient homeostasis. Science 317,
369–372.

Tsuchiya, T., Dhahbi, J. M., Cui,
X., Mote, P. L., Bartke, A.,
and Spindler, S. R. (2004). Addi-
tive regulation of hepatic gene
expression by dwarfism and caloric
restriction. Physiol. Genomics 17,
307–315.

Ukropcova, B., Sereda, O., de Jonge, L.,
Bogacka, I., Nguyen, T., Xie, H., et al.
(2007). Family history of diabetes
links impaired substrate switching
and reduced mitochondrial content
in skeletal muscle. Diabetes 56,
720–727.

Wang, Z., Al-Regaiey, K. A., Master-
nak, M. M., and Bartke, A. (2006).
Adipocytokines and lipid levels in
Ames dwarf and calorie-restricted

mice. J. Gerontol. A Biol. Sci. Med.
Sci. 61, 4, 323–331.

Westbrook, R. (2012). The Effects of
Altered Growth Hormone Signaling
on Murine Metabolism. Dissertation,
Southern Illinois University Carbon-
dale, Carbondale.

Westbrook, R., Bonkowski, M. S.,
Strader, A. D., and Bartke, A. (2009).
Alterations in oxygen consumption,
respiratory quotient, and heat pro-
duction in long-lived GHRKO and
Ames dwarf mice, and short-lived
bGH transgenic mice. J. Gerontol. A
Biol. Sci. Med. Sci. 64, 443–451.

Wijsman, C. A., Rozing, M. P.,
Streefland, T. C., le Cessie, S., Mooi-
jaart, S. P., Slagboom, P. E., et al.
(2011). Familial longevity is marked
by enhanced insulin sensitivity. Aging
Cell 10, 114–121.

Xia, T., Cheng, Y., Zhang, Q., Xiao,
F., Liu, B., Chen, S., and Guo, F.

(2012). S6K1 in the central nervous
system regulates energy expenditure
via MC4R/CRH pathways in response
to deprivation of an essential amino
acid. Diabetes 61, 2461–2471.

Yuan, R., Peters, L. L., and Paigen, B.
(2011). Mice as a mammalian model
for research on the genetics of aging.
ILAR J. 52, 4–15.

Zhou, Y., Xu, B. C., Maheshwari, H.
G., He, L., Reed, M., Lozykowski,
M., et al. (1997). A mammalian
model for Laron syndrome produced
by targeted disruption of the mouse
growth hormone receptor/binding
protein gene (the Laron mouse). Proc.
Natl. Acad. Sci. U.S.A. 94, 13215–
13220.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that

could be construed as a potential con-
flict of interest.

Received: 02 October 2012; accepted: 23
November 2012; published online: 13
December 2012.
Citation: Bartke A and Westbrook R
(2012) Metabolic characteristics of long-
lived mice. Front. Gene. 3:288. doi:
10.3389/fgene.2012.00288
This article was submitted to Frontiers in
Genetics of Aging, a specialty of Frontiers
in Genetics.
Copyright © 2012 Bartke and Westbrook.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors and
source are credited and subject to any
copyright notices concerning any third-
party graphics etc.

Frontiers in Genetics | Genetics of Aging December 2012 | Volume 3 | Article 288 | 6

http://dx.doi.org/10.3389/fgene.2012.00288
http://dx.doi.org/10.3389/fgene.2012.00288
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Genetics_of_Aging/
http://www.frontiersin.org/Genetics_of_Aging/archive

	Metabolic characteristics of long-lived mice
	Introduction: growth hormone-related mouse mutants
	Role of improved insulin signaling
	Role of adipose tissue and its products in the metabolic profile of GH-related mutants
	Interactions of calorie restriction and GH-related mutations
	Inflammation markers and metabolic adjustments
	Mitochondrial function and oxidative metabolism
	Altered usage of energy substrates
	Summary and relationship to regulation of human aging
	Acknowledgments
	References


