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MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional
regulation of gene expression through interaction with messenger RNAs (mRNAs). They
are involved in important biological processes and are often dysregulated in a variety of
diseases, including cancer and infections. Viruses also encode their own sets of miRNAs,
which they use to control the expression of either the host’s genes and/or their own. In
the past few years evidence of the presence of cellular miRNAs in extracellular human
body fluids such as serum, plasma, saliva, and urine has accumulated. They have been
found either cofractionate with the Argonaute2 protein or in membrane-bound vesicles
such as exosomes. Although little is known about the role of circulating miRNAs, it has
been demonstrated that miRNAs secreted by virus-infected cells are transferred to and
act in uninfected recipient cells. In this work we summarize the current knowledge on
viral circulating miRNAs and provide a few examples of computational prediction of their
function.
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INTRODUCTION
MicroRNAs (miRNAs) are the most studied and best character-
ized molecules in the class of small regulatory non-coding RNAs
(Bartel, 2009). They are involved in several important biological
processes and functions through post-transcriptional regulation
of the expression of messenger RNAs (mRNAs), and their dysreg-
ulation is often cause or consequence of a variety of diseases, such
as cancer and neurodegenerative disorders (Croce, 2009; Eacker
et al., 2009). Cellular miRNAs can be packaged into different car-
riers and exported to recipient cells or released in small vesicles
during apoptosis (Boon and Vickers, 2013; Hilton and Karpe,
2013). The discovery of extracellular miRNAs in biological fluids
has started a new exciting field of research. Circulating miRNAs
are now considered useful markers of disease conditions and func-
tional mediators of several biological processes in a novel form of
cell-to-cell communication. A novel useful resource is the database
miRandola, which provides users with a comprehensive manually
curated classification of extracellular circulating miRNAs (Russo
et al., 2012).

Viruses encode their own sets of miRNAs. Evidence shows that
these miRNAs can act as self-regulators of viral gene expression
and/or control host cell pathways through silencing of their

nodes (Kincaid and Sullivan, 2012). Some viruses can exploit
extracellular particles for the initiation and progression of the
infection and recent evidence indicates that viruses can export and
deliver functional miRNAs through vesicles (Pegtel et al., 2010).
This discovery reveals a new layer in the infectious mechanism
used by viruses to maintain their latency and control crucial host
pathways whose targeting is likely beneficial to the virus.

In this mini review we summarize the current knowledge
about circulating miRNAs and their potential regulatory func-
tions, with particular emphasis on extracellular viral miRNAs. We
report the promising results of the most recent studies and pro-
vide a few examples of computational prediction of viral miRNA
function.

CURRENT KNOWLEDGE
CIRCULATING miRNAs ARE FUNCTIONAL IN RECIPIENT CELLS AND
CONSTITUTE USEFUL BIOMARKERS FOR VARIOUS CONDITIONS
Extracellular miRNAs have been recently identified stable in most
biological fluids, including blood, urine, saliva, semen, cere-
brospinal fluid, and breast milk (Mitchell et al., 2008; Hanke
et al., 2010; Wang et al., 2011; Alexandrov et al., 2012; Gallo
et al., 2012; Zhou et al., 2012). Evidence shows that they may
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be selectively packaged into different kinds of carriers, such as
membrane-derived vesicles, lipoproteins, and ribonucleoprotein
complexes, which protect them from degradation and export
them to recipient cells where they exert their regulatory func-
tions. Particularly, exosomes and microparticles (MPs) are two
distinct classes of small membrane-enclosed vesicles released
from cells, differing in size, biogenesis, and secretory mech-
anisms (Boon and Vickers, 2013). Exosomes are produced by
the inward budding of the limiting membrane of multivesicular
bodies (MVBs). They are smaller than MPs, which are instead
formed by the outward budding and blebbing of the plasma
membrane. Small sealed membrane vesicles that are produced
from cells during apoptosis, called apoptotic bodies, can also
transport specific sets of miRNAs. Extracellular miRNAs have
also been found in high-density lipoproteins (HDL) and low-
density lipoproteins (LDL), and bound to Argonaute 2 (AGO2)
and other ribonucleoproteins, both in and out of membrane-
derived vesicles (Arroyo et al., 2011; Turchinovich et al., 2011;
Vickers and Remaley, 2012; Rayner and Hennessy, 2013). Viral
surface antigen particles may also carry specific miRNAs, as
in the case of hepatitis B surface antigen particles which con-
tain hepatocellular miRNAs bound to AGO2 (Novellino et al.,
2012).

MicroRNA profiles of extracellular carriers show distinct sets
of miRNAs than their parent cell-type, thus suggesting that
some miRNAs might be transcribed only to be exported and
not retained in the parent cell (Ohshima et al., 2010; Pigati et al.,
2010). Selective packaging of miRNAs into vesicles is proba-
bly related to the specific biological functions of the secreted
miRNAs.

Circulating miRNAs are highly stable and consistent among
individuals of the same species. Specific miRNA expression signa-
tures in extracellular environment have been identified in a variety
of human diseases, including cancer and neurological diseases,
revealing the diagnostic potential of circulating miRNAs as useful
non-invasive biomarkers (Alexandrov et al., 2012; Fayyad-Kazan
et al., 2013; Zeng et al., 2013).

Several in vitro studies have shown that miRNAs transferred by
the different types of carriers are functional and can regulate gene
expression in recipient cells.

Apoptotic bodies generated from endothelial cells during
atherosclerosis were shown to contain miR-126, which controls
endothelial cell signaling in vitro and provides atheroprotective
effects in vivo (Zernecke et al., 2009).

Another study showed that endothelial cells can transfer func-
tional miR-143 and miR-145 to smooth muscle cells where they
mediate the reduction of atherosclerotic lesion formation in vivo
(Hergenreider et al., 2012).

Similarly, circulating miR-150 is released by monocytes and
taken up by endothelial cells where it regulates endothelial cell
migration (Zhang et al., 2010).

Although the complete mechanism of gene regulation mediated
by specifically selected extracellular circulating miRNAs has yet to
be clearly demonstrated in vivo, these studies suggest a plausible
form of cell-to-cell communication in which donor cells send their
miRNAs to distant recipient cells where they exert their regulatory
functions.

VIRUSES EXPLOIT EXTRACELLULAR PARTICLES TO ESTABLISH AND
MAINTAIN THE INFECTION
It has been shown that some viruses exploit extracellular parti-
cles, such as microvesicles, for the initiation and progression of
the infection (Meckes and Raab-Traub, 2011). According to the
trojan exosome hypothesis proposed by Gould et al. (2003), retro-
viruses may use the pre-existing non-viral exosome biogenesis and
uptake pathways for the formation, release, and delivery of viral
particles.

This has been later supported by evidence that some viruses
utilize endosomal compartments of the host to generate exosome-
like vesicles (Hosseini et al., 2013) which can play different roles
in the infection, contributing to its spreading (Mack et al., 2000),
favoring exosomal biogenesis (daSilva et al., 2009), and providing
immune evasion (Temme et al., 2010).

Viral exosomes, for instance, affect the host immune system in
different ways according to the type of virus and the stage of its
life cycle in which exosome secretion occurs in the infected host.
As proving example, during the non-replicative stage, dendritic
cells serve as transit location for HIV-1 (human immunodefi-
ciency virus 1) which exploits their intracellular vesicle trafficking
pathways to release antigens and viral particles into the extracel-
lular space and trans-infect CD4+ T cells (Izquierdo-Useros et al.,
2010).

Generally, viruses implement different strategies during infec-
tion essentially consisting in escaping the host immune system and
facilitating the invasion and proliferation within the host. Obser-
vations suggest that the release of microvesicles containing specific
cellular and viral components by infected cells contributes greatly
to the preservation of the virus even in a hostile antiviral immune
environment (de Gassart et al., 2003; Izquierdo-Useros et al., 2009;
Klibi et al., 2009; György et al., 2011; Meckes and Raab-Traub,
2011).

Epstein–Barr virus (EBV), cytomegalovirus (CMV), and hep-
atitis C virus (HCV) have found means to evade immune responses
and increase virus-fusing ability and infectivity by exploiting
microvesicles, giving rise to a systematic distribution of viral agents
from infected cells able to induce genetic and epigenetic modifica-
tions in recipient cells (Masciopinto et al., 2004; Klibi et al., 2009;
Plazolles et al., 2011; Wurdinger et al., 2012).

Tumor-associated viruses, like EBV, may use exosomal trans-
fer to manipulate the growth characteristics of neighboring cells
and enhance tumor progression. In particular, exosomes released
from nasopharingeal carcinoma (NPC) cells harboring latent
EBV were shown to contain the EBV latent membrane protein
1 (LMP1; Meckes et al., 2010), which is frequently expressed
in EBV-associated cancers and has potent effects on cell growth
by inducing growth-stimulating signaling pathways (Wang et al.,
1985; Kaye et al., 1993) and may modulate the selective sorting of
proteins into exosomes, favoring important signaling molecules
frequently activated in cancers such as phosphatidylinositol 3-
kinase (PI3K) and epidermal growth factor receptor (EGFR;
Meckes et al., 2010).

VIRUSES ENCODE miRNAs
RNA interference (RNAi) most probably was originally selected as
a primary mechanism of defense against harmful genetic elements
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such as viruses. It is of relevant interest that in the evolutionary
selection this mechanism was in turn exploited by viruses to their
advantage while, as suggested by tenOever (2013), chordate use
of small RNAs might exclusively have shifted to the silencing of
genome-encoded transcripts and would at least not pose direct
threat to RNA viral genome.

The first report of viral-encoded miRNAs was published by
Pfeffer et al. (2004) describing the cloning of viral miRNAs from
cells infected with EBV. Among DNA viruses, which account
for the majority of known virus-encoded miRNAs, 95% of viral
miRNAs known today are of herpesvirus origin.

The majority of natural viruses found to encode miRNAs have
thus a DNA component to their replication cycle, can exploit
the initiating host miRNA biogenesis machinery in the nucleus
where they replicate, and cause long-term persistent infections.
DNA viruses such as the ones belonging to the Herpesvirus, Poly-
omavirus, Ascovirus, Baculovirus, Iridovirus, and Adenovirus
families clearly match these characteristics (Sullivan et al., 2005;
Gottwein et al., 2007; Choy et al., 2008; Hussain et al., 2008; Seo
et al., 2009; Seto et al., 2010; Bauman et al., 2011; Marquitz et al.,
2011; Suffert et al., 2011; Zhao et al., 2011; Lee et al., 2012) along
with at least one member of the retrovirus family, bovine leukemia
virus (BLV), which clearly encodes numerous miRNAs (Kincaid
et al., 2012).

Despite the established case of BLV, viruses possessing positive
or negative sense RNA or double-stranded RNA (dsRNA) genome
are not widely accepted to naturally express miRNAs.

Nevertheless, HIV-1 has been proven to encode two miR-
NAs and potentially a third. In fact, hiv1-mir-H1 was proven to
be responsible for inducing apoptosis and repressing host gene
expression (Kaul et al., 2009), while hiv-1-miR-N367 has been
suggested as functional ortholog of hsa-miR192 (You et al., 2012).
Finally, some evidence is present that the HIV-1 TAR element
could be a potential viral miRNA (Houzet and Jeang, 2011), also
considering its capability to target pro-apoptotic genes (Klase et al.,
2009).

All viral miRNAs can essentially be grouped into two classes:
host analogs and virus-specific. Generally, though, their functions
include prolonging longevity of infected cells, evading the immune
response, and regulating host or viral genes to limit the lytic cycle.
Interestingly, all these functions are essential for infections to be
persistent.

In fact, miRNAs are likely invisible to the adaptive immune sys-
tem – a valuable trait for viruses that undergo persistent infection
(Cullen, 2006). Thus, in viruses that establish a long-lasting latent
infection, such as herpesviruses, one important benefit they could
gain from employing miRNAs is the ability to regulate host and/or
viral gene expression without having to elicit an antigenic immune
reaction or directly suppressing components of the host immune
system (Sullivan, 2008).

Preventing cell death seems an obvious advantage to viruses
that cause persistent or latent infections. Several different viruses
including Kaposi’s sarcoma-associated herpesvirus (KSHV), EBV,
and Marek’s Disease Virus type 1 (MDV1) encode miRNAs
that can play a subtle role in preventing apoptosis by targeting
pro-apoptotic host genes and are also associated with tumorig-
enesis.

PERSPECTIVES
VIRUSES CAN USE VESICLES TO EXPORT THEIR FUNCTIONAL miRNAs
Pegtel et al. (2010) were the first ones (and, to our knowl-
edge, the only ones together with Meckes et al., 2010) to have
demonstrated that virus-infected cells package virus-encoded
RNAs, and specifically viral miRNAs, into exosomes which are
exported into the extracellular space and eventually delivered to
recipient, non-infected cells, favoring the repression of specifically
important mRNA targets. EBV is a clear example of a virus that
utilizes the exosome pathway for the selective secretion of viral and
cellular proteins and miRNAs that likely participate in cell-to-cell
communication in the absence of virus production, potentially
modulating cell function.

As confirming proof, Pegtel et al. (2010) reported that EBV-
infected activated B cells secrete exosomes containing viral
miRNAs shown to be delivered and actively internalized by
monocyte-derived dendritic cells in co-culture. In particular, the
copy number of EBV-miRNA BART1-5p was consistently higher
than other EBV-miRNAs and its level increased fourfold after
additional 24 h co-culture. This resulted in a dose-dependent,
miRNA-mediated repression of confirmed EBV target genes. More
specifically, the viral miRNA BHRF1-3 was shown to suppress the
expression of the immunostimulatory gene CXCL11 [Chemokine
(C-X-C motif) ligand 11] and this repression was proven to be
dependent on the amount of exosomes carrying the miRNA and
was not recipient cell-type-specific. In addition, expression of
EBV-miRNAs in EBV-infected circulating B cells was also investi-
gated. The data collected suggested that in asymptomatic patients
BART miRNAs are expressed by latently infected circulating B
cells as well as present in non-infected non-B cells, supporting
the possibility of miRNA transfer in vivo. This further supported
the proposal that exosomes could most likely serve as deliverers of
small RNA due to their specialized biogenesis and presumed entry
route (Zomer et al., 2010).

Later evidence showed that EBV-encoded miRNAs have been
detected in exosomes from EBV-infected NPC cells, together
with the LMP1 protein and other signal transduction molecules
(Meckes et al., 2010), in accordance to other studies proving the
presence of cellular miRNAs in tumor-derived exosomes (Taylor
and Gercel-Taylor, 2008; Kharaziha et al., 2012; Palma et al., 2012).

Furthermore, differences detected in the levels of intracellu-
lar and exosomial miRNAs, in addition to differences even in the
amount of enrichment between the individual exosomal miRNAs,
suggest that some viral miRNAs might be specifically intended
and selected to be packaged into exosomes and exert their func-
tions in cells other than those producing them (Klibi et al., 2009;
Meckes et al., 2010; Pegtel et al., 2010). Moreover, exosomes may
also deliver cellular components of the RNA-induced silencing
complex (RISC) to enhance viral miRNA function (Gibbings et al.,
2009).

These results were greatly motivated by the assumption that
exosomal exportation of miRNAs in general may have a funda-
mental role in intercellular communication despite the lack of
concrete evidence (Valadi et al., 2007; Skog et al., 2008; Théry et al.,
2009).

Although functional significance of all these phenomena
requires further investigation, these results suggest that a cellular
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miRNA-loading mechanism may exist to direct specific miRNAs
into intraluminal vesicles of multivesicular endosomes (MVEs)
which could explain why exogenous exosomal miRNAs are capa-
ble of repressing targets in recipient cells at new subcellular
compartments for RNAi activity such as late endosomes (Morelli
et al., 2004; Stern-Ginossar et al., 2007; Gibbings et al., 2009).
Figure 1 depicts all the potential ways in which viruses could
exploit extracellular particles to convey their miRNAs to non-
infected recipient cells.

FUNCTIONAL ANALYSIS OF CIRCULATING VIRAL miRNAs
The correct identification of targets is fundamental to deter-
mine miRNA function. Computational miRNA target prediction
is still a big challenge, mostly due to the fact that our knowl-
edge about the mechanisms and the molecular rules of miRNA
target recognition is still incomplete (Bartel, 2009). Neverthe-
less, there are many computational tools available online, which
allow to identify the most probable miRNA targets and to

uncover non-trivial relationships between miRNAs and other
molecular actors (Cascione et al., 2013). These tools collect and
integrate heterogeneous miRNA-related data retrieved from dif-
ferent sources, such as target prediction tools and expression
profiles of miRNAs and mRNAs, in order to infer miRNA func-
tions and produce general models of miRNA-mediated regulation
in the context of complex processes. Few tools are available specif-
ically for the analysis of viral miRNAs and they are limited to
the prediction of new miRNAs and targets. RepTar and vHoT
are databases of predicted interspecies interactions between viral
miRNA and host genomes, while ViTa is a database contain-
ing predictions of host miRNA targets on viruses (Hsu et al.,
2007; Elefant et al., 2011; Kim et al., 2012). miRiam is a soft-
ware that has been used to predict potential human targets for
viral miRNAs (Laganà et al., 2010). Finally, VMir and Vir-Mir are
tools for the prediction of novel virus-encoded miRNAs (Li et al.,
2008; Grundhoff, 2011). In regard to functional analysis, despite
the lack of specific programs for viral miRNAs, general miRNA

FIGURE 1 | Summary model of plausible mechanisms for export and

functional delivery of viral miRNAs. The image depicts the possible
means of transcription, packaging, and functional delivery of viral
miRNAs during an infection. Virus-encoded miRNAs are transcribed
by the infected cell (A). They could exploit various channels to reach

extracellular space and, eventually, be delivered to recipient non-infected
cells: inside apoptotic bodies after cell death (B), packaged into exosomes
(C), or HDL/LDL molecules or even bound to AGO2 (D). Viral miRNAs may be
uptaken by non-infected cells where they could exert their regulatory
functions (E).
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Table 1 | Functional enrichment analysis of circulating EBV miRNAs’

predicted targets.

P -Value

Selected canonical pathways

Molecular mechanisms of cancer 5.27 × 10−11

PPARα/RXRα activation 9.39 × 10−6

Wnt/β-catenin signaling 1.25 × 10−5

p53 signaling 6.73 × 10−5

IL-8 signaling 1.56 × 10−4

Selected molecular and cellular functions

Cell morphology <3.6 × 10−2

Cell death and survival <3.72 × 10−2

Cell cycle <4.09 × 10−2

Selected diseases and disorders: cancer

Leiomyomatosis 1.21 × 10−5

Cell transformation 2.60 × 10−3

Growth of tumor 5.14 × 10−3

Mesenchymal tumor 8.31 × 10−3

Selected tox functions (Clinical Chemistry and Hematology)

Decreased levels of albumin 1.37 × 10−1

Increased levels of alkaline phosphatase 2.21 × 10−1

Increased levels of albumin 3.70 × 10−1

Increased levels of LDH 3.70 × 10−1

The table summarizes the most relevant results, particularly associated to EBV
infection, of the functional analysis conducted using the software IPA. Results are
organized in categories. For each category, the most significant terms, together
with their P-Values, are displayed. EBV-encoded miRNAs in which exosomes are
particularly enriched were selected (miR-BHRF1-1/1-2-3p and miR-BART1-3p/5p/-
2-3p) and their targets predicted using the tool miRiam. The top scoring targets
were given as input to IPA.

tools can be successfully applied to the study of viral miRNAs
as well. A very recent study shows that the predicted targets
of the 135 known viral miRNAs in human viruses and of 6809
putative miRNAs encoded by 23 human viruses, as predicted by

Vir-Mir, are enriched for specific host pathways whose targeting
is likely beneficial to the virus, such as cancer, axon guidance,
ErbB, mitogen-activated protein kinase (MAPK), and wingless-
type MMTV integration site family (Wnt) signaling (Carl et al.,
2013). The authors performed a functional enrichment analysis by
comparing each gene target set with an annotated functional gene
set corresponding to KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathways and Gene Ontology biological processes. As
further proof of principle, we used miRiam to predict the poten-
tial targets of EBV miRNAs in which exosomes are particularly
enriched, as reported by Pegtel et al. (2010) (miR-BHRF1-1/1-2-3p
and miR-BART1-3p/5p/-2-3p). Then, we used the tool ingenu-
ity pathway analysis (IPA) to perform a functional enrichment
analysis of the predicted targets (http://www.ingenuity.com). The
results show that subsets of the targets are significantly involved in
cancer pathways, in particular leiomyomatosis, and mesenchy-
mal tumors, for which a connection with EBV had already
been described (Cheuk et al., 2002; Monforte-Muñoz et al., 2003;
Deyrup et al., 2006; Sunde et al., 2010). Other significant pathways
include WNT/B-catenin signaling, interleukin 8 (IL-8) signal-
ing, and P53 pathway (P < 0.0001), also previously described
as related to EBV infections (Morrison et al., 2003; Everly et al.,
2004; Ren et al., 2004; Webb et al., 2008; Forte and Luftig, 2009;
Husaini et al., 2011; QingLing et al., 2011). The predicted targets
are also enriched in GO terms such as cell death and survival
and cell cycle (P < 0.04). Furthermore, although the significance
of the P-value is borderline (P < 0.4), it is worth to mention
that the top tox functions reported by IPA include increased
levels of alkaline phosphatase and LDH, tumour-marker charac-
teristics which have been reported to be significant prognostic
factors in metastatic NPC, often associated wih EBV infection
(Jin et al., 2012). Table 1 summarizes the most significant associa-
tions.

These few examples clearly indicate that miRNA functional
analysis tools can be of great help in studying the effects of
circulating viral miRNAs, allowing the production of plausible
hypotheses about their function and involvement in crucial cellu-
lar pathways, encouraging the development of more specific tools
for computational investigation of cellular and extracellular viral
miRNA.
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