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The discovery of the post-transcriptional gene silencing (PTGS) by small
non-protein-coding RNAs is considered as a major breakthrough in biology. In the last
decade we just started to realize the biologic function and complexity of gene regulation
by small non-coding RNAs. PTGS is a conserved phenomenon which was observed
in various species such as fungi, worms, plants, and mammals. Micro RNAs (miRNA)
and small interfering RNAs (siRNAs) are two gene silencing mediators constituting an
evolutionary conserved class of non-coding RNAs regulating many biological processes
in eukaryotes. As this small RNAs appear to regulate gene expression at translational
and transcriptional level it is not surprising that during the last decade many human
diseases among them Alzheimer’s disease, cardiovascular diseases, and various cancer
types were associated with deregulated miRNA expression. Consequently small RNAs
are considered to hold big promises as therapeutic agents. However, despite of the
enormous therapeutic potential many questions remain unanswered. A major critical
point, when evaluating novel therapeutic approaches, is the transfer of in vitro settings
to an in vivo model. Classical animal models rely on the laboratory kept animals under
artificial conditions and often missing an intact immune system. Model organisms
with spontaneously occurring tumors as e.g., dogs provide the possibility to evaluate
therapeutic agents under the surveillance of an in intact immune system and thereby
providing an authentic tumor reacting scenario. Considering the genomic similarity
between canines and humans and the advantages of the dog as cancer model system
for human neoplasias the analyses of the complex role of small RNAs in canine tumor
development could be of major value for both species. Herein we discuss comparatively
the role of miRNAs in human and canine cancer development and highlight the potential
and advantages of the model organism dog for tumor research.
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BIOGENESIS AND FUNCTION OF SMALL RNAs IN
MAMMALS
In 2006, Andrew Fire and Craig C. Mello were awarded with
the Nobel Prize in medicine for their work on RNA interference
(RNAi). Since the discovery of post-transcriptional gene silencing
(PTGS) mechanism in various species, the interest in using small
RNA molecules and its endogenous mechanisms as a new phar-
macological approach to human diseases is constantly rising (Fire
et al., 1998; Elbashir et al., 2001). Micro RNAs (miRNA) and small
interfering RNAs (siRNA) are two small non-protein-coding RNA
molecule types which play a leading role in PTGS. Thereby, con-
trary to siRNAs, miRNAs appear to act as “fine tuner” of gene
regulation (Sevignani et al., 2006).

miRNAs are endogenously expressed as primary miRNA
(pri-miRNA) transcripts composed of up to several thousand
nucleotides (Mondol and Pasquinelli, 2012) which are processed
by the nuclear enzyme Drosha to precursor miRNAs (pre-
miRNA) (Zeng and Cullen, 2006). Following the enzymatic pro-
cessing, the cytoplasmic enzyme Dicer cleaves the pre-miRNAs
generating the mature double-stranded miRNAs (Bohnsack et al.,

2004; Lund et al., 2004). Dicer not only processes pre-miRNAs,
it also cleaves long double stranded RNA molecules and gener-
ates the second class of small RNAs, named siRNAs, which show
a miRNA-similar size of ∼20 base pairs (Tomari and Zamore,
2005).

Mature miRNAs and siRNAs are chemically and physiologi-
cally indistinguishable, apparently only differing in their respec-
tive origins (Ambros et al., 2003). Further comparison of these
molecules shows that the “guide strand” of miRNAs seen in mam-
mals, is in most cases significantly but not obligatory completely
complementary to the 3′-untranslated region of the respec-
tive target mRNA. In the case of siRNAs the “guide strand”
shares absolute complementarity to a small region in the target
structure. After “guide strand” incorporation into the RNA-
induced silencing complex (RISC), the respective target mRNA
stability and/or translation are modulated (Tomari and Zamore,
2005). Interestingly many miRNAs, their biogenesis and func-
tions are conserved among several organisms of higher and
lower complexity as fungi, worms, Drosophila, and mammals
confirming the general importance of the PTGS mechanism
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(Filippov et al., 2000; Pasquinelli et al., 2000; Wu et al., 2000;
Fortin et al., 2002; Yan et al., 2003; Han et al., 2004; Ibanez-
Ventoso et al., 2008).

miRNA genes itself show to be very versatile, they were
described to be polycistronic or monocistronic and occasionally
located in intron- as well as exon-regions of protein-coding genes.
Some miRNAs are co-expressed with their target-mRNAs as one
transcript (Bartel, 2004; Kim et al., 2009). Different miRNAs tar-
get a single mRNA, and a single miRNA can also be regulating
the expression of many different targets. Additionally, miRNAs
were also reported to be able to regulate other miRNAs by direct
interactions (Winter et al., 2009; Chen et al., 2011) and in some
cases miRNAs were described to be regulated by proteins trans-
lated from their respective target mRNA, constituting a regulatory
negative feedback loop (Bracken et al., 2008; Rybak et al., 2008).

In general, long double stranded RNA molecules are not com-
mon in mammals, suggesting that the RNAi mechanism mediated
by siRNAs evolved for defense of viral infections and transposable
elements (Obbard et al., 2009).

Despite their different origin these small non-coding RNA
molecules have many things in common including the small size,
specificity of inhibition, and potency and considering therapeu-
tic applications a diminished risk to induce unspecific effects as
immune responses. Due to these properties, these molecule types
are considered to be potential key players in the development of
next generation therapeutics for treatment of a variety of major
diseases including cancer (Barh et al., 2010).

miRNA transcription and maturation is not the only pro-
cess regulating functional miRNA levels. Stability of functional
miRNAs is a further key factor in miRNA regulation. Molecule
stability was reported to be dependent on several cis- and trans-
acting factors varying considerably between miRNAs and their
spatiotemporal expression (Kai and Pasquinelli, 2010). Exosomal
release of miRNAs into the extracellular environment (Ohshima
et al., 2010) and long non-coding RNAs (lncRNA) mimicking tar-
get mRNA sites and thereby acting as decoys, were also shown to
decrease functional miRNA levels in cells (Cesana et al., 2011).
Interestingly, numerous lncRNAs were reported to be deregulated
in human cancer (Shore et al., 2012).

Typically one strand of the mature miRNA hybrid, the “guide
strand” is maintained during interaction with RISC proteins
while the “passenger strand” is degraded. This dichotomy is gen-
erally known to be caused by the stabilization of the “guide
strand” by RISC loading, while the “passenger strand” stays
unprotected (Kai and Pasquinelli, 2010). miRNA methylation,
uridylation, and adenylation are some of the modifications hav-
ing an influence on small RNAs half-life as well (Burroughs et al.,
2010; Kai and Pasquinelli, 2010). However, miRNA stability-
enhancing proteins were also described to be actively involved in
miRNA half-life, suggesting that the miRNA-mediated gene reg-
ulation processes are more complex and as variable as these genes
are itself (Kai and Pasquinelli, 2010).

THE DOG AS MODEL ORGANISM
In recent years, the role of the domestic dog as model organism
for various human diseases constantly gained increasing impor-
tance. Many canine inherited diseases were described, including

Alzheimer’s disease (Rofina et al., 2003), narcolepsy (Lin et al.,
1999), diabetes (Ionut et al., 2008), epilepsy (Lohi et al., 2005),
atrial fibrillation (Shan et al., 2009), Duchenne muscular dystro-
phy (Mizuno et al., 2011), heart diseases (Eaton et al., 1995), and
cancer (Mueller et al., 2007; Boggs et al., 2008; Noguchi et al.,
2011; Uhl et al., 2011). All these disorders occur in dogs, just as
in humans, spontaneously during their lifetime and many of them
show similar clinical manifestations (Ostrander et al., 2000; Sutter
and Ostrander, 2004).

Cancer is a complex, polygenic disease spontaneously occur-
ring in man and dog (∼1 million diagnosed pet dog cancer cases
per year in the United States), whereas tumors in most laboratory
animals must be artificially induced (Mueller et al., 2007; Karlsson
and Lindblad-Toh, 2008; Paoloni and Khanna, 2008). Indeed,
mans best friend shares many features, including tumor genet-
ics, molecular targets, histological appearance, and response to
conventional therapies (Paoloni and Khanna, 2008). Additionally
dogs often cohabitate with their owners, are exposed to similar
environmental stresses, which may have a big impact on can-
cer development, and enjoy the best medical care among pets
(Sutter and Ostrander, 2004; Rowell et al., 2011). Furthermore,
dogs show a higher genetic variability than inbred laboratory mice
and enable an easier and faster surgical intervention and imag-
ing due to body size (Mueller et al., 2007). The five- to eight-fold
faster aging of dogs in comparison to humans facilitates long-
term studies of cancer treatments (Rowell et al., 2011). In 2005,
the sequenced canine genome was published (Lindblad-Toh et al.,
2005). Having a less different genome from humans than rodents
and sharing a similar metabolism, according to their body size,
the dog classifies as a very good model organism for molecular
studies on human diseases (Sutter and Ostrander, 2004; Karlsson
and Lindblad-Toh, 2008; Pinho et al., 2012).

In contrast to investigations on human miRNAs in cancer, the
research on canine miRNAs is often limited by the lack of spe-
cific canine assays. Up to now only a limited number of studies
were done on canine non-neoplastic and tumor tissues. In 2008,
Zhou et al. identified 357 canine miRNA-genes by computational
analysis, 300 of these were homologs of known human miR-
NAs (Zhou et al., 2008). Currently 1527 human and 323 canine
miRNA matches of hairpin precursors are registered in the web-
database, miRBase (Sanger Institute, version 16.0) (Kozomara
and Griffiths-Jones, 2011).

Due to high homology of mature miRNAs between human
and dog (Table 1), many of the human miRNA assays can be
used for analyses of canine miRNA expression. In Table 1 canine
miRNAs are listed, which share absolute homology to the human
counterparts. Homologous canine miRNAs with overhangs or
major sequential differences are not listed.

COMPARATIVE miRNA EXPRESSION IN HUMAN AND
CANINE DISEASES
Humans share many diseases with their canine companions
including atrial fibrillation, Duchenne muscular dystrophy, and
cancer, but the number of comparative studies, focussing on
the role of miRNAs in canine diseases, is still relatively low
(Karlsson and Lindblad-Toh, 2008; Shan et al., 2009; Mizuno
et al., 2011). However, the published data is constantly growing

Frontiers in Genetics | Non-Coding RNA April 2013 | Volume 4 | Article 46 | 2

http://www.frontiersin.org/Non-Coding_RNA
http://www.frontiersin.org/Non-Coding_RNA
http://www.frontiersin.org/Non-Coding_RNA/archive


Wagner et al. miRNAs in comparative oncology

Table 1 | Comparison of canine and human mature miRNAs.

Canine mature miRNA Human mature miRNA

cfa-miR-1 hsa-miR-1

cfa-let-7a hsa-let-7a

cfa-let-7b hsa-let-7b

cfa-let-7c hsa-let-7c

cfa-let-7e hsa-let-7e

cfa-let-7f hsa-let-7f-5p

cfa-let-7g hsa-let-7g-5p

cfa-miR-7 hsa-miR-7-5p

cfa-miR-9 hsa-miR-9-5p

cfa-miR-10 hsa-miR-10a-5p

cfa-miR-15a hsa-miR-15a-5p

cfa-miR-15b hsa-miR-15b-5p

cfa-miR-16 hsa-miR-16-5p

cfa-miR-17 hsa-miR-17-3p

cfa-miR-18a hsa-miR-18a-5p

cfa-miR-18b hsa-miR-18b-5p

cfa-miR-19a hsa-miR-19a-3p

cfa-miR-19b hsa-miR-19b-3p

cfa-miR-20a hsa-miR-20a-5p

cfa-miR-20b hsa-miR-17-5p

cfa-miR-21 hsa-miR-21-5p

cfa-miR-22 hsa-miR-22-3p

cfa-miR-23a hsa-miR-23a-3p

cfa-miR-23b hsa-miR-23b-3p

cfa-miR-25 hsa-miR-25-3p

cfa-miR-26a hsa-miR-26a-5p

cfa-miR-27a hsa-miR-27a-3p

cfa-miR-27b hsa-miR-27b-3p

cfa-miR-28 hsa-miR-28-3p

cfa-miR-29a hsa-miR-29a-3p

cfa-miR-29b hsa-miR-29b-3p

cfa-miR-29c hsa-miR-29c-3p

cfa-miR-30b hsa-miR-30b-5p

cfa-miR-30e hsa-miR-30e-3p

cfa-miR-33 hsa-miR-33a-5p

cfa-miR-34a hsa-miR-34a-5p

cfa-miR-34c hsa-miR-34c-5p

cfa-miR-92a hsa-miR-92a-3p

cfa-miR-92b hsa-miR-92b-3p

cfa-miR-93 hsa-miR-93-5p

cfa-miR-95 hsa-miR-95

cfa-miR-96 hsa-miR-96-5p

cfa-miR-98 hsa-miR-98

cfa-miR-99a hsa-miR-99a-5p

cfa-miR-99b hsa-miR-99b-5p

cfa-miR-101 hsa-miR-101-3p

cfa-miR-103 hsa-miR-103a-3p

cfa-miR-105a hsa-miR-105-5p

cfa-miR-106a hsa-miR-17-5p

cfa-miR-106a hsa-miR-106a-5p

cfa-miR-106b hsa-miR-106b-5p

(Continued)

Table 1 | Continued

Canine mature miRNA Human mature miRNA

cfa-miR-107 hsa-miR-107

cfa-miR-122 hsa-miR-122-5p

cfa-miR-125a hsa-miR-125a-5p

cfa-miR-125b hsa-miR-125b-5p

cfa-miR-126 hsa-miR-126-5p

cfa-miR-127 hsa-miR-127-3p

cfa-miR-128 hsa-miR-128

cfa-miR-129 hsa-miR-129-5p

cfa-miR-130a hsa-miR-130a-3p

cfa-miR-130b hsa-miR-130b-3p

cfa-miR-133b hsa-miR-133b

cfa-miR-133c hsa-miR-133a

cfa-miR-134 hsa-miR-134

cfa-miR-135a-5p hsa-miR-135a-5p

cfa-miR-135b hsa-miR-135b-5p

cfa-miR-136 hsa-miR-136-5p

cfa-miR-137 hsa-miR-137

cfa-miR-138a hsa-miR-138-5p

cfa-miR-143 hsa-miR-143-3p

cfa-miR-145 hsa-miR-145-5p

cfa-miR-146a hsa-miR-146a-5p

cfa-miR-146b hsa-miR-146b-5p

cfa-miR-147 hsa-miR-147b

cfa-miR-148a hsa-miR-148a-3p

cfa-miR-148b hsa-miR-148b-3p

cfa-miR-149 hsa-miR-149-5p

cfa-miR-150 hsa-miR-150-5p

cfa-miR-151 hsa-miR-151a-5p

cfa-miR-152 hsa-miR-152

cfa-miR-153 hsa-miR-153

cfa-miR-155 hsa-miR-155-5p

cfa-miR-181a hsa-miR-181a-5p

cfa-miR-181b hsa-miR-181b-5p

cfa-miR-181d hsa-miR-181d

cfa-miR-182 hsa-miR-182-5p

cfa-miR-183 hsa-miR-183-5p

cfa-miR-184 hsa-miR-184

cfa-miR-185 hsa-miR-185-5p

cfa-miR-186 hsa-miR-186-5p

cfa-miR-187 hsa-miR-187-3p

cfa-miR-190a hsa-miR-190a

cfa-miR-190b hsa-miR-190b

cfa-miR-191 hsa-miR-191-5p

cfa-miR-192 hsa-miR-192-5p

cfa-miR-193a hsa-miR-193a-5p

cfa-miR-193b hsa-miR-193b-5p

cfa-miR-194 hsa-miR-194-5p

cfa-miR-196a hsa-miR-196a-5p

cfa-miR-197 hsa-miR-197-3p

cfa-miR-199 hsa-miR-199a-3p

cfa-miR-200a hsa-miR-200a-5p

(Continued)
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Table 1 | Continued

Canine mature miRNA Human mature miRNA

cfa-miR-200b hsa-miR-200b-5p

cfa-miR-200c hsa-miR-200c-3p

cfa-miR-202 hsa-miR-202-5p

cfa-miR-203 hsa-miR-203a

cfa-miR-204 hsa-miR-204-5p

cfa-miR-205 hsa-miR-205-5p

cfa-miR-206 hsa-miR-206

cfa-miR-208a hsa-miR-208a

cfa-miR-208b hsa-miR-208b

cfa-miR-212 hsa-miR-212-5p

cfa-miR-214 hsa-miR-214-3p

cfa-miR-216a hsa-miR-216a-5p

cfa-miR-216b hsa-miR-216b

cfa-miR-218 hsa-miR-218-5p

cfa-miR-219 hsa-miR-219-5p

cfa-miR-219* hsa-miR-219-2-3p

cfa-miR-221 hsa-miR-221-3p

cfa-miR-222 hsa-miR-222-3p

cfa-miR-223 hsa-miR-223-3p

cfa-miR-299 hsa-mir-299

cfa-miR-301a hsa-miR-301a-3p

cfa-miR-301b hsa-miR-301b

cfa-miR-302a hsa-miR-302a-5p

cfa-miR-302c hsa-miR-302c-5p

cfa-miR-302d hsa-miR-302d-5p

cfa-miR-320 hsa-miR-320a

cfa-miR-323 hsa-miR-323a-3p

cfa-miR-324 hsa-miR-324-5p

cfa-miR-326 hsa-miR-326

cfa-miR-328 hsa-miR-328

cfa-miR-329b hsa-miR-329

cfa-miR-330 hsa-miR-330-5p

cfa-miR-331 hsa-miR-331-3p

cfa-miR-335 hsa-miR-335-5p

cfa-miR-338 hsa-miR-3065-5p

cfa-miR-33b hsa-miR-33b-5p

cfa-miR-340 hsa-miR-340-5p

cfa-miR-342 hsa-miR-342-3p

cfa-miR-346 hsa-miR-346

cfa-miR-361 hsa-miR-361-5p

cfa-miR-362 hsa-miR-362-5p

cfa-miR-365 hsa-miR-365a-3p

cfa-miR-367 hsa-miR-367-5p

cfa-miR-370 hsa-miR-370

cfa-miR-374a hsa-miR-374a-5p

cfa-miR-374b hsa-miR-374b-5p

cfa-miR-375 hsa-miR-375

cfa-miR-376a hsa-miR-376a-3p

cfa-miR-376b hsa-miR-376b-3p

cfa-miR-377 hsa-miR-377-5p

cfa-miR-379 hsa-miR-379-5p

(Continued)

Table 1 | Continued

Canine mature miRNA Human mature miRNA

cfa-miR-381 hsa-miR-381-3p

cfa-miR-383 hsa-miR-383

cfa-miR-410 hsa-miR-410

cfa-miR-421 hsa-miR-421

cfa-miR-423a hsa-miR-423-5p

cfa-miR-424 hsa-miR-424-3p

cfa-miR-425 hsa-miR-425-5p

cfa-miR-432 hsa-miR-432-5p

cfa-miR-433 hsa-miR-433

cfa-miR-448 hsa-miR-448

cfa-miR-449 hsa-miR-449a

cfa-miR-450b hsa-miR-450b-5p

cfa-miR-451 hsa-miR-451a

cfa-miR-452 hsa-miR-452-5p

cfa-miR-454 hsa-miR-454-3p

cfa-miR-455 hsa-miR-455-5p

cfa-miR-487a hsa-miR-487a

cfa-miR-487b hsa-miR-487b

cfa-miR-488 hsa-miR-488-5p

cfa-miR-489 hsa-miR-489

cfa-miR-490 hsa-miR-490-3p

cfa-miR-491 hsa-miR-491-3p

cfa-miR-493 hsa-miR-493-3p

cfa-miR-494 hsa-miR-494

cfa-miR-495 hsa-miR-495-3p

cfa-miR-496 hsa-miR-496

cfa-miR-497 hsa-miR-497-5p

cfa-miR-499 hsa-miR-499a-5p

cfa-miR-500 hsa-miR-500a-3p

cfa-miR-504 hsa-miR-504

cfa-miR-505 hsa-miR-505-5p

cfa-miR-532 hsa-miR-532-5p

cfa-miR-539 hsa-miR-539-5p

cfa-miR-542 hsa-miR-542-3p

cfa-miR-543 hsa-miR-543

cfa-miR-544 hsa-miR-544a

cfa-miR-551a hsa-miR-551a

cfa-miR-551b hsa-miR-551b-3p

cfa-miR-568 hsa-miR-568

cfa-miR-574 hsa-miR-574-3p

cfa-miR-590 hsa-miR-590-3p

cfa-miR-599 hsa-miR-599

cfa-miR-628 hsa-miR-628-5p

cfa-miR-652 hsa-miR-652-3p

cfa-miR-660 hsa-miR-660-5p

cfa-miR-671 hsa-miR-671-3p

cfa-miR-708 hsa-miR-708-5p

cfa-miR-758 hsa-miR-758-3p

cfa-miR-761 hsa-miR-761

cfa-miR-802 hsa-miR-802

cfa-miR-874 hsa-miR-874

(Continued)
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Table 1 | Continued

Canine mature miRNA Human mature miRNA

cfa-miR-875 hsa-miR-875-5p

cfa-miR-876 hsa-miR-876-5p

cfa-miR-885 hsa-miR-885-5p

cfa-miR-1306 hsa-miR-1306-5p

cfa-miR-1307 hsa-miR-1307-3p

207 of the canine mature miRNAs listed in miRBase (Sanger Institute, version

16.0) show absolute sequence complementarity to the human counterparts.

The sequence identity of the canine mature miRNA sequences with the corre-

sponding human homologs was confirmed by miRBase, single sequence search

(http://www.mirbase.org/search.shtml).

and thus it is likely that in future miRNA studies on the
canine model, like in the following examples, will gain more
importance.

miRNAs IN NON-NEOPLASTIC DISEASES
Recent studies showed that nicotine can induce atrial struc-
tural remodeling and increase atrial fibrosis vulnerability in dogs.
Shan et al. reported a decreased miR-133 and miR-590 expres-
sion in smoking individuals with atrial fibrosis and showed that
an ectopic over-expression of miR-133 and miR-590 resulted in
a post-transcriptional suppression of TGF-β1 and TGF-βRII in
cultured canine atrial fibroblasts (Shan et al., 2009).

Another disease affecting man as well as dogs is Duchenne
muscular dystrophy. It is a lethal X-chromosome linked disor-
der caused by mutations in the dystrophin gene, which encodes a
cytoskeletal protein. Mizuno et al. studied serum miRNA expres-
sion in the X-linked muscular dystrophy in Japan dog model
(CXMDJ) and found, as in humans, increased miR-1, miR-133a,
and miR-206 levels (Cacchiarelli et al., 2010, 2011; Mizuno et al.,
2011). The study indicates that serum miRNAs might be a reliable
biomarker for muscular dystrophy (Mizuno et al., 2011).

miRNAs IN CANCER
Focusing cancer in more detail, deregulated miRNA expression
was associated with many human and canine neoplasias (Mueller
et al., 2007; Barh et al., 2010; Noguchi et al., 2011; Uhl et al., 2011).
As miRNAs are involved in a variety of biological processes as
regulation of apoptosis, angiogenesis, cell cycle control, and cell
migration it is not surprising that these molecules show an enor-
mous influence on cancer etiology (Bueno and Malumbres, 2011;
Donnem et al., 2012; Landskroner-Eiger et al., 2012). For exam-
ple the human miR-17-92 cluster coded miRNAs where reported
to act tumorigenic, while others such as the let-7 family mem-
bers, where reported to be like a coin with two sides, acting in
some cases as tumor suppressors or promoting tumor develop-
ment (Blenkiron and Miska, 2007; Boyerinas et al., 2010; Olive
et al., 2010; Ryland et al., 2012).

In cancer, miRNA target sites and miRNA genes itself were
found to be directly mutated or their expression deregulated by
other factors (Ikeda et al., 2011; Ryland et al., 2012). Due to
the complex acting and regulation mechanisms it is very likely

that many miRNA deregulations associated with their respective
disease are not even identified.

However, despite of the fact that the detailed mechanisms of
miRNA action are still under debate, many diagnostic and thera-
peutic miRNA-based approaches show promising results (Li et al.,
2009; Krell et al., 2012).

As in humans, in dogs, many miRNAs are conserved empha-
sizing the role of the domestic dog as model organism for miRNA
in cancer research. It is very likely that these molecules also follow
comparable expression patterns and similar function in canine
neoplasias. The analysis of miRNA biogenesis and expression pat-
tern could decipher the role of human and canine miRNAs in
cancer and enable the design of new therapies based on small
RNA delivery.

miRNAs in mammary tumors
Mammary tumors are among the most common neoplasias of
female dogs, with an estimated lifetime risk for malignant tumors
varying from 2 to more than 20%. The risk for malignant mam-
mary tumors in dogs spayed before and after their first estrus,
is in comparison to intact dogs 0.05 and 8%. In dogs spayed
after their second estrus, the risk rises up to 26% (Withrow and
Vail, 2007). Data from a Swedish study, based on 80,000 insured
female, mostly sexually intact dogs, reported a rate of 111 mam-
mary tumors (benign and malignant) per 10,000 dog-years risk
(Egenvall et al., 2005). The age-standardized incidence rate for
human breast cancer estimates 66.4 per 100,000 in more devel-
oped areas and is thus the most common cancer (Jemal et al.,
2011).

According to a recent study, nine miRNAs, let-7f, miR-15a,
miR-16, miR-17-5p, miR-21, miR-29b, miR-125b, miR-155, and
miR-181b involved in human mammary cancer, appear to fol-
low the same expression pattern in the canine counterpart. In this
study, only the investigated miR-145 was not shown to be differ-
ently expressed comparing non-neoplastic and neoplastic canine
tissues (Boggs et al., 2008).

miRNAs linked to lymphomas
Besides mammary cancer, canine lymphomas show the high-
est estimated annual incidence with 13 to 24 cases per 100,000
accounting for up to 24% of all canine neoplasias (Withrow and
Vail, 2012). In human, chronic lymphocytic leukemia (CLL) is
the most common leukemia in the Western world with an annual
incidence of approximately 10,000 new cases in the United States
(Calin and Croce, 2009).

In a recent study, the relative expression pattern of 12 canine
miRNAs (cfa-let-7a, cfa-miR-15a, cfa-miR-16, cfa-miR-17-5p, cfa-
miR-21, cfa-miR-26b, cfa-miR-29b, cfa-miR-125b, cfa-miR-150,
cfa-miR-155, cfa-miR-181a, and cfa-miR-223) in CLL was ana-
lyzed. Due to stable expression between the investigated samples
four of the 12 miRNAs (cfa-let-7a, cfa-miR-17-5p, cfa-miR-26b
and cfa-miR-223) were used as endogenous controls. miR-15a,
miR-16, and miR-181a were reported to be downregulated in
canine and human CLL (Calin et al., 2002; Gioia et al., 2011;
Zhu et al., 2012). Four of the investigated miRNAs (cfa-miR-
21, cfa-miR-125b, cfa-miR-150, cfa-miR-155) were described to be
upregulated in human and canine B-CLL as well (Pekarsky et al.,
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2006; Fulci et al., 2007; Wang et al., 2008; Bousquet et al., 2010;
Palamarchuk et al., 2010; Rossi et al., 2010). Only miR-29b, which
was shown to be downregulated in human B-CLL, was upregu-
lated in canine CLL (Pekarsky et al., 2006; Fulci et al., 2007; Wang
et al., 2008; Bousquet et al., 2010; Palamarchuk et al., 2010; Rossi
et al., 2010).

It was also observed by Gioa et al. that in comparison to canine
B-CLL the miR-125 expression was significantly downregulated
in canine T-CLL. On the basis of the mature miRNA expres-
sion ratio between miR-150/miR-125b, and miR-150/miR-155, it
was reported that it is also possible to distinguish among nor-
mal blood, B-CLL and T-CLL samples (Gioia et al., 2011). This
illustrates the potential of miRNA expression analyses not solely
as tumor marker but as an instrument to distinguish between
different but similar cell or cancer types.

miRNAs associated with melanomas
Melanomas are very aggressive malignant skin cancers in man
and dog (Noguchi et al., 2011). Accounting for 5–7% of canine
skin tumors. Tumors of the melanocytes and melanoblasts are
relatively common in dogs (Withrow and Vail, 2007; Uhl et al.,
2011). In human melanoma cell lines A2058, Mewo, and canine
melanoma LMeC cells as well as malignant melanoma tissues
the miR-145, miR-203, and miR-205 expression was reported
to be downregulated. An ectopic expression of each of these
miRNAs-induced in vitro growth inhibition in A2058, Mewo,
and LMeC cells (Noguchi et al., 2011, 2012a,b), indicating
their potential for treatment of human and canine malignant
melanoma.

miRNAs involved in epithelial to mesenchymal transition
Furthermore, aberrant activation of the epithelial to mesenchy-
mal transition (EMT) has been observed to promote invasion
and metastasis in several human cancers. The EMT inducers
ZEB1 and ZEB2 have been shown to be direct targets of the
miR-200 family (miR-200a, miR-200b, miR-200c, miR-141, and
miR-429) in the human breast cancer cell line MDA-MB-231
and in Madin Darby canine kidney epithelial cells (MDCK). Lost
expression of these miRNAs was detected in human metaplas-
tic breast cancer specimens, indicating that downregulation of
miR-200 family members may be an important step in tumor pro-
gression (Bracken et al., 2008; Gregory et al., 2008; Adam et al.,
2009).

miRNAs with prognostic significance in osteosarcoma
Representing 1% of diagnosed cancer cases in the United States,
osteosarcoma is one of the most common primary malignan-
cies of human bone in children and adolescents (Mirabello et al.,
2009). Estimated at >10,000 cases per year, canine osteosar-
coma is relatively common in contrast to humans. Like in
man, the canine counterpart also arises spontaneously in dogs
and shows similar anatomical and functional biology (Khanna
et al., 2006; Sarver et al., 2013). Recently Sarver et al. demon-
strated an inverse correlation between human 14q32 cluster
miRNA expression and aggressive tumor behavior in human
and canine osteosarcoma. The group mapped the 14q32 clus-
ter to the canine genome. The miR-134 and miR-544 of the

14q32 cluster, showing 100% homology between both species,
were used to examine the expression in canine samples. They
showed a lower miR-134 and miR-544 expression in canine and
human bone tumors in comparison to healthy tissues (Sarver
et al., 2013). The expression levels of these two miRNAs could
provide prognostic utility in osteosarcoma, a disease that shows
conserved features between human and dog (Sarver et al.,
2013).

For a better overview the previously described miRNA expres-
sion patterns in the different canine and human neoplasias were
summarized in the Table 2. The described results should be con-
sidered with care as major differences could be present in the
comparison depending on species, organism the system of tumor

Table 2 | Overview of the above described miRNAs involved in canine

and human cancer.

MAMMARY TUMORS

cfa-let-7f ↑ hsa-let-7f-5p ↑
cfa-miR-15a ↓ hsa-miR-15a-5p ↓
cfa-miR-16 ↓ hsa-miR-16-5p ↓
cfa-miR-17-5p ↓ hsa-miR-17-5p ↓
cfa-miR-21 ↑ hsa-miR-21-5p ↑
cfa-miR-29b ↑ hsa-miR-29b-3p ↑
cfa-miR-125b ↓ hsa-miR-125b-5p ↓
cfa-miR-145 = hsa-miR-145-5p ↓
cfa-miR-155 ↓ hsa-miR-155-5p ↓
cfa-miR-181b ↑ hsa-miR-181b-5p ↑
EMT

cfa-miR-141 ↓ hsa-miR-141-3p ↓
cfa-miR-200a ↓ hsa-miR-200a-5p ↓
cfa-miR-200b ↓ hsa-miR-200b-5p ↓
cfa-miR-200c ↓ hsa-miR-200c-5p ↓
cfa-miR-429 ↓ hsa-miR-429 ↓
B-CLL/T-CLL

cfa-miR-15a ↓/↓ hsa-miR-15a-5p ↓/–

cfa-miR-16 ↓/↓ hsa-miR-16-5p ↓/–

cfa-miR-21 ↑/↑ hsa-miR-21-5p ↑/–

cfa-miR-29b ↑/↑ hsa-miR-29b ↓/–

cfa-miR-125b ↑/↓ hsa-miR-125b ↑/–

cfa-miR-150 ↑/↑ hsa-miR-150-5p ↑/–

cfa-miR-155 ↑/↑ hsa-miR-155-5p ↑/–

cfa-miR-181a ↓/↓ hsa-miR-181a-5p ↓/–

MELANOMA

cfa-miR-145 ↓ hsa-miR-145-5p ↓
cfa-miR-203 ↓ hsa-miR-203a ↓
cfa-miR-205 ↓ hsa-miR-205-5p ↓
OSTEOSARCOMA

cfa-miR-134 ↓ hsa-miR-134 ↓
cfa-miR-544 ↓ hsa-miR-544a ↓

In the 1st column are the canine and in the 3rd the human miRNAs listed. In

the 2nd and 4th column the relative expression or tendencies in comparison

to non-neoplastic samples are presented. “–” indicates that no reports were

found for involvement in CLL. “=” means that no differences in expression

between tumor and healthy cells were described. “↑” signifies upregulation or

“↓” downregulation in comparison to non-neoplastic samples.
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classification, type of miRNA preparation and quantification and
the used type of normalization.

FUTURE PROSPECTS
As the majority of miRNAs involved in human and canine
diseases are evolutionary conserved, it is likely that the expres-
sion patterns are also similar. Nevertheless homologous miRNAs,
showing similar pattern of expression in different species, should
be considered with care as it is possible that the functions still
deviate. Even individual miRNAs in the same species can show
oncogene suppressive functions or act oncogenic (Boggs et al.,
2008).

However, some miRNAs were shown to be a potential non-
invasive biomarker for different clinically relevant subtypes of
human breast cancer (Cortez et al., 2012; Shore et al., 2012). As
aberrant miRNA expression is partially postulated to be an early
event in human tumorigenesis (Cortez et al., 2012) it is tempting
to speculate that specific miRNAs could also be used as prognostic
tools (Li et al., 2009; Krell et al., 2012) for canine neoplasias and
thus should be further evaluated as novel agents in the future.

Further knowledge of spatiotemporal miRNA expression and
their respective targets will allow more specific modulation of
target or effector molecule expression by delivery of miRNAs,
siRNAs, or similar modified oligonucleotides.

A directed ectopic expression of naturally occurring miRNAs
could have the capability to act therapeutically in an organism
by replenishing the missing tumor suppressor miRNA and inter-
fering with oncogenic properties of cancer cells. In perspective
oncomiRs (cancer-promoting miRNAs) could be suppressed by
antagomiRs (chemically engineered oligonucleotides that act as
miRNA inhibitors) or functionally inhibited by titering them
away with lncRNAs (Cesana et al., 2011). Due to the fact that a

single miRNA can act on several targets, a miRNA-based therapy
could have significant advantages but also bears the risk to induce
unintended side effects. Thus, modifications of gene expression
by more stringent artificial miRNAs or siRNAs sharing 100%
homology to a single target of interest could lower the risk for
off target effects, improve treatment, and reduce unwanted side
effects.

However, two major obstacles still remain: intracellular deliv-
ery and expression level. The ectopic expressed miRNAs must
show a certain expression level to reconstitute the “normal” state
of genes and the applied small RNAs must be taken up by can-
cer cells and be further correctly incorporated into RISC. Until
now, multiple delivery strategies such as nanoparticles, liposomes,
peptide nucleic acids, and viral vectors have been described to
achieve this goal but none of these can be used ubiquitously for
different types of neoplasias in different locations (Petrocca and
Lieberman, 2010; Pan et al., 2011).

Showing many advantages concerning specificity, potency,
number of accessible targets, species cross-reactivity, fast devel-
opment and the scalability, small RNAs may have an enormous
diagnostic and therapeutic potential in cancer treatment (Li et al.,
2009; Krell et al., 2012) as single agents or e.g., substituting
antibody-based cancer therapies.

Homology between human and canine miRNAs could not
only enable to use the dog as model organism, but also the transfer
of therapeutic and diagnostic approaches established for humans
to canines and vice versa. Further elucidation of miRNA functions
and biogenesis will facilitate and improve the design and entry of
small RNA therapeutic programs into clinical practice. Until now
only a few studies describe miRNA expression in canines. Thus,
a systematic profiling of miRNA expression would be of great
value.
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