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Objectives: We present an up-to-date review of STRUCTURE software: one of the most
widely used population analysis tools that allows researchers to assess patterns of genetic
structure in a set of samples. STRUCTURE can identify subsets of the whole sample by
detecting allele frequency differences within the data and can assign individuals to those
sub-populations based on analysis of likelihoods. The review covers STRUCTURE’s most
commonly used ancestry and frequency models, plus an overview of the main applications
of the software in human genetics including case-control association studies (CCAS),
population genetics, and forensic analysis. The review is accompanied by supplementary
material providing a step-by-step guide to running STRUCTURE.

Methods: With reference to a worked example, we explore the effects of changing the
principal analysis parameters on STRUCTURE results when analyzing a uniform set of
human genetic data. Use of the supporting software: CLUMPP and distruct is detailed
and we provide an overview and worked example of STRAT software, applicable to CCAS.

Conclusion: The guide offers a simplified view of how STRUCTURE, CLUMPP, distruct,
and STRAT can be applied to provide researchers with an informed choice of parameter
settings and supporting software when analyzing their own genetic data.

Keywords: STRUCTURE, CLUMPP distruct, STRAT, population structure, case-control association studies,

stratification

AN OVERVIEW OF THE STRUCTURE PROGRAM

STRUCTURE is a freely available program for population analy-
sis developed by Pritchard et al. (2000a). STRUCTURE analyses
differences in the distribution of genetic variants amongst pop-
ulations with a Bayesian iterative algorithm by placing samples
into groups whose members share similar patterns of varia-
tion. STRUCTURE both identifies populations from the data and
assigns individuals to that population representing the best fit
for the variation patterns found. Typically STRUCTURE is the
first step in examining population structures that emerge from
the sample set to provide a preamble to further genetic analysis
or to infer the origins of individuals with unknown popula-
tion characteristics, especially when population admixture has
occurred. As STRUCTURE uses the core Bayesian principle of
comparing likelihoods, prior information about study samples
can be supplied to further shape the analysis. For example, infor-
mation about sampling location can be input—a characteristic,
if shared between individuals that can be associated with their
genetic proximity. The definition of populations can be assessed
from geographical distribution, but is also often based on alter-
native criteria, including the phenotype, behavior, and ecology
of sampled individuals, while linguistic and cultural characteris-
tics can also define human populations. Therefore, it is important
to assess whether assignment of individuals to populations with

non-genetic criteria is consistent with genetic patterns detected
between populations (Pritchard et al., 2000a; Jobling et al., 2004;
Waples and Gaggiotti, 2006).

STRUCTURE uses a systematic Bayesian clustering approach
applying Markov Chain Monte Carlo (MCMC) estimation. The
MCMC process begins by randomly assigning individuals to a
pre-determined number of groups, then variant frequencies are
estimated in each group and individuals re-assigned based on
those frequency estimates. This is repeated many times, typically
comprising 100,000 iterations, in the burnin process that results
in a progressive convergence toward reliable allele frequency
estimates in each population and membership probabilities of
individuals to a population.

Measurement of the assumed number of populations uses the
MCMC estimation and is performed separately from the burnin.
STRUCTURE performs individual analyses for each assumed
population number from one to a reasonably appropriate number
for the sampling regime. STRUCTURE applies a model to the data
of K assumed populations or genetic groups, each characterized
by a subset of allele frequencies identified in the data. Commonly
K is not readily defined by the user for the sample set, although
this parameter must be pre-selected. Therefore, an appropriate
first step is to calculate the likelihood of the data for a range of
K values by creating posterior probabilities of K, termed X and
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written: X|K. Since K is not an absolute value, user-defined values
should be considered carefully, taking into account characteris-
tics of the sampled populations. Running a range of prescribed
K settings to obtain their X values normally creates probabil-
ities smaller than those for the most appropriate K value but
beyond this probabilities tend to be very similar for higher K val-
ues. Therefore, plots of X values typically progress to a plateau for
levels of K beyond the most applicable number of detected pop-
ulations, so the smallest stable K value represents the optimum
value. Kalinowski (2011) notes that better clusters are created
applying the most realistic K values, so it is prudent to obtain the
smallest value of K that maximizes the global likelihood of data—
an approach capturing the major underlying population structure
in the data without overestimating it.

During each analysis membership coefficients summing to one
are assigned to individuals for each group. The membership coef-
ficient matrix, termed the individual Q-matrix, is generated with
rows for the number of individuals analysed and columns for K
clusters. The average individual membership coefficients to each
population form the population Q-matrix. If admixture is not a
factor for the population samples analysed, posterior probabilities
of belonging to each of K groups are calculated for each individ-
ual and a sample can be considered a member of the group with
the highest probability. If admixture is considered membership
coefficients are made across multiple clusters.

Bayesian population analysis methods equate allele frequencies
that define the population and the frequencies found in individu-
als identified as originating from that population. Therefore, the
ability of Bayesian methods to differentiate populations amongst
a set of samples is severely restricted from limited sample sizes
and small marker numbers (Corander et al., 2003; Corander and
Marttinen, 2006). Genetic markers applied to STRUCTURE anal-
yses ideally show selective neutrality, low mutation rates and
absence of linkage disequilibrium (LD) (Pritchard et al., 2000a;
Corander et al., 2003). In short, they are treated as indepen-
dent variables and so-called naive Bayesian approaches assume
independence, but without a guarantee this applies. However,
enhancements since STRUCTURE 2.3.1 permit inclusion of
weakly linked markers with some degree of non-independence
(Falush et al., 2003). Additionally, Falush et al. (2007) describe an
algorithm that allows application of all available models to domi-
nant markers (loci often characterized by genotype ambiguity).

Note that SNPs (single nucleotide polymorphisms), as binary
markers, have lower variability than multiple-allele loci, requir-
ing much smaller sample sizes to obtain accurate allele frequency
estimates. Shi et al. (2010) suggested population samples as low as
four individuals are sufficient to provide reliable data by demon-
strating subsamples of four taken from much larger population
samples give very similar posterior median population param-
eters. Microsatellites require considerably larger samples sizes
than SNPs to reliably capture patterns of variability in a popu-
lation. Lastly, recent forensic guidelines for microsatellite popu-
lation surveys recommend genotyping a minimum 500 samples
(Carracedo et al., 2013).

ANCESTRY AND ALLELE FREQUENCY MODELS

Two terms are relevant to a review of the estimation of ances-
try: local ancestry and global ancestry. Local ancestry estimates

the extent to which each person’s genome is divided into chro-
mosome segments of definite ancestral origin. Global ancestry
estimates the proportion of ancestry from each contributing pop-
ulation, considered as an average over the individual’s entire
genome (Alexander et al., 2009). STRUCTURE only estimates
global ancestry by implementing different models of popula-
tion structure to the data. Selection of the most appropriate
model depends on the user’s data and study objectives. Two
ancestry models applied by STRUCTURE are the no admixture
and admixture models. If there is no prior knowledge about
the origin of the populations under study or if there is rea-
son to consider each population as completely discrete, the no
admixture model is appropriate. However, admixture between
populations is a common characteristic such that a large pro-
portion of sampled individuals can have recent ancestors from
multiple populations. In these cases knowing the approximate
median value of the ancestral population proportions for each
individual and/or their populations of origin is a very useful part
of the characterization of the populations under study. In these
cases the admixture model is more appropriate. Both models can
be used with consideration for sampling location information
by applying the prior model parameter: LOCPRIOR to the pop-
ulation model (Hubisz et al., 2009). This option can be used
when there is additional sample-characteristic data available to
the user, including: linguistic, geographical, cultural, or phe-
notypic information. The LOCPRIOR parameter is particularly
informative when there are weak population structure signals—a
situation that can result from using reduced numbers of mark-
ers, small sample sizes or due to close relationships between
populations.

The third model parameter is linkage, based on the admixture
model and this is designed to deal with admixture LD: the charac-
teristic of extended LD found in admixed populations and often
deliberately sought in association studies. This model was out-
lined by Falush et al. (2003) and provides more accurate estimates
of statistical uncertainty when linked markers are used.

No admixture, admixture, and linkage models can also be
analysed as part of the USEPOPINFO model. This model uses
the population labels to calculate the probability that each
individual has of originating from the assumed population—
individuals with low probabilities can be considered as hybrids or
migrants (Pritchard et al., 2000a). This parameter should be used
cautiously—applied only when the population labels are well
defined beforehand and correspond almost exactly to the groups
ultimately defined by the STRUCTURE results. The disadvantage
of the USEPOPINFO model arises with the posterior handling of
the results. The individual Q-matrix comprises probabilities (and
not ancestry membership proportions) that are presented in a for-
mat that is incompatible with post-hoc data-processing software
such as CLUMPP or distruct.

All the models considered until now can be used in con-
junction with an alternative approach to USEPOPINFO—the
POPFLAG model. POPFLAG considers the specified information
about the population of origin of a portion of the individu-
als to help infer the ancestry of other samples with unknown
origin. This option should also be used with caution because
selected samples will be treated as the “reference” set (pre-
assigned POPFLAG = 1) so allele frequency estimates are based
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on a reduced sub-set of samples and will directly affect the group-
ing of the unknown individuals (pre-assigned POPFLAG = 0).
POPFLAG is an artificial model that assesses the individual prob-
ability of being part of a particular population, but it can be useful
if the objective is to efficiently group individuals/populations by
comparison with a particularly well-defined and studied refer-
ence data set (Pritchard et al., 2000a). One such reference set,
widely applied to human population genetics studies, is the CEPH
human genome diversity panel (HGDP-CEPH) (Cann et al,
2002) with the advantage that population structure has been iden-
tified in this sample set in a wide range of studies using different
markers and a variety of data depths, but with consistent find-
ings (Rosenberg et al., 2002; Enoch et al., 2006; Abdulla et al.,
2009). When the POPFLAG model is used in conjunction with the
USEPOPINFO model the individual Q-matrix is composed of two
distinct parts: for POPFLAG = 1 individual’s the matrix presents
probabilities, while for POPFLAG = 0 individuals ancestry mem-
bership proportions are given according to the admixture model
defined (no admixture, admixture, or linkage).

Related subjects should be detected then excluded from refer-
ence data since shared variation is inflated in frequency causing
estimation bias that consequently affects analysis of the ances-
try of study samples. Prudent checks of reference data are clearly
advisable, for example, an audit of the HGDP-CEPH samples
was published by Rosenberg (2006) where two atypical individ-
uals, 13 duplicates, and as many as 77 first-degree relative pairs
were identified and removed. Related subjects can regularly form
part of the study set and this approach is central to linkage
studies in genetic epidemiology as these seek loci with correla-
tions between traits of interest and patterns of transmission of
DNA sequence over generations in a known pedigree (Astle and
Balding, 2009).

Two allele frequency models are available. The correlated
allele frequencies model assumes a level of non-independence,
so is more conservative. The independent allele frequencies
model requires knowledge about the correlation levels across
populations—allele frequencies should be reasonably different
in distinct populations. The correlated allele frequencies model
provides greater power to detect distinct populations that are par-
ticularly closely related, although this model will give the same
results as the independent allele frequencies model in the absence of
high levels of correlation across populations. Therefore, it is pru-
dent to use the correlated allele frequencies model since this will
guarantee that a previously undetected correlation is identified,
but without affecting the results if no such correlation exists.

Summarizing the range of models that can be applied to a
uniform set of genetic data, Figure 1 shows bar plots produced
by STRUCTURE when applying each of the models described
above. The application of each model is outlined in detail in the
Supplementary Material 1, section 5.

It is noteworthy that a level of finesse exists when implement-
ing analysis models in STRUCTURE. All the models described
above include specific statistical parameters that can be adjusted
to more sensitive values, including r (informativeness of the sam-
pling location data), alpha (relative admixture levels between
populations), and lambda (quantifies the independence between
markers in terms of their allelic frequency distribution).

ASSIGNMENT OF INDIVIDUALS TO A POPULATION AND
CHOICE OF MARKERS

Assigning individuals to populations is often useful in population
genetics studies (Pritchard et al., 2000a) where making a popula-
tion classification can provide an inference of individual ancestry
that may not have been adequately defined beforehand (Royal
et al., 2010). The typical approach has already been described
for STRUCTURE: establishing pre-defined populations from ref-
erence samples and assigning individuals of unknown origin to
these populations. Reference samples provide allele frequency
estimates in each population that are then used to compute the
likelihood of membership of samples of unknown origin to any
population (Pritchard et al., 2000a).

When using small numbers of markers, highly differentiated
genetic variants are more informative per locus than randomly
chosen markers. In these cases a measure of marker differen-
tiation or divergence becomes an important factor in selecting
markers to type. The informativeness metric In, proposed by
Rosenberg et al. (2003) is a useful measure of individual diver-
gence per locus and per population comparison that can help
guide marker choice ahead of commitments to the necessary
genotyping.

The best markers for the inference of ancestry membership
proportions are those that efficiently distinguish different pop-
ulations, i.e., markers showing different alleles at very high fre-
quency in distinct parental populations. Since fixed variation,
private to one population, is very rare (Pfaff et al., 2004; Lao
et al., 2006) marker selection must always be broadened to
loci with maximized allele frequency differences between ances-
tral populations—these are usually termed Ancestry Informative
Markers or AIMs (Yang et al., 2005; Enoch et al., 2006; Salas et al.,
2006). Autosomal SNPs are increasingly favored for human pop-
ulation analysis because, in addition to their widespread genomic
distribution and ease of genotyping in very dense marker arrays,
they are independent of admixture sex bias that routinely affects
the distribution of variation of the Y chromosome or mito-
chondrial DNA. Segregating autosomal markers allow a more
thorough measure of admixture in an individual contributed by
all of their ancestors rather than just those of single uni-parental
lineages (Lao et al., 2006; Phillips et al., 2007; Halder et al., 2008;
Royal et al., 2010).

REFERENCE SAMPLES AND VARIATION DATABASES

Amongst the objectives of human population genetics is the mea-
surement of population-related parameters (e.g., effective size,
degrees of relatedness, effects of local natural selection), the detec-
tion of admixture and the reconstruction of past demographic
events. Therefore, the proper definition of population structure
is a key step in studying the populations of a region. In the
case of admixed populations it is particularly important to define
the original contributing populations by characterizing refer-
ence populations and databases of human variation forming the
primary data sources for such studies.

A good starting point for collating human SNP variation data
from the most extensive catalogs and for standard reference popu-
lations is SPSmart [http://spsmart.cesga.es, (Amigo et al., 2008)].
SPSmart has the advantage of being inclusive of all current SNP
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FIGURE 1| STRUCTURE bar plots representing K = 4 for the principal
analysis parameter combinations available to the user. These graphics
were obtained with distruct and using CLUMPP to align the three
replicates for K =4 (all runs were performed with 100,000 burnin period
and 100,000 MCMC repeats after burnin). The exception was the
POPINFO parameter sets for which direct STRUCTURE bar plot outputs
were used. Human genetic data comprised genotypes listed in Table S1
consisting of 100 Africans: CEPH AFR, 158 Europeans: CEPH EUR, 165
East Asians: CEPH EAS, and 64 Native Americans: CEPH NAM from the

HGDP-CEPH human diversity panel. An artificial case-control group was
created using HapMap Mexican and Puerto Rican samples giving a total
67 sample divided into Cases 1 (C1), Cases 2 (C2), and Controls (Ct).
Markers were: 9 AIM-SNPs (two triallelic), 3 phenotype associated SNPs
and 5 AIM-SNPs on the X-chromosome. The phenotype and the X-SNPs
are linked forming two distinct linkage disequilibrium groups—their
genetic distance was used to define linkage disequilibrium groups. Each
parameter setting and the results obtained are described in detail in
Supplementary Material 1.

databases, specifically: 1000 Genomes, HapMap, Perlegen, and
Universities of the Stanford and Michigan CEPH-HGDP repos-
itories. Additionally SPSmart allows the collection of genotype
data from a large number of markers at a time and their direct
transfer into population analysis programs of choice, including
STRUCTURE (although some data re-arrangement is necessary
to create the input file).

The HGDP-CEPH is frequently used as a panel of popu-
lation reference samples and CEPH panel samples from the
same predefined population analysed with STRUCTURE nearly
always share similar membership coefficients in inferred clusters
(Pritchard et al., 2000a; Rosenberg et al., 2002; Jobling et al.,
2004; Enoch et al., 2006; Abdulla et al., 2009). Royal et al.
(2010) noted that there are some limitations to the accuracy
of ancestry inference within and among regions that may be
the result of the incomplete sampling by the CEPH-HGDP of
total human genetic diversity (Ashg, 2008). The first study using
STRUCTURE was performed in 2002 by Rosenberg et al. using
377 microsatellites to infer human population structure in the
HGDP-CEPH worldwide population sample. This study con-
cluded that global populations could be grouped into six major
discrete ancestral groups matching well with continental distri-
butions. Subsequent studies confirmed that when individuals are
grouped on the basis of genetic similarity, group membership cor-
responds closely to predefined regional or population groups or
to collections of geographically and linguistically similar popu-
lations (Allocco et al., 2007; Li et al., 2008). In particular, the
study of Li et al. (2008) using FRAPPE, a very similar alterna-
tive population clustering method to STRUCTURE, divided the
HGDP-CEPH into seven major population groups. Furthermore,
such studies indicated it was also possible to infer the ancestry
of individuals from recently admixed populations in the con-
text of the contributions of putative parental populations (Yang
et al., 2005). Mixed ancestries inferred from genetic data can
often be interpreted as arising from recent admixture among
multiple founder populations. However, it can also be the result
of a shared ancestry before the divergence of the two pop-
ulations with a lack of subsequent gene flow between them
(Li et al., 2008).

CASE-CONTROL ASSOCIATION STUDIES

Case-control association studies (CCAS) provide powerful strate-
gies to identify loci contributing to complex disease. The simplest
approach genotypes markers in samples of cases and unrelated
controls then tests these for allele frequency differences at each
marker—association of genomic regions indicates the loci they
contain are possibly linked to disease susceptibility or the presence

or absence of particular phenotypes (Pritchard and Donnelly,
2001). However, presence of population structure between case
and control groups can produce confounding effects where high
false positive rates from allele frequency differences between sub-
populations mimics associations with the studied disease. Cryptic
relatedness from undetected kinship amongst study subjects is a
further confounding effect with potential to exaggerate false pos-
itive rates (Voight and Pritchard, 2005; Astle and Balding, 2009).
Its effects can be negligible for well-designed studies in outbred
populations but cryptic relatedness is more significant in effect for
small and isolated populations, when extensive inbreeding occurs
or with bias in sample collection toward relatives (Voight and
Pritchard, 2005; Astle and Balding, 2009).

Two main approaches are favored to overcome effects of hid-
den or cryptic structure when it exists between case and control
groups: genomic control (GC) and structured association (SA).
Pritchard and Donnelly (2001) reviewed GC methods using chi-
square tests to detect population stratification through estimation
of increase in the test statistic null distribution compared to those
of unlinked markers typed in the same group. Using the adjusted
distribution gives corrected p-values at any given locus. SA
approaches use additional genotype information from unlinked
markers to estimate the number of subpopulations and each indi-
vidual’s assignment to these subpopulations. This information
can then be used to construct a test for association (Pritchard and
Donnelly, 2001). SA methods perform well but are computation-
ally demanding and very reliant on estimating the correct number
of subpopulations. The recent development of faster model-based
methods such as that implemented by ADMIXTURE makes the
application of SA methods more feasible (Price et al., 2010). In
comparison, GC methods while faster and more straightforward
can lack power in certain scenarios, for example, when the mark-
ers used are not informative for population comparisons or in the
case of cryptic relatedness (Price et al., 2010).

Procedures based on logistic regression that are flexible, com-
putationally fast, and easy to implement, provide protection
against the effects of cryptic substructure, even though not explic-
itly modeling the population structure (Setakis et al., 2006).
However, if there is enough information for reliable estimation of
sub-population data, the power and flexibility of SA approaches,
facilitated by dedicated software such as STRAT, makes them
preferable to GC methods (Pritchard and Donnelly, 2001; Price
et al., 2008). In fact, analyses performed by Karkkainen and
Sillanpaa (2012) demonstrated that in most cases Bayesian multi-
locus association approaches improve the accuracy of association
studies and avoid false positive results. STRAT is applicable to
association mapping, enabling valid case-control studies even
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in the presence of population structure. This method was first
described by Pritchard et al. (2000b). The application of STRAT
improves association studies as it takes into account the con-
founding effects of population stratification using selected panels
of AIMs. Figure 2 summarizes typical STRAT analyses with strati-
fication between case and control samples vs. stratification absent.
STRAT chi-square p-values are listed for 17 markers directly com-
parable to STRUCTURE bar plots above. This worked example
is discussed in detail in Supplementary Material 1, section 5. It
should be noted that as well as common SNPs showing stratifica-
tion, loci with low frequency (1-5%) or rare (<1%) minor alleles
can inflate the false positive rate significantly (Babron et al., 2012;
Mathieson and McVean, 2012) while showing different patterns of
stratification from the same population comparisons. The impli-
cation of the Babron et al. study is that population analyses may
be required for each class of SNP variation when high density SNP
data is used for the CCAS.

Several studies have applied STRAT -based stratification con-
trol, when there is doubt about the validity of the associations
found (i.e., not spurious associations from population stratifi-
cation) or when it is known that two or more populations are
admixed (Han et al., 2008; Tian et al., 2008). The accuracy of
inferences improves with sample size, number of loci, and degree
of divergence between populations (Pritchard et al., 2000a). An
instructive study by Campbell et al. (2005) analyzed the efficacy of
stratification control by constructing a case-control group based

on adult height then measuring stratification with 111 random
SNPs and 67 AIMs. Both SNP sets failed to detect stratifica-
tion between case and controls but one SNP in LCT (rs4988235:
LCT-13910C—T) with a frequency difference between north and
south Europe co-incidental with average height difference across
this geographic distance was strongly associated. Re-matching
case and control subjects into equivalent numbers of north and
south Europeans in each loses the spurious association. Price et al.
(2008) developed an AIM panel capable of distinguishing north-
west and south-east European ancestry that applied to Campbell’s
study efficiently detected stratification. These studies demonstrate
the importance of careful marker selection, particularly analysing
closely related populations.

Finally a further class of model to detect and correct for
stratification is the mixed model—this approach should perform
better when confounding effects are present since it simultane-
ously addresses population’s stratification, family structure, and
cryptic relatedness (Price et al., 2010). Mixed model methods are
computationally challenging but the optimization implemented
has enabled large datasets typical of GWAS studies to be readily
analysed (Zhang et al., 2010).

OTHER APPLICATIONS: FORENSIC ANALYSIS

Forensic DNA analysis is a powerful tool in near-universal use
as a core part of police investigations. DNA profiling is partic-
ularly informative used in conjunction with DNA databases of

A Stratification absent
Cl Ct
1 chisq=0.314 1df; TS=0.45 p=6.32000e-001 M1
2 allele remained after pooling
3 chisq=1.420 1df; TS=212, p=1.22000e-001 M3
4: chisg=1.585 1df; T$=2.35 p=1.10000e-001 M4
5: chisg=0.000 1df; T5=0.22, p=8.11000e-001 M5
6: chisq=0.084 1df; T5$=0.10, p=9.20000e-001 M6
7 chisq=0.176 1df; TS=0.61, p=5.52000e-001 M7
8 chisq=0.000 1df; T$=0.05, p=9.51000e-001 M8
9: chisq=0.182 1df; TS=0.90, p=3.87000e-001 M9
10: chisq=1.912 1df; TS=0.52, p=4.97000e-001 M10
11: chisq=2.863 1df; TS=2.04, p=1.24000e-001 M11
12: chisq=6.301 1df; TS=2.85 p=4.40000e-002 M12 C,
13: chisq=0.022 1df; TS=0.04, p=9.12000e-001 M13
14: chisq=0.815 1df; TS=0.82, p=3.64000e-001 M14
15: chisq=0.495 1df; TS=0.16, p=8.52000e-001 M15
16: chisq=0.882 1df; TS=1.03, p=2.42000e-001 M16
17 chisq=2.755 1df; TS=2.79, p=5.90000e-002 M17
Summary of distribution of p-values
Sum  Accum Sum  Obs-Exp
0.00--0.05:  0.000 0.000 0.000 0.000 0.063 0.0625  0.0625 0.0125
FIGURE 2 | Example case-control sample analyses comparing
scenarios with the presence or absence of stratification.
STRUCTURE bar plots and STRAT table results are shown. (A) Case 1

B Stratification present
C2 Ct
1: chisq=5.583 1df; TS=4.71, p=6.00000e-003 M1 **
2: chisq=21.140 1df; TS=9.12, p=0.00000e+000 M2 **
3: chisq=0.949 1df; TS=0.50, p=6.33000e-001 M3
4: chisg=0.563 1df; TS=2.15, p=9.40000e-002 M4
S5: chisq=0.046 1df; TS=0.53, p=6.09000e-001 M5
6: chisq=1.968 1df; TS=1.08, p=3.75000e-001 M6
7: chisq=9.631 1df; TS=5.97, p=3.00000e-003 M7 **
8: chisq=0.461 1df; T5=0.27, p=7.83000e-001 M8
9: chisq=16.185 1df; TS=4.83, p=1.10000e-002 M9 *
10: chisq=0.003 1df; TS=1.80, p=1.39000e-001 M10
11: chisq=0.085 1df; TS=0.12, p=8.86000e-001 M11
12: chisq=0.506 1df; TS=3.39, p=2.80000e-002 M12 *
13: chisq=10.725 1df; TS=0.08, p=9.22000e-001 M13
14: chisq=14.299 1df; TS=1.90, p=8.60000e-002 M14
15: chisq=0.158 1df; TS=0.78, p=5.09000e-001 M15
16: chisq=8.316 1df; TS=0.37, p=5.07000e-001 M16
17: chisq=5.823 1df; TS=0.16, p=8.79000e-001 M17
Summary of distribution of p-values
Sum Accum Sum  Obs-Exp
0.00--0.05:  0.176 0.059 0.059 0.000 0.000 02941  0.2941 0.2441
(C1) are compared to the Control (Ct) samples. (B) Case 2 (C2) are
compared to the Control (Ct) samples. Details of these analyses are
described in Supplementary Material 1.
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offender profiles. Although situations occur with no database
match, so any additional information that can be obtained from
the DNA becomes valuable (Lowe et al., 2001). Information indi-
cating probable ancestry of an unknown offender can help direct
investigations towards a smaller suspect group (Lowe et al., 2001;
Phillips et al., 2011). Likewise interest is growing in the predic-
tion of externally visible characteristics such as eye color (Ruiz
et al.,, 2013; Walsh et al., 2013). Currently microsatellite short
tandem repeat (STR) typing is the standard approach and still
the method of choice, providing extremely high discrimination
power for most problems of human identification (Chakraborty
et al., 1999; Butler, 2005). Several studies have concluded STR
profiles can enable ancestry inference (Bowcock et al., 1994;
Graydon et al., 2009; Londin et al., 2010; Phillips et al., 2011),
but only with sufficient reliability when other AIMs such as SNPs
are included (Phillips et al., 2011). One example of the benefits
from adding specialized marker sets to enhance ancestry analysis
in forensic casework is the 11-M Madrid bomb attack investiga-
tions where results of a 34-SNP ancestry test were analysed with
STRUCTURE to infer the probable ancestry of suspects (Phillips
et al., 2009). One disadvantage of STRUCTURE highlighted by
this study is the difficulty of analyzing single genotype profiles.
An alternative online classifier termed Snipper (Phillips et al.,
2007), analyzes single profiles with a near identical Bayesian algo-
rithm and gives likelihoods of membership to ancestry groups
inferred from user-defined training sets acting as the reference
material.

ALTERNATIVE POPULATION ANALYSIS APPROACHES

Several population analysis programs provide alternatives to
STRUCTURE and are applicable to most of the analyses outlined
above. Comparisons of many of these programs are presented
in Table 1. A more comprehensive review by Liu et al. (2013)
assesses regularly chosen alternative software and methods for
population analysis. Such programs are usually designed for a
specific population analysis application so they lack the major
advantage of STRUCTURE in offering the flexibility to adapt
to varying analysis demands. Although many options are avail-
able for analysis of population data and inference of genetic
ancestry there is no one program applicable to all situations or
data types. However, STRUCTURE can readily handle different
markers and their characteristics (SNPs, STRs, linked mark-
ers, and loci with dominance). Provision of different ancestry
and allele frequency models allows the user to adapt differ-
ent analyses in a straightforward way with a unified approach
based on STRUCTURE alone or combined with supporting pro-
grams. The adaptability of STRUCTURE is underlined by its
widespread application to population genetics studies in general
or specifically to forensic analysis and stratification adjustment
of CCAS.

THE STEP-BY-STEP GUIDE TO STRUCTURE ANALYSIS

The user guide to STRUCTURE in Supplementary Material 1,
comprises a step-by-step outline and covers the fundamentals of
creating an input file and project, the available analysis models,
the definition of parameter sets, and how to run a simulation.
The guide runs through an example where each of the analysis

models and principal parameters of the four software tools are
explored. The genotypic data used in this example is available
in Table S1. We present suggestions for the analysis and graphi-
cal display of the results and optimum estimation of the number
of populations detected in a dataset. Additionally, we describe
how to handle the parameters included in CLUMPP, distruct and
STRAT. CLUMPP allows the alignment of different replicates of
STRUCTURE analysis results from a given number of assumed
populations, helping to deal with the commonly encountered
problem of multimodality. Clustering algorithms such as the
one implemented in STRUCTURE can include stochastic simu-
lations during the inferences. This creates a results space com-
posed of different membership coefficients, each one with an
associated probability. It is possible that, when analysing the
same data set with identical conditions, different final results
are obtained. Differences between replicated analysis runs can
be of two types: label change or genuine multimodality. Label
change occurs when different replicates create the same mem-
bership coefficient estimates but the labels of each group are
distinct in each permutation, that is, each cluster does not rep-
resent the same predefined population in all runs. It is also
possible that the replicates create distinct but likely results that are
not equivalent between permutations—genuine multimodality—
that is, clusters that represent a particular predefined population
have different ancestry membership proportions in each run.
This can be the result of difficulties in the search for the pos-
sible membership coefficients space or of true biological factors
(Jakobsson and Rosenberg, 2007).

Independently of genuine differences between a series of
replicated analyses, a method is needed to deal with the repli-
cate results obtained from multiple runs analysing a single
dataset. CLUMPP software provides three algorithms that iden-
tify the best alignment to the replicate results of the cluster
analysis. CLUMPP reviews the membership coefficient matri-
ces finding those replicates with the best correspondence. Both
STRUCTURE and CLUMPP give similar output files to the
extent that CLUMPP results can be directly used in standard
STRUCTURE graphic enhancement software such as distruct
described below.

An informative way to visualize STRUCTURE results is to
show each individual as a column segmented into K colors repre-
senting the estimated membership coefficients. Distruct software
offers a wide range of options to create images based on the
principle of segmented columns and provides visually appealing
graphical summaries of the population structure detected in the
data. Distruct is required by CLUMPP but usefully provides an
alternative graphical display to the standard STRUCTURE bar
plots, offering a wider variety of options to create images for
much of the STRUCTURE output.

Finally, STRAT can be used in association studies, enabling the
validation of case-control association statistics even in the pres-
ence of population structure that can compound the associations
suggested by the data.

We focus this work on the 2.3.3 front-end version of
STRUCTURE but a new version (V2.3.4) was recently released
to fix some minor bugs. It is worth noting that the recently
released StrAuto v0.3.1 Python-based software enables an
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automated approach, albeit from the command line of Mac or
Linux based computers (Chhatre, 2012).

CONCLUDING REMARKS

This article presents an updated review of the ubiquitous
STRUCTURE population analysis software widely applied to
a range of population genetics problems. We give recommen-
dations that can guide decisions when analyzing population
structure for population genetics and association studies. The
review and guide focuses on STRUCTURE and the support-
ing software of CLUMPP, distruct and STRAT. The use of a
Bayesian method offers several advantages, especially assign-
ing admixed individuals to population clusters, since it is
possible to use prior information to assist the calculation of
ancestry proportions for these individuals. Therefore, infor-
mation on data, the markers applied and the type of anal-
ysis desired is relevant before the selection of the analysis
parameters.

A simulated example file was thoroughly analyzed and our
concluding remark is that there is no one standard analysis
parameter in STRUCTURE—the data and the study objectives
will influence the choice of the most appropriate parameter—
and precaution should be used to avoid overestimating the actual
population structure present in complex data.
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