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The principal goal of this methodological paper is to suggest to a general audience in
the genetics community that the consideration of recent developments of self regulating
branching processes may lead to the possibility of including this class of stochastic
processes as part of working paradigm of evolutionary and population genetics. This class
of branching processes is self regulating in the sense that an evolving population will
grow only to a total population size that can be sustained by the environment. From
the mathematical point of view the class processes under consideration belongs to a
subfield of probability and statistics sometimes referred to as computational applied
probability and stochastic processes. Computer intensive methods based on Monte
Carlo simulation procedures have been used to empirically work out the predictions
of a formulation by assigning numerical values to some point in the parameter space
and computing replications of realizations of the process over thousands of generations
of evolution. Statistical methods are then used on such samples of simulated data to
produce informative summarizations of the data that provide insights into the evolutionary
implications of computer experiments. Briefly, it is also possible to embed deterministic
non-linear difference equations in the stochastic process by using a statistical procedure
to estimate the sample functions of the process, which has interesting methodological
implications as to whether stochastic or deterministic formulations may be applied
separately or in combination in the study of evolution. It is recognized that the literature
on population genetics contains a substantial number of papers in which Monte Carlo
simulation methods have been used. But, this extensive literature is beyond the scope
of this paper, which is focused on potential applications of self regulating branching
processes in evolutionary and population genetics.
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1. INTRODUCTION
Branching processes have been mentioned in books and papers
dealing with population genetics ever since Fisher (1958), which
is a revised version of a famous book on genetics and natural
selection published in the late 1920s or early 1930s, introduced
the idea as a framework for describing and analyzing the survival
of a mutant gene. This theme was also explored by Li (1955) in
a section of a book that extended Fisher’s ideas in the sense that
attention was focused on the survival of a genotype carrying a
mutant gene rather than on single mutant gene considered by
Fisher. Neither of these authors used the term, branching pro-
cess, but they both realized that whether a mutant gene survives
in a population depends on chance to a large degree. Simply
put, if the individual carrying a mutant gene produces no off-
spring, or if the individual produces at least one offspring but his
descendants fail to produce offspring in some generation, then
the gene will eventually become extinct in a population with some

probability. The number of offspring produced by any individual
in a population is uncertain and to characterize this uncertainty
mathematically the concept of an offspring distribution is essen-
tial component in formulating a branching process. In a paper
published subsequent to the time his book on genetics and nat-
ural selection, Fisher (1939) dealt with the biological factors that
affect the distribution of the number of offspring produced by an
individual.

In books published on population genetics subsequent to the
1950s, the idea of formulating the survival of mutant genes in
terms of a branching process was mentioned in subject indexes
in some books, but not in others. Included in the books in which
branching process are mentioned as models for the survival of
mutant genes are Crow and Kimura (1970) and Ewens (2004).
Among the books in which branching processes are not men-
tioned in the subject index in this connection are Cavalli-Sforza
and Bodmer (1971), Hartl and Clark (1989), Buerger (2000),
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and Christiansen (2000). Indeed, many workers in population
genetics that seem to hold the view that when population size is
sufficiently large, there is no need for stochastic processes when
formulating models of evolutionary dynamics with mutation,
selection along with other forces that are thought to be driv-
ing evolution. There are, however, others working in the field
whose methods belong to the stochastic paradigm, see, for exam-
ple, the literature cited in the book Ewens (2004), where the
Wright–Fisher process and related statistical models are the focus
of attention.

Unlike population genetics, workers in probability and statis-
tics have worked off and on with stochastic models that are now
known as branching processes for over 100 years. For those read-
ers who are interested in a brief history of this work, the historical
prologue in Mode (1971) may be consulted along with the ref-
erences cited therein. There is no need to go into this history
in detail here, but, it is sufficient to mention that it was the
problem of survival of well-known socially prominent names
that prompted a variety of workers in several fields to analyze a
stochastic model that later became known as the Galton–Watson
branching process, (GW-process). Briefly stated, the fundamen-
tal problem for the GW-process was to find a formulation such
that the probability that a famous name became extinct could be
calculated.

Following the publication of the seminal book on branching
processes by Harris (1963), a number of books on this subject
were published in the English language by several authors. Among
these books are Asmussen and Hering (1983), Athreya and Ney
(1972), Jagers (1975), Kimmel and Axelrod (2002), and Mode
(1971). A more recent book on branching processes and their
applications in biology is that of Haccou et al. (2007). Among
workers in applied probability, work on branching processes is an
on-going research area, see, for example, the recent master’s thesis
(Alexander, 2010), and, as will be illustrated in the next section, in
recent years this class of processes are also being applied increas-
ingly in evolutionary and population genetics as we go forward
into the twenty-first century.

For the most part, in all these books as well as in an exten-
sive literature on branching process, the methods underlying a
quest to formalize the predictions of a model rest in classical
mathematical analysis and are most often expressed in terms of
limit theorems as the number of generations or other time units
become large. In particular, the book by Mode (1971) was devoted
solely to multitype branching processes, which provided a frame-
work for not only modeling the survival of mutant genes but
also their emergence through the process of mutation, which was
absent in the initial applications of branching processes by Fisher
and others. With few exceptions, there is also a very serious limi-
tation of most classical branching processes; namely, starting with
an initial population of one or more individuals, the popula-
tion either becomes extinct or its growth is unbounded, which
has been rightfully criticized by biologists and other workers in
various fields of science.

Although only a few textbooks published up to and including
the year 2000 had covered branching processes, in recent years
papers applying various classes of branching processes in popu-
lation genetics and related fields have been published in various

journals. An example of such a paper is that of Alsmeyer et al.
(2011) in which the limiting genotypic growth rates and limiting
genotypic frequencies of Y-linked genes are studied in a two-sex
monogamous population. In another paper, Iwasa et al. (2003)
applied a class of branching processes based on Markov jump
processes in continuous time to study the evolutionary dynam-
ics of escape from biomedical intervention due to mutations in
the genome of a disease causing organism such as HIV. The work-
ing paradigm underlying these papers differed significantly. In the
paper of Alsmeyer et al. (2011), which was rooted in the exten-
sion of classical Galton–Watson process, and is an extension of
this class of branching processes. In the paper by Iwasa et al.
(2003), however, attention was centered on the infinitesimal gen-
erator of a multitype Markov jump process in continuous time.
On the other hand, the paper by Lehe et al. (2012) on the rate
of a beneficial mutations surfing on the wave of a range expan-
sion is based on a pioneering paper of R. A. Fisher and seems
to be related to a class of branching diffusion processes. Another
paper on the applications of branching processes is that of Patwa
and Wahl (2010), who applied these processes to estimate the
substitution rate at which beneficial mutations occur and fix in
populations of lytic viruses whose growth is controlled by peri-
odic population bottlenecks. A multitype Galton–Watson process
was applied directly by Serra and Haccou (2007) to study the
dynamics of escape mutants, when the expected number of off-
spring by mutant genotypes is so small that they are doomed to
extinction. In a different setting, Wild (2011) used a multitype
Galton–Watson process to approximate a complex Markov chain
in discrete time to compute an inclusive fitness parameter, which
was the Perron–Frobenius root of a regular expectation matrix of
non-negative elements that plays a fundamental role in this class
of multi-type processes.

The class of self regulating branching processes under con-
sideration in this paper is fundamentally different from those
mentioned above in that the probability of survival of an indi-
vidual in any generation to produce the offspring of the next
generation depends on the total population size of that genera-
tion. Furthermore, unlike the methods used in the papers cited
above, in which various analytic ideas from classical mathemat-
ics were used to work out the predictions of some branching
process formulation, in the class of branching processes under
consideration computer intensive methods play a fundament
role in working out the predictions based on a self regulat-
ing branching process formulation. Thanks to the development
of powerful desk, lap top computers and networks of comput-
ers that are available to either individuals or teams of researches,
it is now possible to formulate and analyze, by empirical com-
puter experiments, the evolutionary predictions of multitype self
regulating branching processes, which have the property that a
population evolving from one or more initial individuals either
becomes extinct or converges in distribution to a state such that
total population size is bounded because of environmental con-
straints. Due to the development of Monte Carlo simulation
methods in a number of fields of science, the applications of
these methods make it possible to work out some of the evo-
lutionary predictions of a branching process formulation that
may not be easily attainable using classical mathematical analysis.
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Moreover, in principle, Monte Carlo simulation methods are
based on intuitive notions that render them useful to scientists
working in a laboratory, provided that software is available to suit
their needs.

The use of Monte Carlo simulation methods also results in
insights that, in general, at not attainable when the predictions
of a formulation are worked out by using limit theorems. For
even though the results of limit theorems may be very interesting
from an evolutionary point of view, the methods used in proving
these theorems are usually not informative as to the evolutionary
time taken for a population to converge to these limits. But, if an
investigator uses Monte Carlo simulation methods to compute a
sample of realizations of stochastic process over some evolution
time period involving thousands of generations and summarizes
the simulated data using statistical methods, then it is possible
to gain insights into the time taken to converge to limits, which
may be a point or set of points or even some form of a stationary
distribution.

There is another aspect of the class of self regulating branch-
ing processes under consideration that differentiates them from
those described in the books and papers cited above. By using
statistical notions to estimate random variables or functions, it
is possible to development systematic procedures for embedding
multivariate non-linear difference equations in a stochastic pro-
cess, whose sample functions take values in an infinite set of
multi-dimensional vectors of non-negative integers. These non-
linear equations have the same parameter space as the process
so that, given assigned numerical values of some point in the
parameter space, it is possible to conduct a computer experiment
such that not only a sample of Monte Carlo realizations are com-
puted but also a numerical solution of the embedded non-linear
difference equations. By comparing the predictive trajectories of
the embedded deterministic model with the trajectories of the
stochastic process, based on a sample of Monte Carlo realizations
of the process, it is possible to empirically analyze the extent to
which deterministic predictions are consistent or not consistent
with those of the process.

There is also an interesting theoretical property of the embed-
ded non-linear difference equations that is worthy of mention. It
can be shown by examples, that at some points in the parame-
ter space, the non-linear difference equations become chaotic. It
is also possible to compute a sample on Monte Carlo realizations
of the process based in this point in the parameter space so that
deterministic predictions may be compared with those of the pro-
cess. Such comparisons also have interesting implications for the
development of new methods of statistical inference. These inter-
esting prospects for future research on self regulating branching
process will not be pursued in this paper, but it is hoped that some
probabilistic analysts will join in the quest to work out further
predictions based on formulations of self regulating branching
processes.

Briefly, in order to make this paper self contained, the next
section is devoted to an illustrative formulation of a one type
self regulating branching process followed a section in which the
type one case is extended to the case of a multitype self reg-
ulating branching process. The next section is devoted to an
overview of the contents of a book by to two leading authors

of this paper on stochastic processes in genetics and evolution
that, among other topics, contains reports of computer simula-
tion experiments on applying self regulating branching process in
the study of evolving populations in which the forces of muta-
tion and selection are studied empirically. In the last section on
the paper, the results of a computer simulation experiment are
reported in which the predictions of the embedded deterministic
model differ significantly from those of statistically summarized
sample simulated data generated by Monte Carlo simulation
methods.

2. ONE TYPE SELF REGULATING BRANCHING PROCESSES
For the sake of simplicity, all offspring distributions that will be
used in this review paper will be one parameter Poisson distribu-
tions. Let λ denote a positive number and again let N denote a
random variable taking values in the set of non-negative integers
I = {n | 0, 1, 2, . . .}, then it will be assumed that the offspring
distribution has the form:

P[N = n] = f (n) = e−λ λn

n! (2.1)

for all n ∈ I. It is well-known that the expectation of N is E[N] =
λ so that λ may be interpreted as the mean or expected number
of offspring contributed to the next generation for any individ-
ual in an evolving population. As is also well-known, the variance
of the random variable N for the Poisson case is var[N] = λ. It
can be shown that m = λ is a critical parameter in determining
the probability that a population evolving from an initial pop-
ulation of one or more individuals becomes extinct or grows
without bound. If a reader is interested in the details underly-
ing this statement it is suggested that the Book Harris (1963) be
consulted.

Let X(0) = x0 denote the number of individuals in the ini-
tial population and let X(t) for t = 1, 2, . . . denote the random
number of individuals in the population in generation t that
are descendants of the individuals in the initial population. If
x0 = 1, then X(1) is a realization of the random variable N
with a Poisson distribution. But, if x0 > 1, then, by assumption,
let Nk for k = 1, 2, . . . , x0 be independent and identically dis-
tributed random variables whose common distribution is that
of N. Then,

X(1) =
x0∑

k = 1

Nk. (2.2)

In general, suppose that in generation t, the number of individ-
uals in the population is given by the random variable X(t),
and given X(t) ≥ 1, let Nk for k = 1, 2, . . . , X(t) denote a condi-
tionally independent and identically distributed random variables
whose common distribution is that of the random variable N.
Then, the number of individuals in generation t + 1 is given by
the random sum:

X(t + 1) =
X(t)∑
k = 1

Nk (2.3)
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and X(t + 1) = 0 if X(t) = 0. The simple branching process just
defined is also known as the GW-process, the Galton–Watson
process.

From the definition of the GW-process, it is easy to see how
one could compute Monte Carlo realizations of the process. For
all ones needs to do is to call realizations of Poisson random
variable as indicated by the formulas displayed above. Many soft-
ware packages often contain procedures to simulate realizations
of Poisson random variables, given an assigned numerical value
of the parameter λ, but if such a package is not available to an
investigator, it is a straight forward task to write such a program
in a computer programming language of one’s choice by consult-
ing existing literature on algorithms for simulating realizations of
random variables with a specified distributions. More details on
this subject will be given in a subsequent section.

Let η(t) = E[X(t)] be the unconditional expectation of the
random variable X(t), denoting the number of individuals in the
population in generation t. Then, from the above equation, it can
be seen that the conditional expectation of X(t + 1), given X(t), is

E[X(t + t) | X(t)] = X(t)λ, (2.4)

because E [Nk] = λ for all k = 1, 2, . . . , X (t). By taking uncon-
ditional expectations, it can be seen that,

η(t + 1) = E[E[X(t + t) | X(t)]] = E(X(t))λ = η(t)λ. (2.5)

If this equation is iterated, then it can be shown that,

η(t) = x0λ
t. (2.6)

Thus, if λ < 1, then η (t) → 0 as t ↑ ∞. But, if λ = 1, then
η (t) = x0 for all t ≥ 1, and if λ > 1, then η (t) ↑ ∞ as t ↑ ∞,

indicating that the growth of the population is unbounded. To
correct this serious flaw in the GW-process, the concept of a self
regulating branching process will be introduced.

Because in a self regulating branching process all offspring pro-
duced in a given generation may not survive to produce offspring
in the next generation, the fundamental equation (2.3) character-
izing a GW-process needs to be modified. Let the random variable
Y (t) denote the random number of offspring produced by all
individuals in generation t. Then, from the fundamental equation
(2.3), it follows that,

Y(t) =
X(t)∑
k = 1

Nk. (2.7)

By assumption, not all the offspring represented by the ran-
dom variable Y(t) will survive to produce offspring in generation
t + 1. It becomes necessary, therefore, to introduce a survival
probability to stochastically characterize the survival of offspring
in any generation t as a function of population size X(t).

A survival function that is often applied in applied probability
is the well-known Weibull, which has the parametric form:

S(t) = exp[−(βt)α], (2.8)

where α and β are positive parameters. The usual interpretation
of this function is based on the following considerations. Suppose
at some time 0 a live individual that may subsequently die is
observed. Then, S (t) is interpreted as the probability that this
individual is still alive at time t. In the context of a one type self
regulating branching process, this survival function needs to be
modified to accommodate the size of the population in any gen-
eration t. Let S (t | X (t)) denote the conditional probability that
any offspring produced in generation t survives to produce off-
spring in generation t + 1. Then, this conditional probability will
be chosen as:

S(t | X(t)) = exp[−(βX(t))α]. (2.9)

Intuitively, if population size in any generation exceeds the car-
rying capacity of the environment, then, due to the competition
for resources, it is less likely that an offspring produced in any
generation t will survive to produce offspring in generation t + 1.

Observe that if βX (t) ≤ 1, an offspring produced in generation t
is more likely to survive to produce offspring than if βX (t) > 1.
In particular, if β = 0, then all offspring produced in any genera-
tion survive with probability one to produce offspring in the next
generation so that in this special case a self regulating branching
process reduces to the classical GW-process. From a conceptual
point of view, it is useful to think of the parameter β as the inverse
of the carrying capacity of the environment. Thus, for example,
if one supposes that the carrying capacity of the environment is
106, then β would be chosen as β = 10−6. Observe that when-
ever X (t) ≥ 106, it is less probable that an offspring in generation
t will survive to produce offspring in generation t + 1. It is of
interest to observe that if the parameter α = 1, then the survival
function under consideration reduces to that of the exponential
distribution.

Having completed the definition of the conditional probabil-
ity that an offspring produced in generation t survives to produce
offspring in generation t + 1, it is now possible to complete the
formulation of a one type self regulating branching process. By
assumption, it will be supposed that X (t + 1) , the random num-
ber of individuals who may produce offspring in generation t + 1,

has a binomial distribution with sample size or index Y (t) and
conditional probability S (t | X (t)) , given population size X (t)
in generation t. Thus, to compute a realization of the random
variable X (t + 1) , one needs to have a program to compute
realizations of binomial random variables. Such programs are
often contained of many software packages, particularly those
designed for applications arising in the probability and statistics
community as well as the communities of users of these methods.

At this point in the exploration of ideas underlying self reg-
ulating branching processes, it is appropriate to outline the
idea of embedding a deterministic model in a stochastic pro-
cess. Although the technical details will be omitted, it can be
shown that,

E[X(t + 1) | X(t)] = X(t)S(t | X(t))λ (2.10)

is the correct formula for the conditional expectation of X (t + 1),
given X (t) , for every generation t = 0, 1, 2, . . .. From the point
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of view of estimating a value of the sample function of a pro-
cess at time t + 1, it is well-known that E [X (t + 1) | X (t)] is the
function that is the best fit in the sense that the expected mean
square error of deviations from the random function X (t + 1) is
a minimum.

Unlike the case of the simple GW-process, it is not possible to
derive a useful unconditional expectation of the random function
X (t + 1), because the survival probability S (t | X (t)) is a non-
linear function of the random function of X (t), see formula (2.9).
But, the value X (0) is known, because this value must be assigned
by the experimenter as a positive integer. Thus,

X̂(1) = E[X(1) | X(0)] = X(0) S (t | X(0)) λ (2.11)

is the best estimator of the random function X (1) in the sense of
minimum mean square error. Given this formula for X̂ (1) from
Equation (2.10) , it can be seen from Equation (2.10) that,

X̂(2) = X̂(1) S
(

t | X̂(1)
)
λ (2.12)

is a reasonable estimator of the random function X (2), even
though, in general, it may not be optimal in the sense of mini-
mum mean square error. By continuing this line of thought, we
arrive at the non-linear recursive system:

X̂(t + 1) = X̂(t) S
(

t | X̂(t)
)
λ, (2.13)

for t = 0, 1, 2, . . . , which, by definition, is a non-linear deter-
ministic model embedded a stochastic process called a one type
self regulating branching process. Such a name is justifiable in the
sense that the eventual size an evolving population may attain is
regulated by the carrying capacity of the environment.

The parameter space of both the process and the embedded
deterministic model is the set:

P = {(α, β, λ) | α > 0, β > 0, λ > 0} (2.14)

of triplets of positive real numbers, and for each point (α, β, λ)

∈ P . Given assigned numbers parameters by an experimenter, it
possible to simulate a sample of trajectories, sample functions,
of the process. Moreover, when this sample of trajectories is sum-
marized statistically, it can be compared with the one trajectory
computed by using the embedded deterministic at this point in
the parameter space. By using graphical and other methods for
an informative display of data, real or simulated, it is possible
to assess experimentally how well the embedded deterministic
model predicts the behavior of the process in the sense that the
deterministic model may be a measure of central tendency for the
variable sample functions of the process.

When viewing the deterministic model from a purely mathe-
matical perspective, it is helpful to write the function of the right
in Equation (2.13) in the explicit form:

h(x) = x exp[−(βx)α]λ (2.15)

with a view of making connections with well-known determinis-
tic mathematical properties of trajectories based on the iteration

of non-linear functions such as that in Equation (2.15). That basi-
cally any trajectory of the embedded deterministic model, given
assigned value of a parameter point (α, β, λ) , is an iteration of
the function in Equation (2.15) easy to see. For if an experi-
menter chooses an initial positive integer x0, then by computing
the sequence x1 = h (x0) , x2 = h (x1) = h (h (x0)) , . . . and so on
it can be seen that this sequence is realized trajectory of the
embedded deterministic model. Over time periods of decades,
mathematicians dealing with non-linear deterministic dynamic
models have worked out the properties of iterated continuous
functions, and the knowledge so gained is an important start-
ing point when attempting to work out ideas centering around
the idea: in what sense may an embedded deterministic model
be used to predict the behavior of the sample functions of the
stochastic process.

There is an extensive literature dealing with chaos in non-
linear systems of deterministic equations as dynamic models of
various phenomena. For those readers who prefer to learn about
these systems through a combination of lectures and readings, it
is suggested the recent lectures of Devaney (2011) as well as the
accompanying notes be consulted. In these lectures and notes, a
famous theorem by Sharkovsky, which was published in Russian
in the 1960s, is discussed. The technical details will be omitted,
but it is based on a special ordering of a set of positive integers
called the Sharkovsky ordering, see Devaney (2011) for details.
A non-technical version of the theorem may be stated as follows.
Suppose a function h (x) on the real number line is continuous.
Then, if the trajectory of this function has a period of a prime
number n, then it must have a prime period k for any inte-
ger that follows n in the Sharkovsky ordering. If one types the
title, Sharkovsky’s theorem, into an internet search engine, more
detailed information on this theorem may be obtained.

Consider, for example, the function defined in
Equation (2.15). By definition, if we let h (x) = 0 if x < 0,

then h (x) is continuous on the real number line (−∞, ∞) at
every parameter point (α, β, λ) ∈ P . An incomplete analysis of
the model under consideration may be found in chapter 9 of
Mode and Sleeman (2012). A fixed point of the function h (x)

is a point xf such that xf = h
(
xf

)
. For the model under consid-

eration, it is possible to derive a formula for the fixed point xf

for every point (α, β, λ) ∈ P in the parameter space. Moreover,
a condition was derived such that, at some set in the parameter
space, a trajectory of the deterministic model will always be
attracted to the fixed point, i.e., it is stable. At other points in
the parameter space, a trajectory is repelled from the fixed point
so that it is unstable. Furthermore, in exploratory numerical
experiments, it has been observed that some trajectories of the
embedded deterministic model had periods of two or greater at
some points in the parameter space. Generally speaking, such
periods were observed when the parameter λ was relatively large,
indicating that on average each individual contributed a rather
large number of offspring to the next generation. It is known that
periodic systems exist in chemistry, but it is not clear whether
such systems exist in biology and, in particular, population
genetics.

At some of the points in the parameter space in which it was
observed that the trajectory of the embedded deterministic model
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was periodic, a sample of Monte Carlo realizations of the process
was also computed at such a parameter point. In general, when
the simulated realizations of the process were summarized statis-
tically, the periodicity of the embedded deterministic model was
somewhat blurred in the estimated quantiles of the process. For
example, the median quantile Q50 showed evidence suggesting
periodicity, but in the simulated data was much less clear than
in the embedded deterministic trajectory. For readers who may
be interested in more details on these experiments, it is suggested
that chapter 9 in Mode and Sleeman (2012) be consulted.

At this point, it should be noted that the choice of a Poisson
distribution for the offspring distribution was a conservative one
in the sense that samples from a Poisson distribution are well
behaved, because the moments of this distribution are all finite. If
one were to chose an offspring distribution such that the mean or
expected value was finite but some of the higher order moments
were infinite, then the sample function of the process would be
more variable, which suggests that the predictions based on the
embedded deterministic model may be less useful, because the
sample functions of the process may vary among realizations of
the process more than those for a Poisson offspring distribution.
When the emergence and survival on new mutations in a popu-
lation may be a seminal event in the evolution of a population
is the focus of attention, a one type self regulating branching
process is not a useful model, because the possibility of new
mutations is not accommodated in this model. This relatively
simple model does, however, provide a useful window into what
to expect when multitype self regulating process are introduced
as a framework for studying the emergence and survival of new
mutations in an evolving population as will be shown in the next
section.

3. MULTITYPE SELF REGULATING BRANCHING PROCESSES
In the context of genetics and evolution, the idea of type in a mul-
titype branching process will correspond to a genotype. For the
sake of simplicity, attention will be focused on the case of three
genotypes, and initially it will be assumed that are two forces
driving the evolution of a population, reproductive success and
mutations among the three genotypes. Let G denote the set of
three genotypes that will be symbolized by ν = 1, 2, 3. To charac-
terize reproductive success stochastically, let Nν, such that ν ∈ G,
denote a set of random variables taking values in the set I of
non-negative integers, and suppose, as in section 2, that the den-
sity function for each of these random variable is a Poisson with
parameter λν for all ν ∈ G. Then a useful measure of reproductive
success for each genotype is the expectation E [Nν] = λν for every
ν ∈ G. If the value of any one of these parameters exceeds the oth-
ers, then the genotype corresponding to this value would have a
selective advantage over the others, in the sense that in every gen-
eration individuals of this genotype would, on average, contribute
more offspring to the next generation.

By assumption, the other force driving evolution of the pop-
ulation is mutation among the three genotypes. Let μij denote
the conditional probability that parental individual of genotype
i ∈ G produces an offspring of genotype j ∈ G per generation. It
is often the case that in classical population genetics the idea of
rates of mutations are used rather than probabilities of mutation.

But, in the classical case, rates are often defined as follows.
Suppose some large number of parents produce a large number
of offspring k in some generation, and among these offspring, it
is observed that k0 are of the some mutant type. Then, by defini-
tion, the rate of mutation is the fraction k0/k. But, this definition
is precisely that used to define a probability of an event within the
frequency interpretation of probability. Hence, to be consistent
with terminology that is widely used terminology in probabilistic
formulations, the word probability will be used when referring to
the uncertainty with which mutations occur.

For a more complete interpretation of these conditional prob-
abilities, it is useful to represent them in the matrix form:

M =
⎛
⎝μ11 μ12 μ13

μ21 μ22 μ23

μ31 μ32 μ33

⎞
⎠. (3.1)

In this matrix, μ11, for example, is the conditional probability
that an individual of genotype 1 produces an offspring of geno-
type 1, but μ12 and μ13 are, respectively, the conditional proba-
bilities that an individual of genotype 1 produces an offspring of
genotype 2 or 3. For every i ∈ G,

∑
j ∈ G

μij = 1 (3.2)

so that each row of the matrix M may be thought of as the vector
of probabilities for a three dimensional multinomial distribution.
Let the row vector pi = (μi1, μi2,μi3) denote row i ∈ G of the
matrix M in Equation (3.1). Because of condition (3.2) , it can be
seen that one is free to choose six parameters of the model regard-
ing mutations. Then, given these choices, the constraints imposed
by Equation (3.2) will determine the other three parameters in the
matrix in Equation (3.1) of conditional mutation probabilities.

In an evolving population, let the random function Xi (t) ,

taking values in the set I of non-negative integers, denote the
number of individuals of genotype i ∈ G in the population in
generation t. To initiate a Monte Carlo simulation experiment,
it will be necessary to assign values to each of these random
functions in generation t = 0. Let Xi (0) = xi (0) for i = 1, 2, 3
denote the initial number assigned for each of the three geno-
types. Suppose in generation t = 0, 1, 2, . . . there are Xi (t) ≥ 1

individuals of genotype i, and given Xi (t) , let N(k)
i for k =

1, 2, . . . , Xi (t) denote a set of conditionally independent random
variables whose common distribution is that of the Poisson ran-
dom variable Ni with expectation λi > 0. For a fixed k, let Z(k)

i =(
Z(k)

ij | j = 1, 2, 3
)

denote a random three dimensional vector

whose components Z(k)
ij , for j = 1, 2, 3, are the random num-

bers of offspring of genotype j produced by the individual k of
genotype i in generation t. Then for each k = 1, 2, . . . , Xi (t) ,

the random vector Z(k)
i has a multinomial distribution with index

N(k)
i , sample size, and probability vector pi = (μi1, μi2, μi3).

Let the random function Yij (t) denote the number of offspring
of genotype j = 1, 2, 3 produced by the Xi (t) of genotypes i in
generation t. Then, for Xi (t) ≥ 1, Yij (t) is the random sum:
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Yij(t) =
Xi(t)∑
k = 1

Z(k)
ij , (3.3)

and if Xi (t) = 0, then Yij (t) = 0. Let the random function Yj (t)
denote the total number of offspring of genotype j produced by all
of the three genotypes in generation t. Then, under the assump-
tion that mutations among all genotypes may occur, it follows
that,

Yj(t) =
3∑

i = 1

Yij(t) =
3∑

i = 1

Xi(t)∑
k = 1

Z(k)
ij (3.4)

for j = 1, 2, 3.

In any Monte Carlo simulation experiment based on the above
outline of random functions describing the evolution of a multi-
type branching process, two steps will be required. The first step
is to compute Monte Carlo realizations of the Poison random

variables N(k)
i k = 1, 2, . . . , Xi (t) for i = 1, 2, 3. Then, for a par-

ticular k, one needs to simulate a realization of the multinomial
random vector Z(k)

i for i = 1, 2, 3. To execute such a simulation, it
is suggested that a reader consult (Mode and Gallop, 2008), where
an algorithm for computing realizations of random vectors fol-
lowing a multinomial distribution with index N and probability
vector p was described in detail. It should also be mentioned that
the computational efficiency of computing realizations of many
Poisson random variables may be significantly increased by using
a Central Limit Theorem approximation. An interested reader
may consult Mode and Sleeman (2012) for details, but we will
not go into the details here.

Having outlined a set of algorithms for simulating the total
number of offspring of each genotype produced in any genera-
tion, the next step in the formulation of a self regulating multitype
branching process is to introduce survival probabilities for each of
the three genotypes. In any generation t, let the random function

T(t) =
3∑

i = 1

Xi(t) (3.5)

denote total population size in generation t for t = 0, 1, 2, . . ..
Then, just as for the one type branching process described in
section 1, the conditional survival function for an offspring of
genotype i to survive and reproduce in generation t + 1 is, by
definition,

Si(t | T(t)) = exp[−(βiT(t))αi] (3.6)

for i = 1, 2, 3, where the parameters satisfy the conditions βi > 0
and αi > 0 for all genotypes i ∈ G.

At this juncture, it should be noted that the assignment
of values for six parameters in the three survival functions
in Equation (3.6) will be required in any simulation exper-
iment, which raises the dimension of the parameter space
of the model to 15. It becomes helpful, therefore, to reduce
the dimension of the parameter space by assigning fixed
values to selected parameters. For the survival functions in
Equation (3.6), the beta parameters, which reflect the carrying
capacity of the environment, are more critical for the execution

of computer simulation experiments than the alpha parame-
ters. Consequently, in all the computer experiments reported
in this paper, the alpha parameters will be assigned the value
αi = 2 for i = 1, 2, 3 so that the dimension of the space of the
model reduces to 12. It should be mentioned, however, that an
experimenter would be free to assign any parameter values of
his choosing.

At first sight, a parameter space of 12 dimensions may be
difficult for an experimenter of cope with. But, on the other
hand, it also provides a framework to study the effects of more
than one component of natural selection in any Monte Carlo
simulation experiment. For example, given an assignment of
values for the conditional mutation probabilities, an experi-
menter would be free to choose different values for lambda
parameters among the three genotypes that quantify differential
reproductive success by genotype, which would be one compo-
nent of natural selection. By choosing different values of the
beta parameters in the survival function for each genotype, dif-
ferential capacities to compete for resources among the three
genotypes could also be studied as a component of natural
selection in computer simulation experiments. In a subsequent
section, the results of a computer experiment will be reported
to illustrate how the two components of natural selection just
mentioned can be studied in various combinations of compo-
nents or for each component separately in Monte Carlo simula-
tion experiments.

The last step in the formulation of a multitype self regulating
branching process is to define a procedure for simulating real-
ization of the random functions Xi (t + 1) denoting the number
of individuals of genotype i = 1, 2, 3 in the population in gen-
eration t + 1. As above, let the random function Yi (t) denoted
the number of offspring of genotype i = 1, 2, 3 produced in gen-
eration t. Then, for each i = 1, 2, 3, Xi (t + 1) is a realization
of a binomial random variable with index Yi (t) and conditional
probability Si (t | T (t)).

Having outlined the fundamentals underlying a stochastic
multitype self regulating branching process with three genotypes,
the stage has been set for a description of the embedded deter-
ministic model. Let M (X (t)) denote a 3 × 3 random matrix of
conditional expectations of the number of offspring produced by
individual of genotype i for i = 1, 2, 3 in any generation t. Then,
the vector

Si(t | T(t))λi(μi1, μi2,μi3) (3.7)

for i = 1, 2, 3 is row i of the matrix M(X (t)). Let the 1 × 3 vector

X̂(t) = (
X̂1(t), X̂2(t), X̂3(t)

)
(3.8)

denote the estimate of the 1 × 3 random population vector

X(t) = (X1(t), X2(t), X3(t)) (3.9)

in generation t = 0, 1, 2, . . . . Then,

X̂(t + 1) = X̂(t)M
(
X̂(t)

)
(3.10)

for t = 0, 1, 2, . . . .
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In the vector valued function on the right in Equation (3.10) is
non-linear in each of its components. It has been shown in com-
puter experiments reported in chapter 10 of Mode and Sleeman
(2012) that at some points in the parameter space the vector
valued iterates of the function on the right in Equation (3.10)

become irregular or chaotic, but at other points in the parameter
space the iterates of this function behave a more regular fashion
and converge to a limit determined by the carrying capacity of
the environment. Generally speaking, chaotic trajectories usually
arise when the lambda parameters are large, indicating that on
average each individual contributes a large number of offspring
to the next generation.

A question arises is: for what biological systems will the model
under consideration be applicable? One could write a short essay
in attempting to answer this question, but only a few brief
remarks will be made here. In principle, any single or multi-
cellular species that produces asexually could be a candidate for
applications of the model under consideration. Included among
these species are bacteria that reproduce by binary cell division.
Furthermore, even some species of chemical molecules that can
copy itself but at times there may be errors in the copying pro-
cess, which would provide variation for the process of Darwinian
evolution to occur, would also be candidates for applications
of the model under consideration. For a set of interesting lec-
tures on the origin of life, the lectures of Hazen (2005) may be
consulted.

4. OVERVIEW OF BOOK’S CONTENTS
In this section, the word “book” will refer to the Mode and
Sleeman (2012), which contains 15 chapters. It should be made
clear at the outset, that none of the references that are listed at the
end of each chapter will be cited in this paper with a only a few
exceptions. For some chapters the list of reference is too long to
cite here. Moreover, those references that were cited in the book
pertain only to the topics considered in the book. While writing
the book, the decision to restrict the number of references cited
was made, because any attempt to provide and overview of the
large and growing literature on statistical methods designed for
applications in molecular biology and genetics as well as books
and papers in journals devoted to Bioinformatics was beyond the
scope of the book. But whenever it is deemed appropriate, the
contents of the cited references will be briefly stated.

Chapter 1 is devoted to an introduction of mathematical prob-
ability and its applications to Mendelian genetics. Also contained
in this chapter is the derivation of a number of well-known dis-
tributions that are subsequently used throughout the remainder
of the book. Chapter 2 contains a theoretical account link-
age and recombination at multiple loci in which recombination
probabilities are defined and derived for any number N ≥ 2
linked loci based on recombinations of maternal and paternal
DNA. Matrices with orthogonality properties, whose elements are
either +1 or −1, play a fundamental role in the definition and
computation of recombination probabilities. It is also assumed
in this formulation that meiosis in a diploid species is regular
and balanced so that the phenomenon of gene conversion is not
taken into account. At the end of this chapter a paper devoted
to understanding the molecular basis of genetic recombination is

cited and given special attention. In chapter 3 the recombination
probabilities defined in chapter 2 along with a linkage distribu-
tion for any number N ≥ 2 linked loci are applied in considering
linkage and recombination in large random mating diploid pop-
ulations with no mutation or selection. Briefly, it is shown that in
the long run, when there is no mutation or selection, a population
will attain a linkage equilibrium with respect to a large number of
linked loci with an arbitrary number of alleles at each locus. The
results of chapter 3 will useful for investigators interesting in test-
ing for linkage equilibrium in genome wide sweeps for signatures
of selection when more than two loci are under consideration.

In chapter 4 the study of evolution with mutation and selection
is undertaken within the framework of the two allele Wright–
Fisher process that has been frequently used by workers in evo-
lutionary genetics. Unlike the usual analysis of this widely used
process that have been based on a diffusion approximation of the
process, in chapter 4 the analysis is devoted solely to the applica-
tions of matrix algebra to formally study the implications of the
assumptions underlying this process along with the assumption
that total population size is constant from generation to gen-
eration. Among the many formulas derived in this chapter are
fixation (absorption) probabilities, the stationary distribution of
the case two alleles may mutate among each other and a formula
for the quasi-stationary for the case of finite but many absorb-
ing states. Illustrative computer experiments are also reported in
this chapter for the case of small populations of about 500 indi-
viduals. When population size is large, matrix algebra methods
are no longer useful when working out the implications of the
assumptions underlying Wright–Fisher process with two or more
alleles at some autosomal locus. In chapter 5, Monte Carlo sim-
ulation methods are introduced as an alternative theoretical and
practical approach to study the implications of assigned numeri-
cal values to the parameters of a multitype Wright–Fisher process.
The results of a number of computer simulation experiments are
reported in this chapter along with a model of inherited autism
in human populations which is based on deleterious mutations
at many autosomal loci. Some evolutionary implications of the
model of inherited autism are also worked out in a Monte Carlo
simulation experiment reported in this chapter. With regard to
openness with respect to the random number generator used
in all the Monte Carlo experiments reported in the book, an
outline of the technical account on random number generators
giving in Mode and Gallop (2008) was also included in this
chapter.

The study of mutations at the DNA level begins in chapter 6,
where Markov jump processes in continuous time are used to
model transitions, nucleotide substitutions, among the four bases
A, T, C, G that make up a strand of DNA. These four bases are
viewed as the states of a Markov jump process in continuous
time for any base site of a strand of DNA. Unlike the Wright–
Fisher processes studied in chapters 4 and 5 in which evolutionary
time was expressed in terms of generations, the time scale under
consideration in these models of nucleotide substitutions is con-
tinuous evolutionary time measured in some unit of time such
as a year. Among the many examples considered in this chapter
is the simple Jukes–Cantor process. In general, for each site of
a strand of DNA, 12 parameters must be specified to take into
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account all possible transitions among the 4 bases. Consequently,
if one wishes to consider a model of nucleotide substitutions
that accommodates a large number of sites of a strand of DNA,
then number of parameters that must be specified becomes pro-
hibitively large from a practical point of view if one wishes to
consider cases in which rates of mutation vary among the sites
of a DNA molecule.

In order to cope with model that accommodates a large num-
ber of sites on a strand of DNA, it was decided to formulate
a model such that the parameters at each site were viewed as
realizations of a Gaussian process that depended on only a few
parameters and realizations of this process were mapped into suit-
able intervals of evolutionary time in which time was positive. The
details as to how such a process may be constructed are given in
chapter 7 of the book. Chapter 8 contains an account of proce-
dures that may be used to simulate Monte Carlo realizations of the
process along with statistical procedures to summarize the simu-
lated data. In this chapter the results of a computer experiment
to simulate parallel and back mutations in the D-loop of human
mitochondrial DNA are reported. Briefly, parallel mutations refer
to the same mutation at some site in the D-loop that may occur in
separate linages, which complicates classifying a population into
Haplogroups based on human mitochondrial DNA. Similarly,
back mutations at the same site are also another complicating
factor in classifying Haplogroups. In this experiment the num-
ber of parallel and back mutations that one may expect during a
period of evolution were estimated. At the ends of chapters 6–8
a number of books and papers on Bioinformatics are cited along
with an account of the genographic project and a technical paper
on problems arising in the classification of haplogroups based on
mutations in human mitochondrial DNA.

In chapter 9 the ideas underlying the formulation of self reg-
ulating branching processes are introduced along with Monte
Carlo methods for simulating genealogies and coalescence in
a simulated genealogy for the one-type branching process.
Coalescence is characterized in terms of the number of genera-
tions back such that two randomly selected individuals at some
generation in a simulated genealogy have a common ancestor.
By selecting a random sample of pairs of individuals it was pos-
sible to estimate and plot the distribution of the number of
generations back in time for which two randomly chosen indi-
viduals have a common ancestor. It is also in this chapter that
the ideas of embedding a deterministic model in a self regu-
lating branching process were introduced for both the one and
multitype cases. Moreover, in this chapter, the computer exper-
iments using on the one type model are reported in which the
estimated quantile trajectories, based on Monte Carlo samples,
were compared with the trajectory of the embedded determinis-
tic model. The results of an experiment, in which the embedded
deterministic model converges to a period two trajectory are
also compared with estimated quantile trajectories of the process
with the same numerical assignments to the parameters as those
of the deterministic model. Also included in this chapter is the
description of a methods designed to extend the one type self reg-
ulating branching process to a self regulating multitype model in
which conditional probabilities of mutations among the types per
generation are included in the formulation.

In chapter 10 a three type self regulating branching process is
used in computer simulation experiments to the study the emer-
gence, survival and extinction of mutant types in populations of
self replicating individuals evolving from small founder popula-
tions. The reasons for choosing to use a three type branching
process are twofold. When considering the emergence mutations
in such populations, it is of interest to accommodate both dele-
terious and beneficial mutations in an experiment. Thus, within
the framework of a three type process, it was possible to consider
experimental scenarios in which a population evolving from an
ancestral population, consisting of only of individuals of one sin-
gle type, that evolves after a few or many generations to contain
individuals carrying either beneficial or deleterious, which may
arise through the process of mutation among the types that are
passed on from generation to generation. There is also another
practical reason for considering only three types. For if more than
three types are considered in a computer simulation experiment,
then it is more difficult statistically to provide informative sum-
marizations of samples of simulated data than if only three types
are considered in an experiment. If a reader is interested in other
illustrative experiments using the three type model of chapter 10,
it is suggested that Mode et al. (2011b) be consulted.

In the models with three types considered in this chapter,
selection is partitioned into two components. One component
is reproductive success, which is characterized in terms of the
expected number of offspring produced by each individual per
generation that may differ among types, genotypes, of individu-
als. The other component of selection is that individuals on some
type may be better adapted at utilizing environmental resources
and will thus have competitive advantage over individuals in the
sense that they are able to survive and produce offspring than
types of individuals that are less able to compete for environmen-
tal resources. In chapter 10, the results of computer simulation
experiments are reported in which if individuals of one genotype
contributes on average more offspring to the next generation than
other genotypes, then in the long run individuals of this genotype
will become predominate in the population. Similarly, if indi-
viduals of one genotype are capable to surviving and producing
offspring at higher population densities, then individuals of this
genotype will eventually become predominate in the population
even though the expected number of offspring produced by indi-
viduals of all genotypes is the same. Among the references cited at
the end of chapter 10 is a book dealing with conceptual issues in
evolutionary biology. Among these issues is that of defining of the
concept of fitness. It is suggested that the idea of partitioning the
evolutionary process of selection into components may be helpful
in developing the concept of fitness and its application in theories
of evolution.

The theme of partitioning selection into its components is
continued in chapter 11, where a two sex model is formulated
within the framework of a self regulating branching process in
which the genotypes of the females and males are designated.
From the genetic point of view, one autosomal locus is under
consideration in some diploid species such there are two alle-
les for each sex that may mutate to the other allele with fixed
probabilities per meiosis. In this model it is assumed that selec-
tion occurs at the genotypic level, and that in the formation of
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sexual partnerships sexual selection may occur, because females
and males, of each of the three genotypes, may prefer one geno-
type over the other as sexual partners. Reproductive success is
characterized at the partnership level in terms of parameters
denoting the expected number of offspring each type of part-
nership contributes to the next generation. This formulation also
includes a component of selection that provides for the possibility
that differences among the three genotypes to compete for envi-
ronmental resources in both sexes may be studied in computer
experiments, which are quantified in terms of beta parameters
that may differ among genotypes of both sexes with respect to
the ability to compete for environmental resources. It is suggested
that if a reader is interested in an experiment in which muta-
tions did not emerge in a population that evolved according to the
embedded deterministic model but were actually realized among
a sample of Monte Carlo realizations of the stochastic process, the
paper by Mode et al. (2011a) may be consulted. In chapter 11, the
results of several computer simulation experiments with formu-
lation are reported, including one dealing with the evolution of
inherited autism in human populations.

In chapter 12, the model formulated in chapter 11 is extended
to the case of an age-structured two sex population with over-
lapping generations. All the components of selection that were
included in the model described in chapter 11 are also included
in this model, but there is another component of selection the
provides for the possibility that each of the genotypes for both
sexes may have shorter or longer expected lifespans, which is
another aspect of the effects of survivability of individuals in evo-
lution. The computer implementation of an age structured model
is much more difficult than the one considered in chapter 11.
Consequently, in chapter 12 only the results of experiments using
the embedded deterministic model are reported. But, in a revised
formulation, a stochastic version of the model has been accom-
plished and the results of computer experiments with this model
have been reported in the paper, Mode et al. (2013), which is now
in press and to be published in 2013.

Chapter 13 is devoted to a review of the concept of a gene
with a view toward the development of methods for simulating
the evolution regions of a genome that contain genes. After a
review of the literature on the changing concept of a gene, an
updated working definition of a gene is given based on recent
experiments using micro chip technology in which the products
of transcription were studied. This definition includes the phe-
nomenon of alternate splicing of three letter codons as well as
RNAs that are not involved in the coding of proteins but may have
some regulatory function. Because of difficulties that my arise
when gene regulation is taken into account, this definition does
not include regions of DNA in a genome that may be involved in
the regulation of genes. However, to provide some insights into
the regulation of genes, two examples from human blood groups
and the Shh locus in mice are described which include not only
regions of a gene that code for proteins but also genomic regions
involved in the regulation of these genes. Listed at the end of this
chapter are about 70 references on applications of statistical meth-
ods, methods published in journals of Bioinformatics as well as
some from classical genetics that were cited in connections with
developing a recent working definition of a gene.

The last chapter of the book that is devoted to substantive
concepts is chapter 14 in which statistical problems of detecting
genomic signals of selection are reviewed and described along
with a review of published methods for simulation regions of
a genome. Whenever the mathematical basis underlying this
methods was judged to be inadequately described, the author or
authors were criticized for lack of transparency with a suggestion
that it would be advisable if individuals with professional train-
ing in mathematics were also included on the team to increase
the level of transparency. New algorithms for simulating such
phenomena as gene conversion, genetic recombination as well as
types of mutations including nucleotide substitutions, inversions,
deletions and copy number variation are described in this chap-
ter. But, as yet, only a few preliminary computer experiments have
been conducted as proofs of concepts to show that the develop-
ment of such methods is indeed possible. It is suggested that the
contents of chapter 14 are part of the quest by many investigators
to work toward the grand challenge of evolutionary and popula-
tion genetics as outlined by Akey and Shriver (2011). At the end
of this chapter 50 references are cited consisting mostly of liter-
ature on statistical and other methods from Bioinformatics that
have been used by many investigators in the development of the
contents of chapter 14. Finally, the book ends in chapter 15 with
suggestions for future research and further readings on evolution
and its applications for human societies at large.

5. AN EXAMPLE IN WHICH THE PREDICTIONS OF
EMBEDDED DETERMINIST MODEL ARE NOT CONSISTENT
WITH THOSE OF THE STOCHASTIC PROCESS

In this section the results of a simulation experiment will be
reported in which the driving force of evolution by natural selec-
tion was a reproductive advantage of a mutant genotype. To
quantify the idea of a reproductive advantage for mutant geno-
type 3, the vectors of lambda parameters were assigned the values

λ = (1.05, 1.05, 1.5), (5.1)

indicting on average that genotype 3 produced an average of 1.5
offspring per generation; whereas genotypes 1 and 2 produced
an average of 1.05 offspring per generation. For this experiment,
the values of the conditional probabilities in the matrix M in
Equation (3.1) were assigned the values shown in the matrix

M =
⎛
⎝ μ11 10−6 0

10−12 μ22 10−14

10−15 10−17 μ33

⎞
⎠. (5.2)

Note that the values on the principal diagonal of the matrix were
determined such that the sum of each row in the matrix was 1.

As shown in section 3, in the multitype self regulating branch-
ing process with three types under consideration, Weibull type
survival depending on two parameters was used. To simulate
neutral evolution, for each genotype the two parameters in the
survival function were assigned the same values. Thus, in all the
experiments reported in this paper, the alpha parameters were
assumed to be equal and were assigned the value αi = 2 for
each genotype i = 1, 2, 3. Similarly, the beta parameters, which
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govern the ultimate size of the population for each genotype,
were assigned the values βi = 10−6 for each genotype i = 1, 2, 3.

The rationale for assigning these values was to conduct a com-
puter simulation experiment in which a rare mutation may occur,
but the size of the population for each genotype was restricted
to about 106 individuals. Finally, it was assumed that the initial
vector for a process evolving under the above assumptions was

X(0) = (10, 000, 0, 0), (5.3)

indicating that the initial population was composed only of
10,000 individuals of genotype 1 so that as the simulated popu-
lation evolved genotypes 2 and 3 could only arise as a result of the
process of mutation.

At the outset of this experiment it was known that no indi-
viduals of mutant genotype 3 would appear in the simulated
population using Monte Carlo methods to simulate 100 replica-
tions of 6000 generations of evolution. The reason, underlying
the justification of this statement, was that for every computer
simulation experiment, using Monte Carlo simulation methods,
the seed for the random number generator, an initial assigned
number to the random number generator used in the sequential
calculation of the random numbers used in any experiment, was,
as a matter of policy, the same in every experiment. An advan-
tage of using this technique is that it is possible to duplicate any
Monte Carlo simulation experiment, if, for any reason, such as a
loss of power, the results of any experiment are lost, it be pos-
sible to repeat the experiment using the same set of computer
generated random numbers. It seems paradoxical that even if a
sequence of numbers is computed by a recursive deterministic

procedure, the resulting sequence of numbers often pass statis-
tical tests for randomness. Consequently, such numbers may be
used in Monte Carlo simulation experiments with confidence. If
a reader is interested in more details regarding the calculation of
random numbers, the paper by Mode and Gallop (2008) and the
references cited therein may be consulted.

Presented in Figure 1 are graphs of the estimated number of
individuals of each genotype for the first 300 generations of the
experiment as predicted by the embedded deterministic model.

As can be seen from these trajectories, the estimated num-
ber of individuals of genotype 1 rises to a level of about 2 × 105

individuals at about 120 generations into the experiment, and
then the population of individuals of this genotype undergoes a
steep decline so that the number of individuals of this genotype
are small when compared to the number of individuals of geno-
types 3, which, by assumption, had a reproductive advantage.
As the number of individuals of genotype 1 in the population
declined, the numbers of individuals of mutant genotype 3 rose
to over 6 × 105 by generation 150 and thus become predomi-
nant in the population. The number of individuals of genotype
2 remained relatively small throughout the experiment as can
be seen from the trajectory for this genotype. But it is clear
from the trajectories plotted in Figure 1 that, according to the
embedded deterministic model, that individuals of genotype 3
did become predominant in the population during the first 300
generations of simulated evolution. It is also interesting to note
that within 300 generations, each of the three trajectories cor-
responding to the three genotypes has converged to constants,
indicating this is this experiment the population evolved rather
rapidly.

FIGURE 1 | Graphs of the trajectories of the numbers of each of the three genotypes as estimated using the embedded deterministic model.
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FIGURE 2 | Comparisons of the deterministic trajectories of genotypes 1 and 2 with the Q50 trajectories for the first 300 generations of the

experiment.

Presented in Figure 2 in the upper panel are graphs of the
trajectory for genotype 1 as computed using the embedded deter-
ministic model as well as the Q50 trajectory for genotype 1 as
estimated from a sample of 100 Monte Carlo replications of
6000 generations of evolution. In the lower panel in this figure,
these same trajectories for the number of individuals of mutant
genotype 2 are also plotted for the first 300 generations of the
experiment.

As can be seen from the deterministic trajectory, DET, and
the estimated Q50 trajectory of the stochastic process for geno-
type 1, as shown in the upper panel, by generation 150 the Q50
trajectory had reached a nearly constant level of over 2 × 105

individuals and remained at this level for the remaining gener-
ations of evolution shown in this figure. This nearly constant

level indicated the among the 100 realizations of the stochas-
tic process for the first 300 generations of simulated evolu-
tion, genotype 3 did not appear the population. Indeed from
a more detailed inspection of the simulated data for 6000 gen-
erations of evolution replicated 100 times, it was observed that
mutant genotype 3 did not appear in the population. But, as
shown in this figure and also Figure 1, according to the pre-
dictions of the embedded deterministic model, the number
of individuals of genotype 1 had declined to a small num-
ber when compared to that predicted by the stochastic pro-
cess and mutant genotype 3 had risen to predominance in the
population. Thus, in this illustrative example, it is clear that
the embedded deterministic model failed to predict the evolu-
tion of the stochastic process in the sense that DET differed
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significantly from the estimated Q50 trajectory of the process for
this genotype.

Shown in the lower panel of Figure 2 are the trajectories
DET and Q50 for the embedded deterministic model and the
stochastic process for genotype 2. When, as shown in this lower
panel, the vertical axis of the graph depicts populations sizes
from 0 to 350, the graphs of the trajectories DET and Q50 are
more clearly differentiated. For in this lower figure, it can be seen
that throughout the first 300 generations of simulated evolution,
the deterministic trajectory, DET, for individuals of genotype
2 remained below 50 individuals, but that for the Q50 of the
stochastic process had reached nearly 350 individuals by gener-
ation 300. In this experiment, there was also apparent that the
trajectory computed using the embedded deterministic model
was not a good predictor of the Q50 trajectory of the stochas-
tic process for individuals of genotype 2. Evidently, among the
100 realizations of simulated evolution of the stochastic process
for 6000 generations of evolution, the number of individuals of
genotype 2 never rose to a number sufficiently large to ensure that
the mutation A2 → A3 occurred with positive probability. This
experiment also suggests that if the carrying capacity of the envi-
ronment is such that a large populations of individuals cannot
not supported, then it is more unlikely that rare beneficial muta-
tion will appear in an evolving population due to insufficient total
population size.

It is known from experiments not reported here that by
increasing the probability of the mutation A2 → A3, mutant
genotype 3 would appear in the population and become predom-
inant in a Monte Carlo simulation experiment. It is also known
from experiments reported in chapter 10 of the book Mode and
Sleeman (2012) that if one assumes that individuals of genotype 3
have a selective advantage over the other two genotypes by assign-
ing a smaller value of the beta parameter for genotype 3, then
eventually, even if selection is neutral with respect to reproduc-
tive success, individuals of genotype 3 will become predominant
in the population. While carrying out the computer experiments
reported in the book, it was not observed that a rare beneficial
mutation would fail appear in the population, using the self regu-
lating process three type branching process under consideration.
But if a reader is interested in experiments using this model such
that an advantageous mutant genotype did not appear in the pop-
ulation in experiment completed after work on the book was

finished, the recent paper of Mode et al. (2011b) may also be con-
sulted, where other experiments in which the predictions of the
embedded deterministic model are not consistent with those of
the process.

Many models used in evolutionary and population genetics
in the past, as well as models used optimize the process selec-
tion in domestic livestock, have been based on the premise that
the population is of infinite size, and, therefore, the use of deter-
ministic models was justified. It has sometimes been stated that
even though a stochastic model should be used, the trajectory
of a deterministic model is a measure of central tendency for
the stochastic process. But, actually, wild and natural popula-
tion are finite, especially in populations of domestic livestock
and in natural population at the beginning of their evolution
or in bottlenecks, such that for some reason, total population
size has been reduced to a small number. In this connection,
in an interesting paper by Costard and Elsen (2011) on the
optimization of gene-assisted selection in small populations of
domestic livestock, the deterministic and stochastic approaches
were compared. These authors concluded that when selection
involves one inherited gene, the finite or stochastic case, should
be considered. And, as shown in an example in this paper as
well as in other published work with another model, see Mode
et al. (2011a), it is relatively easy to construct examples in which
the embedded deterministic model fails to predict the results
observed in a Monte Carlo implementation of the stochastic pro-
cess, particularly in connection with the occurrence of beneficial
mutations.

As the software needed to implement stochastic processes
become more readily available with user friendly front ends to
expedite their applications to problems of simulation the evolu-
tion of natural or domestic populations of plants and animals,
the sometimes onerous task of writing and debugging software
will be relegated to those specializing in software development
and an experimenters will be free to apply the software as an aid
to finding solutions to the conceptional evolutionary problems
that confront them. As the use of inexpensive desk top computers
with high speeds of execution of computation and large memories
become widely available, the time taken to complete Monte Carlo
simulation experiments will be reduced to shorter time periods
that will, in principle, encourage their use by increasing numbers
of researchers.
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