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It is well accepted that non-coding RNAs play a critical role in regulating gene expression.
Recent paradigm-setting studies are now revealing that non-coding RNAs, other than
microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the
DNA damage response, and in adult human stem cell aging. In this review, we will
discuss the complex inter-dependent relationships among non-coding RNA transcription,
maintenance of genomic stability, chromatin structure, and adult stem cell senescence.
DNA damage-induced non-coding RNAs transcribed in the vicinity of the DNA break
regulate recruitment of the DNA damage machinery and DNA repair efficiency. We will
discuss the correlation between non-coding RNAs and DNA damage repair efficiency and
the potential role of changing chromatin structures around double-strand break sites. On
the other hand, induction of non-coding RNA transcription from the repetitive Alu elements
occurs during human stem cell aging and hinders efficient DNA repair causing entry into
senescence. We will discuss how this fine balance between transcription and genomic
instability may be regulated by the dramatic changes to chromatin structure that accompany
cellular senescence.
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INTRODUCTION
Cellular senescence is an irreversible cell cycle arrest caused by
intrinsic or extrinsic stress, such as shortened telomeres, DNA
damage, induced oncogenes, or chromatin perturbation. This
phenotype was first observed by Hayflick (1965) using human
diploid cells which could undergo a limited number of cell divi-
sions in in vitro culture. Various signaling pathway and regulatory
factors of senescence have been reported over the last four decades
(Campisi and d’Adda di Fagagna, 2007). Cellular senescence con-
tributes to the aging process (Campisi and d’Adda di Fagagna,
2007; Baker et al., 2011). Aging is highly complex and poorly
understood. It is characterized by time-dependent degenerative
changes caused by genetic (intrinsic) or environmental (extrinsic)
stimuli. Although once thought to be an amalgamation of ran-
dom detrimental events, the identification of mutations and diets
that promote longevity has led to the realization that particular
cellular pathways influence the aging process. The challenge now
is to understand the mechanistic basis of how these pathways and
metabolic states regulate aging.

Although numerous different pathways for aging have been
proposed, it is striking that human premature aging syndromes
are caused by defects in the maintenance of genomic stability
(Coppede, 2012), indicating that genomic integrity plays a key
role in determining lifespan. In agreement, the accumulation of
DNA damage is a hallmark of aging and senescing cells (Sedel-
nikova et al., 2004), and the DNA damage signal emanating from
shortened telomeres triggers cells to enter a state of senescence
(d’Adda di Fagagna et al., 2003; Takai et al., 2003; Herbig et al.,
2004). In turn, genomic stability is closely intertwined with the
chromatin structure. The chromatin structure not only regulates

the accessibility of DNA damaging agents to the genome, but also
plays critical roles in the signaling of DNA lesions and their repair
(see Papamichos-Chronakis and Peterson, 2013 for a very nice
recent review). Given the critical role of chromatin in regulating
genomic stability and gene expression, it is tempting to speculate
that some of the changes in gene expression and genomic integrity
that occur during aging may be caused by the global changes to
the chromatin structure that accompany aging. These chromatin
changes span from the global loss of heterochromatin in aging
human cells (Howard, 1996; Villeponteau, 1997; Kitano and Imai,
1998; Tsurumi and Li, 2012) to the global reduction of histone
levels during mitotic aging in yeast (Feser et al., 2010) and human
fibroblasts (O’Sullivan et al., 2010). Here we will discuss how non-
coding RNAs contribute to the relationships among chromatin
structure, genomic integrity, and cellular senescence.

NON-CODING RNA TRANSCRIPTION IS INDUCED BY DNA
DAMAGE
DNA damage is induced by various genotoxic stresses from inside
the cell or from the environment. Arguably the most dangerous
type of DNA lesion is a double-strand break (DSB) because a
single DSB can lead to the loss of a chromosome arm during
mitosis if not repaired, while its inaccurate repair can lead to
chromosomal translocations or mutations. DSBs are repaired by
either homologous recombination (HR) which copies the identical
undamaged DNA information usually from the sister chromatid,
or non-homologous end joining (NHEJ) in which the two DNA
ends are ligated back together (reviewed in Ciccia and Elledge,
2010). Following the generation of a DSB, the cell mediates a highly
orchestrated series of events termed the DNA damage response
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(DDR; reviewed in Finn et al., 2012; Papamichos-Chronakis and
Peterson, 2013). The function of the DDR is at least five fold:
(i) to arrest the cell cycle until the DNA damage is repaired (check-
point activation), (ii) to upregulate gene expression of the repair
machinery, and ultimately (iii) to remodel and restore chromatin
structure around damage site, (iv) to repair the DNA molecule
per se by recruitment of the DNA repair machinery, (v) to trigger
apoptosis if there is too much DNA damage to be repaired. At
an early stage of the DDR phosphatidylinositol 3-kinase-like pro-
tein kinase (PIKKs) family [ATM (ataxia-telangiectasia mutated),
ATR (ATM and Rad3-related), and DNA-PKcs (DNA-dependent
protein kinase)] and MRN (Mre11–Rad50–Nbs1) complexes are
recruited to the DNA breaks. The PIKKs phosphorylate down-
stream checkpoint proteins, such as Chk1 and Chk2, and the
histone variant H2A.X that is present in the chromatin around
the breaks. Phosphorylated Chk1 and Chk2 phosphorylate var-
ious effector proteins to arrest the cell cycle to allow time for
DNA repair. Phosphorylated H2A.X (called γH2A.X) assists to

recruit other downstream signaling molecules that facilitate the
DDR. The SWI/SNF (switch/sucrose non-fermentable) complex
(ATP-dependent chromatin remodeling factor) triggers chro-
matin relaxation after UV treatment. This chromatin relaxation is
involved in late stages of DNA repair because it does not affect the
recruitment of early DDR response factors but later DDR response
factors, such as xeroderma pigmentosum complementation group
G (XPG) and proliferating cell nuclear antigen (PCNA) to UV
damage sites (Zhao et al., 2009). The proteins that mediate the
DDR are conserved from yeast to human, meaning that our under-
standing of the DDR can be gained from studies in many different
model systems.

Several different types of non-coding RNAs have been impli-
cated in the DDR. For example, many microRNAs (miRNAs)
regulate genes that are involved in the DDR (reviewed in Wan
et al., 2011; Han et al., 2012). However, these miRNAs are not
necessarily encoded by genes in the vicinity of the DNA damage
(Figure 1). Moreover, other non-coding RNAs are more directly

FIGURE 1 | Potential role for diRNAs in the DNA damage response.

The evidence seems likely that diRNAs are induced from the vicinity
of a DNA break. Furthermore, these diRNAs, although not required for
phosphorylation of H2AX, they are required for the recruitment of MDC1
and 53BP1 to their modified histone binding partners. Whether the diRNAs

remain at the site of chromatin and contribute to heterochromatinization
of the region around the DSB is unknown. However, it is clear that
the chromatin becomes more highly compacted, perhaps at later
stages of DNA repair, and this promotes the process of DNA
repair.
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involved in the DDR. Over 5% of the mammalian genome consists
of short interspersed elements (SINEs), typified by the human Alu
repeat. These are RNA polymerase III transcribed sequences whose
expression is usually silenced. However, upon prolonged expo-
sure to DNA damaging agents that predominantly cause DSBs,
transcription from the human Alu elements and murine SINEs is
strongly induced (Rudin and Thompson, 2001). The reason for the
induction of the SINE/Alu non-coding transcription in response
to DSBs is not clear, but it may be relevant that their silencing
can be at least partially reversed by DNA demethylating agents in
the absence of DNA damaging agents (Liu et al., 1994; Vorce et al.,
1994). Pericentromeric DNA damage accumulation also leads to
increased Alu transcript levels during adult human stem cell aging
(Wang et al., 2011; this will be discussed more below). As such, it
seems to be a reasonable prediction that the induction of SINE and
Alu transcription in response to DSBs may be a consequence of
decompaction of their normally repressive chromatin structure.
In agreement with this, the association of histones with DNA is
looser globally, as measured by their ability to be salt extracted,
following treatment with DNA damaging agents (Xu et al., 2010).
Similarly, transcription from the normally silenced yeast Ty retro-
transposons is induced by exposure to a variety of DNA damaging
agents including UV and γ-radiation (Morawetz, 1987; Bradshaw
and McEntee, 1989; Morawetz and Hagen, 1990). Transcription of
non-coding RNAs from Ty elements in response to DNA damage
is unlikely to be beneficial to the host organism, given that this
can lead to retrotransposition and insertion elsewhere into the
genome, which itself is mutagenic. Insertion of new retrotrans-
poson elements also increases the opportunity for unequal sister
chromatid recombination.

It has been reported that new types of non-coding RNAs (rather
than miRNAs or Alu elements) were induced by DNA damage, that
are actually beneficial for DNA repair, in the filamentous fungus
Neurospora crassa (Lee et al., 2009). However, this is not unique
to Neurospora, as this has now been shown to be the case also
in Arabidopsis and humans, as discussed below. In Neurospora,
hydroxyurea and methyl methanesulfonate (agents that result in
DNA breaks during replication) induce expression of a new class of
small RNAs, about 20–21 nucleotides long, that originate mostly
from the highly repetitive ribosomal DNA (rDNA) locus (Lee et al.,
2009). These small RNAs originate from both strands of DNA in
the region corresponding to the mature rRNAs but many also
derive from the internal spacer regions of the rDNA. The remain-
der originates from genomic regions that encode transfer RNAs,
other intergenic regions, and open reading frames. Production
of these short RNAs requires RNA-dependent RNA polymerase,
which can transcribe long RNAs that are 500 bp to 2 kb long (Lee
et al., 2009). These long RNAs are then processed by Dicer to make
the short RNAs, which bind to an active RNA-induced silencing
complex (RISC) that includes Argonaute. Consistent with a role
for these short RNAs in the DDR, Neurospora mutants lacking
RNA-dependent RNA polymerase or Dicer are sensitive to DNA
damaging agents. Because DNA damage is well known to result
in a decrease in protein synthesis (Morley et al., 1998; Tee and
Proud, 2000; Deng et al., 2002; Braunstein et al., 2009; Powley
et al., 2009; Spriggs et al., 2010), Lee et al. (2009) hypothesized that
production of the short DNA damage-induced RNAs from the

rDNA may inhibit rRNA biogenesis and protein synthesis after
DNA damage. Indeed, mutants defective in the synthesis of DNA
damage-induced short RNAs failed to show a strong DNA damage-
induced reduction in protein synthesis (Lee et al., 2009). Taken
together, these results indicate that the production of small RNAs
in Neurospora in response to DNA damage contributes to the
DNA damage checkpoint by down-regulating protein synthesis.

One may ask: Why are small DNA damage-induced RNAs gen-
erated from the rDNA locus? The answer to this question may
lie in the requirement for the single-strand DNA binding protein
replication protein A (RPA) and the Neurospora counterpart of the
Werner/Bloom syndrome helicase, QDE-1, for making small DNA
damage-induced RNAs (Lee et al., 2010). A likely model is that the
repetitive nature of the rDNA predisposes it to either DNA dam-
age or the formation of aberrant structures upon replication stress,
the repair or resolution of which requires unwinding of the DNA
duplex by DNA helicases and entails processing of the rDNA into
single-stranded DNA (ssDNA) coated by RPA. Consistent with
this model, the RNA-dependent RNA polymerase uses ssDNA but
not dsDNA as a template (Lee et al., 2010). Furthermore, RPA
appears to recruit the RNA-dependent RNA polymerase to sites
of ssDNA via their physical interaction. RPA also promotes the
formation of dsRNA by the RNA-dependent RNA polymerase by
disfavoring the formation of DNA/RNA hybrids (Lee et al., 2010).
Taken together, the model for how small RNAs are generated from
rDNA during replicational stress appears to be fairly sound. How
these small DNA damage-induced RNAs result in downregulation
of protein synthesis is less clear. The mechanism could be via small
RNA-mediated degradation of the rRNAs or heterochromatiniza-
tion of the rRNA locus, as both are mechanisms that are used in
other scenarios in Neurospora (Dang et al., 2011).

A recent study showed that small non-coding RNAs can be
induced around DSB sites in Arabidopsis. This work showed that
small RNAs, referred to as diRNA (DSB-induced small RNAs), are
induced in the vicinity of DSB sites, and revealed that these diRNAs
promote repair of the DNA lesion (Wei et al., 2012). Generation
of the diRNAs required the RNAi machinery such as Dicer and
Argonaute 2 (AGO2). However, unlike the miRNAs that have also
been implicated in the DDR (Hu and Gatti, 2011), diRNAs act
in a manner distinct from translational inhibition through mRNA
degradation. Following induction of a DSB using the endonuclease
I-SceI that cuts at a known location in the genome, all the diRNAs
mapped specifically to the vicinity of the DSB site. The diRNAs
mapped to both strands of the DNA, spanning a few kilobases on
either side of the DSB. The generation of the diRNA depended
on the PI3 kinase-related kinase ATR (Wei et al., 2012). While the
phosphorylation of γH2A.X was not dependent on the induction
of the diRNAs, the efficiency of DNA repair was greatly reduced
when diRNA induction was blocked. The diRNAs bind to the
AGO2 protein, which had previously been shown to be induced
upon ionizing radiation (Culligan et al., 2006). Indeed ionizing
radiation also resulted in the binding of AGO2 to diRNAs that
were induced from 150 different genomic loci, suggesting that this
is a general phenomenon in response to DNA lesions generated at
many locations throughout the genome (Wei et al., 2012).

Mammalian cells also show a similar local induction of small
RNAs upon DNA damage. Wei et al. (2012) demonstrated that
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diRNAs are induced around a DSB in human cells, with them
being generated up to 6000 bp away from the DNA break. In
human cells, knocking down Dicer or Ago2 significantly reduced
the efficiency of DNA repair. Similarly, knocking down human
Dicer or Drosha reduced the number of cells with 53BP1 local-
izing to repair foci, which is a protein involved in driving repair
into the NHEJ pathway and its recruitment efficiency is affected by
chromatin changes such as histone modifications including phos-
phorylation on histone H2AX S139 (γ-H2AX; Celeste et al., 2002)
methylation on histone H4 lysine 20 (Botuyan et al., 2006), and
histone H3 lysine 79 (Huyen et al., 2004; Wakeman et al., 2012),
the histone acetyltransferase (HAT) activity of Tip60 (Murr et al.,
2006) and recruitment of both MDC1 (Stewart et al., 2003) and
RNF8 (Huen et al., 2007; Mailand et al., 2007). Knocking down
human Dicer or Drosha also reduced the number of cells with foci
of ATM autophosphorylation and the phosphorylated substrates
of ATM, but did not reduce the number of cells with γH2A.X foci
(Francia et al., 2012). As such, one can conclude that the DNA
damage-induced RNAs act downstream of γH2A.X in the DDR.
Interestingly, MDC1 recruitment to chromatin is via binding to
γH2A.X (Stucki et al., 2005), yet knockdown of Dicer and Drosha
also reduced MDC1 foci formation (Francia et al., 2012). This sug-
gests that γH2A.X is not sufficient for MDC1 recruitment because
diRNA are also required. Consistent with this idea, RNase A treat-
ment of cells reduced the accumulation of MDC1 and 53BP1 in
repair foci (Pryde et al., 2005; Francia et al., 2012), but had no effect
on γH2A.X (Francia et al., 2012). MDC1 in turn is required for the
amplification of the DDR signal (Lou et al., 2006), which would
explain why ATM autophosphorylation and ATM-mediated phos-
phorylation of its substrates fails to occur upon the knockdown
of Dicer and Drosha (Francia et al., 2012). One possible model
that remains to be tested is that the diRNAs, or the process of
their transcription per se, may help to generate an open chromatin
structure that is permissive for the recognition of γH2A.X by its
binding partners such as MDC1 (Figure 1).

RNA-BINDING PROTEINS ARE RECRUITED TO
DOUBLE-STRAND BREAK SITES
Perhaps related to the local transcriptional induction of small
RNAs in response to DNA damage, several proteins that regulate
RNA function have been shown to be transiently recruited to DNA
damage sites. Adamson et al. (2012) found that the RNA-binding
protein RBMX (RNA-binding motif protein encoded on the X
chromosome) is recruited to DNA damage sites by genome-wide
siRNA library screening. Furthermore, this appears to be impor-
tant for DNA repair because silencing of RBMX leads to defects
in HR-mediated DNA repair (Adamson et al., 2012). PPM1G, a
phosphatase regulating splicing, is also recruited to DNA lesions
(Beli et al., 2012). It has been reported that NONO, another RNA-
binding protein, is recruited to a DSB site (Salton et al., 2010;
Krietsch et al., 2012). Knockdown of NONO leads to a significant
decrease in plasmid end joining and knockdown of NONO pref-
erentially compromises NHEJ whereas HR is increased using in
vivo NHEJ and HR reporter cell lines. Both RBMX and NONO
are recruited to DNA lesions following laser-microirradiation in a
poly-ADP-ribose polymerase (PARP)-dependent manner, where
PARP mediates one of the earliest chromatin modifications in

response to DNA damage (Adamson et al., 2012; Krietsch et al.,
2012). Although the RNA targets at DSB sites that are bound by
these factors are still unknown, these observations suggest possible
active roles for RNA in DNA repair at DSB sites.

TRANSCRIPTIONAL REPRESSION AROUND
DOUBLE-STRAND BREAK SITES
The findings described above indicate that there is transcription
in the immediate vicinity of DSBs in response to DNA damage.
On the contrary, there is also evidence for transcriptional silenc-
ing induced in cis to a DSB, which may accompany, and facilitate,
the later stages of DNA repair (Figure 1). Using a reporter that
allows for visualization of the nascent transcript containing the
MS2 RNA stem loop by binding to YFP-MS2 protein, silencing of
transcription in cis to the DSB site has been observed (Shanbhag
et al., 2010). However, DNA damage induced by ionizing radiation
and laser-microirradiation does not cause global transcriptional
silencing, indicating that the mechanism to induce transcriptional
silencing only functions in the immediate proximity to the DSB
(Shanbhag et al., 2010). Kruhlak et al. (2007) also reported that
RNA polymerase I-mediated transcription of rDNA is inhibited
in the vicinity of DSBs. Both forms of transcriptional silencing
required ATM, suggesting that both pol I and pol II silencing may
occur via a common mechanism around a DSB. Indeed, transcrip-
tional arrest and dissociation of RNA polymerase II is induced
around DSBs in active genes in a DNA-PK catalytic subunit-
dependent manner (Pankotai et al., 2012). Consistent with the idea
of transcriptional arrest, exclusion of the RNA processing factor
THRAP3 (thyroid hormone receptor associated protein 3) from
the vicinity of DSBs has also been shown, and this is dependent
on the E3-ubiquitin ligases RNF8 and RNF168 (Shanbhag et al.,
2010; Beli et al., 2012). Shanbhag et al. (2010) also observed ubiq-
uitylated H2A around DSBs. H2A ubiquitylation has been strongly
implicated in transcriptional silencing, suggesting that a repressive
chromatin structure is formed around DSBs. DSB-induced chro-
matin condensation is likely to take place in cis not in trans since
global chromatin decondensation is induced in response to DNA
damage (Ziv et al., 2006).

Small non-coding RNAs are known to be involved in the for-
mation of repressive heterochromatin structures over repetitive
DNA elements, such as centromeric repeats and retrotransposons
(Reyes-Turcu and Grewal, 2012). Although it has not yet been
tested, it is possible that the diRNAs may function similarly to
promote a more repressive chromatin environment around DSBs
that may facilitate amplification of the DDR and DNA repair
(Figure 1).

In previous sections, we discussed the possibility of chromatin
decompaction and/or chromatin compaction by diRNA during
the DDR. But what is the real function of diRNAs for regulation
of chromatin structure around DSB sites? The chromatin struc-
ture around DSB site should be opened for protein recruitment
(proximal to DSB site) and compacted for transcription repression
(distal from DSB site). It is not clear which aspects of chromatin
structure is regulated by diRNAs yet. There are several possibili-
ties: (i) diRNAs could promote either open and closed chromatin
structure around DSB sites. (ii) diRNAs could help make a bound-
ary between closed and open chromatin structures around DSB
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sites. (iii) Compaction and/or decompaction of chromatin struc-
tures around DSBs by diRNAs may occur at different times during
repair, or (iv) diRNAs may not directly regulate chromatin struc-
ture around DSBs but rather function through regulating the
recruitment of DDR factors.

HISTONE LOSS AND HISTONE GAIN DURING DNA
DOUBLE-STRAND BREAK REPAIR
It is highly likely that the changes to the chromatin structure and
transcriptional states described above that occur in response to
DSBs are accompanied by the removal and replacement of histone
proteins from the DNA. Histones H3/H4 are located at the center
of the nucleosome, and their removal from DNA or their place-
ment onto the DNA necessitates the removal or replacement of
the entire histone octamer. This appears to occur, at least to some
degree during DNA repair, because newly-expressed histone H3.1
is recruited to sites of UV-induced and laser-irradiation-induced
DNA damage in mammalian cells (Polo et al., 2006). The his-
tone chaperone CAF-1 (chromatin assembly factor 1) is required
for this incorporation of H3.1 onto the newly-repaired DNA, and
CAF-1 physically localizes to sites of DNA repair (Polo et al., 2006).
The histone chaperone complex of HIRA/UBN1/CABIN1 is also
recruited to microirradiation sites, however, their function in DNA
repair is not clear yet (Adamson et al., 2012). Anti-silencing func-
tion 1 homolog A/B (ASF1A/B), a histone chaperone for H3/H4
dimers, also colocalizes with replication fork-associated repair
foci. By immunoprecipitation assay, ASF1A/B are precipitated
with the MMS22L (methyl methanesulfonate-sensitivity protein
22-like) DNA repair protein, and ASF1A and ASF1B colocalize
with RPA foci under camptothecin (a topoisomerase inhibitor) or
hydroxyurea (ribonucleotide reductase inhibitor) treatment, indi-
cating that ASF1A and ASF1B are also recruited to replication
fork-associated DNA damage lesions (Duro et al., 2010). How-
ever, the function of ASF1A/B in DNA repair is not clear, because
HR efficiency or RAD51 foci formation is not affected by knock-
down of ASF1A and/or ASF1B (Duro et al., 2010). Why are histone
chaperones recruited to DNA damage site? One possibility is that
histone chaperones are necessary for the restoration of chromatin
structure in the wake of DNA repair. In budding yeast, asf1 deletion
mutants do not have a significant DNA repair deficiency (slightly
delayed) but they do have reduced levels of histone H3 over the
repaired DNA and defective recovery from checkpoint arrest after
DNA repair (Chen et al., 2008). Similar results have been reported
in a mammalian system. Depletion of ASF1A delays checkpoint
recovery caused by UV irradiation (Battu et al., 2011).

Histones H2A/H2B occupy more peripheral positions on the
nucleosome and they can be removed and replaced without the
requirement for H3/H4 removal or replacement. Notably, PPM1G
is recruited to DNA lesions in response to microirradiation (Beli
et al., 2012), and it has been reported that PPM1G exerts H2A/H2B
histone chaperone activity (Kimura et al., 2006). There is also
evidence for the incorporation of variant versions of H2A in
the vicinity of DNA breaks. For example, the DNA repair fac-
tor APLF functions as a histone chaperone, and is recruited
to laser-microirradiation induced DSBs in a PARP-dependent
manner (Mehrotra et al., 2011). One of two splice variants of
macroH2A1, macroH2A1.1 (mH2A1.1) is recruited to DSBs, and

its recruitment is dependent on its macrodomain [poly-ADP-
ribose (PAR) binding domain] and the APLF histone chaperone
(Timinszky et al., 2009; Mehrotra et al., 2011; Xu et al., 2012a).
Chromatin structure around DSBs is rearranged by mH2A1.1
recruitment (Timinszky et al., 2009), even though it is not incor-
porated into nucleosome (Xu et al., 2012a). Depletion of mH2A1.1
leads to reduced 53BP1 foci and phospho-Chk2 levels but has no
effect on γ-H2A.X (Xu et al., 2012a). Recently Xu et al. (2012b)
reported that histone H2A.Z is rapidly deposited around DSBs
after induction of DNA damage. This incorporation of H2A.Z
around the DSB is required for H4 acetylation, RNF8-mediated
ubiquitylation, and BRCA1-foci formation as well as Ku70/80
loading.

It is not clear yet how to connect histone chaperone activity
and histone exchange with non-coding RNA transcription during
DDR, especially around DNA damage sites. It is possible that the
chromatin structure around the DNA damage site can affect non-
coding RNA transcription and it should be further studied.

NOVEL LINKS BETWEEN DNA DAMAGE, NON-CODING RNAs,
AND CHROMATIN IN CELLULAR SENESCENCE AND AGING
Cellular senescence is mainly regulated by the p53/p21 and
p16/pRB pathways. lin-4 was the first identified miRNA which
can regulate lifespan in C. elegans (Boehm and Slack, 2005) and a
large number of other miRNAs have now been linked to the aging
or senescence processes, for example, via regulating the p53/p21
and p16/pRB pathways. Some miRNAs that are expressed specifi-
cally during aging are secreted outside of cells, termed circulatory
miRNAs, and are being studied as potential biomarkers of aging
or for the diagnosis of age-related diseases. The influence of miR-
NAs in senescence and aging has been covered in detail in multiple
recent excellent reviews (Smith-Vikos and Slack, 2012; Kato and
Slack, 2013; Xu and Tahara, 2013) and will not be discussed here.
Instead, we will discuss recent studies that have uncovered aging-
dependent changes in the global chromatin structure, and how this
relates to persistent activation of the DNA damage checkpoint and
the concomitant induction of non-coding RNAs from repetitive
elements such as the human Alu elements.

Telomere length is highly connected with the replicative lifes-
pan of metazoan cells. Telomeres shorten with each successive
round of DNA replication until one telomere reaches a thresh-
old of “shortness” that emits a chronic DNA damage signal that
causes the cell to cease dividing and enter senescence. Mechanis-
tically, the short telomeres are seen as chronic DNA damage by
the cell, resulting in the activation of the DDR, which causes a
G1 cell cycle arrest (d’Adda di Fagagna et al., 2003). Telomere-
mediated activation of the DDR appears to be intimately linked
to the chromatin structure. Specifically, it was shown that chronic
DNA damage from the processed telomeres also affects histone
expression leading to their depletion and to the depletion of the
central histone chaperones (O’Sullivan et al., 2010). The telomeric
chromatin was progressively destabilized by this histone deple-
tion, leading to a boost in telomere-associated DDR with each
successive cell cycle (O’Sullivan et al., 2010). In a related study,
the senescence-inducing chronic DNA damage signal caused by
genotoxic stress was accompanied by reduced levels of the his-
tone H2A variants in human fibroblasts (Lopez et al., 2012). By
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analogy, the level of total histone proteins decreases dramatically
during replicative aging of budding yeast, but in this instance the
trigger is not shortened telomeres but instead it appears to be due
to a defect in protein synthesis during aging (Feser et al., 2010).

Perhaps related to the global relaxation of chromatin during
aging, silenced regions of the genome become expressed. In yeast,
replicative aging has long been known to be accompanied by the
loss of transcriptional silencing (Smeal et al., 1996). This loss of
silencing during yeast aging is likely due to both a reduction in
histone protein levels during aging (Feser et al., 2010) and the
reduced level of the Sir2 silencing protein (Dang et al., 2009).

Not all regions of the genome show relaxation of chromatin
structure during aging, because senescent cells show heterochro-
matin foci called senescence-associated heterochromatin foci
(SAHF; Zhang et al., 2005). The formation of SAHF is dependent
on the histone chaperones ASF1A and HIRA and SAHF have a
repressive histone variant, termed macroH2A (Zhang et al., 2005,
2007). It is not easy to distinguish when and where chromatin
relaxation or condensation is occurred during cellular senescence.
Besides, SAHF have not yet been observed in cells from old organ-
isms although the levels of the essential factors to form SAHF
(HIRA and macro H2A) are induced in cells from old organisms
(Jeyapalan et al., 2007; Kreiling et al., 2011). Further studies are

needed to determine how the chromatin structure changes over
different regions of the genome during in vivo and in vitro aging
(or senescence).

Increased transcription from the normally silenced Alu and
SINE retrotransposons of human adult stem cells also occurs
during aging (Wang et al., 2011). Whether this increased retro-
transposon transcription is the consequence of the potential
decay of the chromatin structure during aging is not yet known.
Intriguingly, this Alu/SINE transcription appears to activate the
DDR and subsequently causes senescence of adult human stem
cells. This was all shown in an elegant study from the Lunyak
lab, using ex vivo aging of human adipose derived mesenchy-
mal stem cells where they noticed that the DNA damage foci
that arose during aging and senescence localize to Alu retrotrans-
poson/SINE elements and pericentromeric regions (Wang et al.,
2011). Alu/SINE elements and pericentromeric chromatin are
normally transcriptionally silenced. However during aging and
senescence the Alu/SINEs were transcribed by RNA polymerase
III (Wang et al., 2011). Furthermore Alu/SINE transcription may
be required for the recruitment of 53BP1 to the DNA repair foci
because a RNA pol III inhibitor blocked formation of 53BP1 foci
(Wang et al., 2011). The age-dependent DNA damage foci at the
pericentromeric DNA is accompanied by a localized failure to

FIGURE 2 | Model for the role of excessive Alu/SINE RNA transcription in driving cells into senescence. The model is based on the work from the Lunyak
lab and is described in the text.
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recruit cohesion and condensin 1 complexes during aging (Wang
et al., 2011). Given that cohesion aids in DSB repair (Unal et al.,
2004, 2007), failure to recruit cohesin during aging could explain
the persistent DNA damage foci. If this is the case, the retro-
transposon transcripts rather than retrotransposon transcription
appear to be important for cohesion complex recruitment, given
that knockdown of the Alu/SINE RNAs in senescent human adult
stem cells caused loss of the persistent DNA damage foci and
even restored their proliferative properties (Wang et al., 2011).
This leads to a model where low levels of the retrotransposon
transcripts are important for maintaining a repressive chromatin
structure that allows the recruitment of cohesion and condensin
I complexes that are important for the maintenance of pericen-
tromeric integrity (Figure 2). However, in response to a potential
decay of the chromatin structure during aging, excess retro-
transposon transcription prevents recruitment of cohesion and
condensin, causing persistent DNA damage checkpoint activation
and senescence.

REMAINING QUESTIONS
The recent papers discussed here have hinted at a complex
interplay between the chromatin structure, transcription, DDR,
and cellular senescence. However, many questions remain to be
answered. These include: What is the function of non-coding
RNAs in the DDR and cellular senescence? Are they involved in
regulation of chromatin structures and/or recruitment of proteins

to chromatin during the DDR and cellular senescence? What is
the mechanism to induce non-coding RNAs during DDR and cel-
lular senescence? Also, it will be interesting to determine whether
the diRNAs that are transcribed from the vicinity of DSBs remain
in the vicinity of the DSB. If so, this would be consistent with
the diRNAs helping to physically establish a repressive chromatin
structure? By contrast, if the diRNAs do not remain in the vicinity
of the DSB, this would be suggestive that the act of transcription
per se results in a more open chromatin structure, which would
indirectly help recruit the DNA repair machinery such as 53BP1.
Conversely, it is also a possibility that diRNA transcription around
a DSB may be the consequence, not the cause, of local chromatin
relaxation that occurs around the DSB. To determine if this is the
case, it would be interesting to determine if the diRNAs are only
produced over the domain that has lost histones or has H2AZ
incorporation.

A better understanding of how diRNAs are induced in response
to DNA damage may also be relevant for understanding how retro-
transposon RNA transcription is induced during adult human
stem cell aging. Is it a response to DNA breaks or a consequence
of altered chromatin structure allowing access to the general
transcription machinery? Do retrotransposon transcripts play a
structural role in the maintenance of chromatin structure over
these regions of the genome? Investigation of these and many other
pertinent questions will doubtless provide mechanistic insight and
more important discoveries.
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