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Software which simulates, infers, or analyzes ancestral recombination graphs (ARGs)
faces the problem of communicating them. Existing formats omit information either about
the location of recombinations along the chromosome or the position of recombinations
relative to the branching topology. We present a specialization of GraphML, an XML-based
standard for mathematical graphs, for communication of ARGs. The GraphML <node>

type is specialized to contain the node type, time, recombination location, and name. The
GraphML <edge> type is specialized to contain the ancestral material passed along that
edge. This approach, which we call ArgML, retains all information in the original ARG. Due
to its use of established formats ArgML can be parsed, checked and displayed by existing
software.
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INTRODUCTION
Phylogenetic trees used to represent the histories of species or
populations are usually communicated using the Newick format
described in Olsen (1990). Ancestral recombinant graphs (ARGs)
(Griffiths and Marjoram, 1997) are directed acyclic graphs which
generalize phylogenetic trees to allow recombination. Griffiths’
specification of the ARG gives both the time and branching struc-
ture associated with each recombination event and the ancestral
material inherited along each branch. However, this has not been
easy to accommodate within current formats for communicating
phylogenies.

Two approaches have been used. Interval-tree representations
break the chromosome into non-recombining segments, spec-
ifying the Newick tree of each segment along with the seg-
ment boundaries. This approach is used by the ms program of
Hudson (2002) and other data simulators as it provides suffi-
cient information for simulation of data on an ARG, but it loses
information about the number, time, and topological location
of recombination events. Directed-graph representations [used
by Extended Newick (Cardona et al., 2008) among others (see
for a review, Arenas et al., 2010)], store the ARG as a directed
graph with no specification of which material is inherited along
each edge. This is useful in analysis of hybridization, but it
loses information about which parts of the chromosome were
inherited from each ancestor. While the NeXML standard (Vos
et al., 2012) discusses the potential use of NeXML for ARGs,
it does not specify the tags needed to add ancestral informa-
tion, so currently offers only the directed-graph representation.
In this paper we propose a format based on the directed-graph
approach but specifying the ancestral material inherited along
each edge. All details of the ARG can be reconstructed from this
format.

The GraphML standard (Bandes et al., 2001) was devel-
oped to codify graph structures in terms of nodes and
edges. Tools such as Mathematica (Wolfram, 2003) and Gephi

(Bastian et al., 2009) provide methods for reading and plot-
ting GraphML files, though they display only connectivity as
they have no concept of time ordering. Since GraphML is
based on XML (Bray et al., 2008), GraphML files can be
parsed and error-checked by XML-handling software. Thus,
programs wishing to read or write GraphML can make
use of existing XML libraries such as TinyXML (Thomason,
2013).

Motivated by the need of our program LAMARC (Kuhner,
2006) to store and communicate ARGs, we have developed
ArgML, a specialization of GraphML which adds time and ances-
tral material information. We propose it as a standard for-
mat for communicating ARGs between programs. ArgML files
can be read directly by Mathematica (an example is shown in
Figure A1) and will be read and written by an upcoming version
of Lamarc.

METHODS
To express coalescent times, node types, and sites transmit-
ted, we leveraged GraphML’s general-purpose node and edge
annotation capability as follows. To the <node> tag we
added four fields:<node_type>, the kind of node (Tip, Rec,
Coal); <node_label>, the (optional) name of the node;
<node_time>, the time of the node (relative to the time at
the tips); and <rec_location>, the chromosomal location
of the recombination represented by this node, if any. To the
<edge> tag we added <live_sites>, giving the ances-
tral material transmitted along that <edge>. The contents of
<live_sites> are one or more entries of the form [first-
site:lastsite+1). This [x:y) notation is a standard convention for
half-open intervals (e.g., Austern, 1999) and indicates that the
first site of the recombinational interval is x and the last site is one
site before y; site y itself is not included. If the ancestral material
contains more than one discontinuous segment, this is written as
<live_sites> [w:x) [y:z) </live-sites>.
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These new keys are defined within the GraphML source file
(see Appendix) and can be handled by an XML parser such as
TinyXML (Thomason, 2013) without further intervention.

Time information could be expressed either as a branch length
(as in Newick format) or a node time. We have found that branch
length representation of a strict clocklike tree is prone to numeri-
cal precision issues leading to violations of the clock when branch
lengths are summed. Use of node times avoids this problem.

LIMITATIONS
We assume that an ARG is time-ordered and clocklike. Non-
clocklike trees are difficult to use in the ARG context as time
information is needed to distinguish the lineages contribut-
ing to a recombination from the resulting recombinant lineage.
Therefore, violation of the molecular clock in an ARG is best rep-
resented by a multiplier on the time-based branch length, not by
a mutation-based non-clocklike branch length. Such a multiplier
could readily be added to ArgML.

Users of ArgML should be aware that the clock requirement
cannot be checked by GraphML parsers and should be checked
by special-purpose code in programs reading or writing ARGs.

We also assume that the ARG is fully specified with the
locations of all recombinations. Graphs without locational infor-
mation can arise from hybridization where the contribution of
each parental species to the hybrid is not known. They could
be straightforwardly coded in GraphML but will not be substi-
tutable for ARGs in most applications (for example, whereas an
ARG can be decomposed into interval trees, this is not true for a
hybridization graph).

The ArgML format does not represent gene conversion or
multiple crossovers in the same meiosis. These events could be
coded as two or more recombinations occurring at the same time,
although this would impose a fictitious ordering among what are
actually components of the same event.

Currently no tool exists to display time ordered ArgML trees.
It is to be hoped that someone will create such a tool in the future.

EXAMPLE
Consider the following time ordered ARG (Figure 1). The tips are
labeled 2, 3, and 4, the root is 1, the coalescences are 7, 8, 9, and 10,
and the recombinations are 5 and 6. Ancestral material transmit-
ted along each edge is indicated. There are 20 sites in the ancestral
material. Recombinations occur at the link between two sites and
there cannot be links before the first site or after the last, therefore
there are 19 links.
Thus, recombination 6 above is defined by:

<node id=‘‘6’’>
<data key=‘‘node_type’’>Rec</data>
<data key=‘‘node_time’’>0.2</data>
<data key=‘‘rec_location’’>17</data>

</node>
<edge source=‘‘7’’ target=‘‘6’’>
<data key=‘‘live_sites’’>[10:17)</data>

</edge>
<edge source=‘‘8’’ target=‘‘6’’>
<data key=‘‘live_sites’’>[17:21)</data>

</edge>

FIGURE 1 | A recombinant graph.

The ancestral material transmitted between nodes 8 and 6 above
is expressed as [17:21) which is a half open interval and is read as
“the segment that begins at site 17 and ends before site 21.” Thus,
it contains sites 17, 18, 19, and 20 and the links between them.
Similarly [10:17) contains sites 10–16 and their connecting links.
To maintain consistency with this half open interval notation, the
<rec_location> of the recombination that is between 16
and 17 is numbered 17 and can be thought of as being “before”
site 17.

Note in the figure that two discontinuous seg-
ments are transmitted between nodes 8 and 9. This is
expressed by:

<edge source=‘‘9’’ target=‘‘8’’>
<data key=‘‘live_sites’’>
[1:10)[17:21)</data>

</edge>

CONCLUSIONS
ArgML augments the well-established GraphML format with all
of the information needed to transmit ARGs. A full ARG identi-
cal to the original can be drawn from the ArgML representation
even if multiple recombinations occurred at the same inter-site
link. This specialization allows users to leverage the numerous
existing tools that already understand GraphML. Further infor-
mation needed for handling of ARGs could be readily added to
the standard.
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APPENDIX
APPENDIX 1
Full GraphML Source File for the Ancestral Recombination Graph:

<?xml version=‘‘1.0’’ ?>

<graphml>
<key id=‘‘live_sites’’ for=‘‘edge’’ attr.name=‘‘lvlinks’’ attr.type=‘‘string’’ />
<key id=‘‘rec_location’’ for=‘‘node’’ attr.name=‘‘rloc’’ attr.type=‘‘long’’ />
<key id=‘‘node_type’’ for=‘‘node’’ attr.name=‘‘ntype’’ attr.type=‘‘string’’ />
<key id=‘‘node_time’’ for=‘‘node’’ attr.name=‘‘ntime’’ attr.type=‘‘double’’ />
<key id=‘‘node_label’’ for=‘‘node’’ attr.name=‘‘nlabel’’ attr.type=‘‘string’’ />
<graph id=‘‘myGraph’’ edgedefault=‘‘undirected’’>
<node id=‘‘2’’>
<data key=‘‘node_type’’>Tip</data>
<data key=‘‘node_time’’>0</data>
<data key=‘‘node_label’’>tip1</data>
</node>
<edge source=‘‘9’’ target=‘‘2’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
<node id=‘‘3’’>
<data key=‘‘node_type’’>Tip</data>
<data key=‘‘node_time’’>0</data>
<data key=‘‘node_label’’>tip2</data>
</node>
<edge source=‘‘5’’ target=‘‘3’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
<node id=‘‘4’’>
<data key=‘‘node_type’’>Tip</data>
<data key=‘‘node_time’’>0</data>
<data key=‘‘node_label’’>tip3</data>
</node>
<edge source=‘‘7’’ target=‘‘4’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
<node id=‘‘5’’>
<data key=‘‘node_type’’>Rec</data>
<data key=‘‘node_time’’>0.1</data>
<data key=‘‘rec_location’’>10</data>
</node>
<edge source=‘‘6’’ target=‘‘5’’>
<data key=‘‘live_sites’’>[10:21)</data>
</edge>
<edge source=‘‘8’’ target=‘‘5’’>
<data key=‘‘live_sites’’>[1:10)</data>
</edge>
<node id=‘‘6’’>
<data key=‘‘node_type’’>Rec</data>
<data key=‘‘node_time’’>0.2</data>
<data key=‘‘rec_location’’>17</data>
</node>
<edge source=‘‘7’’ target=‘‘6’’>
<data key=‘‘live_sites’’>[10:17)</data>
</edge>
<edge source=‘‘8’’ target=‘‘6’’>
<data key=‘‘live_sites’’>[17:21)</data>
</edge>
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<node id=‘‘7’’>
<data key=‘‘node_type’’>Coal</data>
<data key=‘‘node_time’’>0.3</data>
</node>
<edge source=‘‘10’’ target=‘‘7’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
<node id=‘‘8’’>
<data key=‘‘node_type’’>Coal</data>
<data key=‘‘node_time’’>0.4</data>
</node>
<edge source=‘‘9’’ target=‘‘8’’>
<data key=‘‘live_sites’’>[1:10)[17:21)</data>
</edge>
<node id=‘‘9’’>
<data key=‘‘node_type’’>Coal</data>
<data key=‘‘node_time’’>0.5</data>
</node>
<edge source=‘‘10’’ target=‘‘9’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
<node id=‘‘10’’>
<data key=‘‘node_type’’>Coal</data>
<data key=‘‘node_time’’>0.6</data>
</node>
<edge source=‘‘1’’ target=‘‘10’’>
<data key=‘‘live_sites’’>[1:21)</data>
</edge>
</graph>
</graphml>

APPENDIX 2
Mathematica Plot of the Ancestral Recombination Graph:
To generate the Mathematica plot below, store the above data as “recombtree.graphml”
Command to read recombtree.graphml and view it:
recplot = Import[“recombtree.graphml”, “Graphics”, VertexLabeling -> True, ImageSize -> {700, 700}]
Note this is purely the connectivity of the tree as Mathematica has no concept of time ordering.

FIGURE A1 | Mathematica version of Figure 1 recombinant graph.
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