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The mammalian target of rapamycin (mTOR) inhibitors, a set of promising potential
anti-cancer agents, has shown response variability among individuals. This study aimed
to identify novel biomarkers and mechanisms that might influence the response to
Rapamycin and Everolimus. Genome-wide association (GWA) analyses involving single
nucleotide polymorphisms (SNPs), mRNA, and microRNAs microarray data were assessed
for association with area under the cytotoxicity dose response curve (AUC) of two mTOR
inhibitors in 272 human lymphoblastoid cell lines (LCLs). Integrated analysis among SNPs,
expression data, microRNA data and AUC values were also performed to help select
candidate genes for further functional characterization. Functional validation of candidate
genes using siRNA screening in multiple cell lines followed by MTS assays for the two
mTOR inhibitors were performed. We found that 16 expression probe sets (genes) that
overlapped between the two drugs were associated with AUC values of two mTOR
inhibitors. One hundred and twenty seven and one hundred SNPs had P < 10−4, while 8
and 10 SNPs had P < 10−5 with Rapamycin and Everolimus AUC, respectively. Functional
studies indicated that 13 genes significantly altered cell sensitivity to either one or both
drugs in at least one cell line. Additionally, one microRNA, miR-10a, was significantly
associated with AUC values for both drugs and was shown to repress expression of genes
that were associated with AUC and desensitize cells to both drugs. In summary, this study
identified genes and a microRNA that might contribute to response to mTOR inhibitors.
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INTRODUCTION
The mammalian target of rapamycin (mTOR), a kinase acting
downstream of the PI3K/AKT signaling pathway, is a critical reg-
ulator of basic cellular functions and plays an important role
in tumor progression. Activated mTOR as a response to nutri-
tional status promotes cell growth, proliferation, motility, and
metabolism (Guertin and Sabatini, 2005; Petroulakis et al., 2006)
through the regulation of a wide range of cellular activities,
including translation, transcription, mRNA turnover, protein sta-
bility, actin cytoskeletal organization, and autophagy (Jacinto and
Hall, 2003; Inoki et al., 2005). The best characterized function
of mTOR in mammalian cells is regulation of protein translation
through key downstream effectors of mTOR complex 1 (TORC1),
the ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E
binding protein (4EBP1). S6K is the major ribosomal protein S6
kinase in mammalian cells. Phosphorylation of the S6 protein by
S6K selectively increases the translation of mRNAs containing a
tract of pyrimidines motif, which encode ribosomal proteins and
other translation regulators, thereby enhancing the overall trans-
lation capacity of the cells (Meyuhas, 2000; Inoki et al., 2005).
4EBP1 acts as a translational repressor by binding and inhibiting

the eukaryotic translation initiation factor 4E (elF4E), which rec-
ognizes the 5′-end cap of eukaryotic mRNAs (Cho et al., 2005;
Richter and Sonenberg, 2005). Phosphorylation of 4EBP1 by
mTOR results in the dissociation of 4EBP1 from elF4E, thereby
relieving the inhibition of elF4E-dependent translation initiation
by 4EBP1.

Since aberrant activity of the PI3K/AKT/mTOR pathway
is commonly observed in cancer, mTOR inhibitors (e.g.,
Everolimus, Deferolimus, and Temsirolimus) have emerged as
promising therapeutic agents for the treatment of a variety types
of cancer, including renal-cell carcinoma, breast carcinoma, non-
small-cell lung carcinoma, endometrial carcinoma, glioblastoma,
and mantle cell lymphoma (Chapman and Perry, 2004; Rowinsky,
2004; Vignot et al., 2005; Hartford and Ratain, 2007). However,
mTOR inhibitors have severe adverse effects such as nephro-
toxicity and potential immune suppression (i.e., skin reactions,
mucositis, and myelosuppression) (Rowinsky, 2004; Guertin and
Sabatini, 2005; Vignot et al., 2005). Many factors contribute to
mTOR drug response, with genetic variation being one major fac-
tor. To maximize the efficacy and safety of mTOR inhibitors, there
is a critical need to identify genetic biomarkers for response and to
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elucidate specific mechanisms by which these biomarkers might
be involved in response to mTOR inhibitors.

In the present study, we aimed to identify novel pharmacoge-
nomic candidates that might contribute to variation in response
to two mTOR inhibitors, Rapamycin and Everolimus, using a cell
line system consisting of 300 human lymphoblastoid cell lines
(LCLs) from three ethnic groups. In addition to cytotoxicity rep-
resented by the dose response curves (AUCs) for the two mTOR
inhibitors, we have also obtained extensive genomic informa-
tion for these LCLs, including approximately 1.3 million SNPs,
54,613 mRNA expression probe sets and 228 microRNA probe
sets. This model system has previously been utilized successfully
to identify genetic biomarkers associated with drug response for a
variety of anti-cancer agents (Li et al., 2008, 2009; Pei et al., 2009;
Niu et al., 2010), as well as to interpret GWAS signals identified
during clinical pharmacogenomic studies of aromatase inhibitor
induced musculoskeletal adverse events (Ingle et al., 2010). In
this study, we performed genome-wide association (GWA) analy-
ses among SNPs, mRNA expression, microRNA expression, and
cytotoxicity phenotypes, as measured by AUC values, for two
mTOR inhibitors to identify candidate genes or microRNAs that
might contribute to variation in response to mTOR inhibitors.
We subsequently validated 13 of these candidate genes and one
microRNA using siRNA screening followed by MTS and colony
formation assays.

MATERIALS AND METHODS
CELL LINES
300 EVB-transformed LCLs from healthy subjects (sample sets
HD100CAU, HD100AA, HD100HCA) were obtained from the
Coriell Cell Repository (Camden, NJ, USA), as reported previ-
ously (Li et al., 2008; Niu et al., 2010). All of these samples had
been anonymized by the National Institute of General Medical
Sciences (NIGMS) before deposit, and all subjects had pro-
vided written consent for the use for their DNA and cells for
experimental purpose. Two hundred and seventy two LCLs from
87 Caucasian–American (CA), 91 African–American (AA) and
94 Han Chinese–American (HCA) subjects were included in
this study. Human diploid fibroblast IMR-90 cell and human
renal carcinoma Caki2 cells were provided by Dr. Andrew
H. Limper, and Dr. Haidong Dong, respectively, at the Mayo
Clinic. The human glioma U87 cell line was purchased from
ATCC (no. HTB-14). LCLs were cultured in RPMI 1640 media
(Cellgro, VA) supplemented with 15% FBS (Atlanta Biologicals,
GA, USA). Caki2 cells were cultured in RPMI 1640 contain-
ing 10% FBS. Both the IMR90 and U87 cell lines were grown
in DMEM media (GIBCO, Carlsbad, CA, USA) with 10%
FBS.

TRANSIENT TRANSFECTION AND RNA INTERFERENCE
SiRNA duplex for candidate genes and negative control, as well
as miR-10a inhibitor, microRNA inhibitor negative control, miR-
10a mimic and microRNA mimic negative control were all
purchased from Dharmacon Inc. (Lafayette, CO, USA). Cells
were reversely transfected with 30 nM of siRNA or microRNA
mimic/inhibitors with Lipofectamin™ RNAiMax transfection
reagent (Invitrogen, Carlsbad, CA, USA).

DRUG TREATMENT
The mTOR inhibitors, Rapamycin and Everolimus, were pur-
chased from Sigma-Aldrich (St. Louis, MO). Lymphoblastoid
cells were seeded in 96 well plates 2 h before drug treatment,
whereas IMR90, U87, and Caki2 cells were plated 24 h before drug
treatment to allow the cells to adhere. Rapamycin and Everolimus
were added to the wells at 8 concentrations ranging from 10−7 nM
to 1 μM for 72 h before cytotoxicity analysis. For colony forma-
tion assay, cells were treated with 0.1, 0.25, 0.5, 0.75, and 1 nM
concentration of the two drugs.

CYTOTOXICITY ASSAY
Cytotoxicity assays with all cell lines were performed with
the CellTiter-96® AQueous MTS Proliferation Assay (Promega
Corporation, Madison, WI, USA) in 96 well plates. LCLs
were seeded at a density of 5 × 105cells/ml (100 μl/well), and
IMR90, U87 and Caki2 cells were plated at 2.5 × 104 cells/ml
(100 μl/well). Cytotoxicity was measured by adding 20 μl MTS
reagent to each well 72 h after drug treatment. Cytotoxicity for
human tumor cell lines and fibroblasts were performed using
the same procedure except that in this case, cells were incubated
overnight before drug treatment.

COLONY FORMATION ASSAY
Caki2 cells were seeded in 6 well plates. Twenty-four hours later,
drugs were added and the cells were incubated for an additional
12 days. Colonies were then fixed with methanol, stained with
crystal violet (Bio-Rad Laboratories, Inc. Hercules, CA, USA) and
counted visually.

REAL-TIME QUANTITATIVE REVERSE TRANSCRIPTION-PCR (qRT-PCR)
mRNA was extracted by the use of ZR RNA MiniPrep™ kit (Zymo
Research, Irvine, CA, USA), followed by one-step qRT-PCR per-
formed with the SYBR® Green PCR Master Mix kit (Applied
Biosystems Inc., Foster City, CA, USA). microRNA was extracted
with the miRNeasy Mini Kit (QIAGEN), reverse transcribed with
miScript Reverse Transcription Kit (QIAGEN) and detected by
the use of the miScript SYBR Green PCR Kit (QIAGEN). Specific
primers for mRNA and microRNA amplifications were purchased
from QIAGEN.

GENOME-WIDE SNP AND EXPRESSION DATA
The genotyping and expression array data were obtained for all
272 LCLs and were quality controlled as previously described
(Li et al., 2008; Niu et al., 2010). These data are pub-
lically available from the NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo) under SuperSeries accession
numbers GSE24277 and GSE23120. Briefly, DNA for all of
the LCLs were genotyped in the Genotype Shared Resource
(GSR) at the Mayo Clinic, using Illumina HumanHap 550K
and 510S BeadChips containing 561,298 and 493,750 SNPs,
respectively. In addition, we also obtained publically avail-
able Affymetrix SNP Array 6.0 Chip SNP data involving
643,600 SNPs for these cells. SNPs with call rate less than
95%, minor allele frequency (MAF) less than 0.05 or Hardy–
Weinberg Equilibrium (HWE) p-values less than 0.001 were
removed. Overall, 1,348,798 SNPs passed quality control. Total
RNA was extracted using RNeasy Mini kits (QIAGEN Inc.,
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Valencia, CA, USA). mRNAs were assayed after hybridiza-
tion to Affymetrix U133 Plus 2.0 GeneChips (54,613 probe
sets), as previously described (Li et al., 2008; Niu et al.,
2010).

microRNA EXPRESSION DATA
MicroRNA was extracted from each of the cell lines using the
mirVana™ microRNA isolation kit (Ambion, Austin, TX, USA).
microRNA quality was tested using an Agilent Bioanalyzer, fol-
lowed by microRNA BeadArray (Illumina, Inc., San Diego, CA,
USA), as described previously (Cunningham et al., 2009). Briefly,
total RNA were polyadenylated and then reversely transcribed
into cDNA using a biotinylated oligo-dT primer with a univer-
sal PCR sequence at its 5′-end. This was followed by annealing
of the microRNA-specific oligonucleotide (MSO) pool. Common
primers were used to amplify the cDNA templates. The single-
stranded PCR products were hybridized to the Sentrix Array
Matrix (SAM), where the fluorescently labeled strand binds to
the bead on the array containing the complementary address
sequences. The SAMs were imaged using an Illumina’s BeadArray
Reader to measure fluorescence intensity, and were analyzed
by using Illumina’s BeadStudio version 3.1.1. After removing
probes with =80% missing (using a p-value detection thresh-
old of 0.01) and individual cell lines with =50% missing, 453
probes out of the initial 733 probe sets for 282 individual sam-
ples remained. Finally, probes with SD of expression levels among
and of the cell lines < 0.40 were removed, leaving 228 probes for
analysis.

STATISTICAL ANALYSIS
A detailed description of analysis methods for assessing the
association of cytotoxicity phenotypes with SNP and/or mRNA
expression data using these LCLs has been described elsewhere
(Li et al., 2008, 2009; Niu et al., 2010). Cytotoxicity phenotypes
were determined by the best fitting curve using the R pack-
age “drc” (dose response curve) (http://cran.r-project.org/web/
packages/drc.pdf) based on a logistic model, either 4 parameter
logistic, 4 parameter logistic with top = 100%, or 4 parameter
logistic with bottom = 0%. The AUC phenotype was deter-
mined using the best fitting curve by numerically determining
the area under the curve from dose 10−7 nM to 1 μM. Since
the LCLs represent variation from different sexes and races, the
AUC phenotype was Van der Waerden transformed, adjusted for
sex, race, and population stratification as previously described
(Li et al., 2008; Niu et al., 2010), and standardized for associa-
tion analysis. SNP data was assessed by population stratigication
using the method described by Price et al. (2006). In addition,
expression array data was adjusted on standardized residuals for
gender, race and batch after Log2 transformation and GCRMA
normalization (Ballman et al., 2004; Wu et al., 2004). MicroRNA
probes were transformed using a van der Waerden transforma-
tion followed by adjusting for all the factors as expression data.
Pearson correlations were calculated to quantify the association
between adjusted SNPs and AUC values. Similar correlation anal-
yses were also performed between AUC values with normalized
and adjusted mRNA expression microRNA data. False discovery
rate Q-values (Storey, 2003, 2002) were computed for each test.

For siRNA and miR-10a transfection experiments, group mean
values for AUC and gene expression were compared by using
Student’s t-test.

RESULTS
CYTOTOXICITY OF RAPAMYCIN AND EVEROLIMUS IN
LYMPHOBLASTOID CELL LINES
Cytotoxicity studies were performed to determine the varia-
tion of drug response (sensitivity or resistance) to Rapamycin
and Everolimus among 272 individual LCLs from three eth-
nic groups. Representative cytotoxicity data for Rapamycin and
Everolimus demonstrated the variation in drug response among
individual cell lines (refer to Figures 1A,B). AUC values for
each cell line were calculated to capture the entire cytotoxicity
curve. The frequency distribution of AUC values for both drugs
were shown in Figures 1C,D. The mean AUC values ± stan-
dard error (SE) for Rapamycin and Everolimus were 9.2 ± 0.15
and 9.6 ± 0.14, respectively. The AUC values for the two mTOR
inhibitors were highly correlated (R = 0.833 and p = 1.78e−70).
Neither race (P = 0.458, Rapamycin; P = 0.096, Everolimus) nor
gender (P = 0.252, Rapamycin; P = 0.292, Everolimus) was sig-
nificantly associated with Rapamycin or Everolimus AUC values
(Supplementary Figure S1).

GENOME-WIDE ASSOCIATIONS FOR CANDIDATE GENE
IDENTIFICATION
mRNA expression vs. cytotoxicity
We first identified candidate genes with expression levels that were
strongly correlated with cytotoxicity AUCs for Rapamycin and
Everolimus, respectively (refer to Figures 2A,B). Only probe set
229939_at (FLJ35220) for Rapamycin and 229419_at (FBXW7)
for Everolimus was genome-wide significant after Bonferroni
correction (P = 0.006 and 0.02, respectively). Forty-nine probe
sets (for 48 genes) and 56 probe sets (for 55 genes) were
found to be associated with Rapamycin and Everolimus AUCs
with P = 10−4 (Supplementary Tables S1, S2). Among these
probe sets, 16 probe sets (genes) overlapped between the two
drugs. Additionally, 3 and 12 genes were highly associated with
both Rapamycin and Everolimus AUCs with P < 10−5, respec-
tively. The most significant probe set for an annotated gene was
PBX3 (P = 3.45 × 10−6) for Rapamycin and FBXW7 for (P =
3.88 × 10−7) for Everolimus. Two genes were found to have 2
probe sets associated with AUC values for each of the drugs
(P < 10−4): IQSEC1 (203906_at, P = 3.70 × 10−5; 203907_s_at,
P = 5.82 × 10−5) and ZNF765 (1558942_at, P = 6.84 × 10−5;
1558943_x_at, P = 3.49 × 10−5) for Rapamycin; and FBXW7
(229419_at, P = 3.88 × 10−7; 222729_at, P = 4.78 × 10−5) and
GIMAP1 (1552316_a_at, P = 5.48 × 10−6; 1552315_at, P =
9.63 × 10−5) for Everolimus.

For the functional validation, we included the 16 overlapping
genes for both drugs with P < 10−4, genes with P < 10−5 for
Rapamycin or Everolimus, as well as the 4 genes that had 2 probe
sets associated with AUC values with P < 10−4 for each drug.
Among those genes, we then removed genes with low expression
levels in the LCLs (<50 after GCRMA normalization). Therefore,
13 genes were selected for inclusion in the subsequent functional
validation studies (refer to Table 1A and Figure 3).
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FIGURE 1 | Cytotoxicity of Rapamycin and Everolimus. Representative
cytotoxicity dose response curves for Rapamycin (A) and Everolimus (B).
Two cell lines from each of the three ethnic groups studied (AA, African
American, CA, Caucasian American and HC, Han Chinese American) were
selected to illustrate a range of Rapamycin and Everolimus cytotoxicity. The

x-axis indicates the log transformed dosage (nM) and the y-axis indicates the
cell viability normalized to control (without drug treatment). Symbols
represent individual cell line from different ethnic groups. Histograms of
frequency distributions of AUC values for Rapamycin (C) and Everolimus (D)

for 272 lymphoblastoid cell lines.

SNP vs. cytotoxicity
Next we performed GWA analysis between SNPs and AUC val-
ues for both Rapamycin and Everolimus (refer to Figures 2C,D).
Although none of SNPs reached genome-wide significance (P <

10−8), 127 and 100 SNPs had P < 10−4, while 8 and 10 SNPs
had P < 10−5 with Rapamycin and Everolimus AUC, respec-
tively (Supplementary Tables S3, S4). Seven genes for Rapamycin
and 4 genes for Everolimus contained multiple SNPs with P <

10−4. Among these genes, ABCC1 and MCTP2 were common to
both drugs, and those genes were both expressed in the LCLs.
Therefore we included these two genes in our functional stud-
ies. The majority of the top associated SNPs were located in the
non-coding regions of genes, except for 2 non-synonymous SNPs,
rs2076523 (P = 2.77 × 10−5) and rs3809835 (P = 7.73 × 10−5)
both for Rapamycin. These SNPs were located in the coding
region of BTNL2 and PITPNM3, respectively. For this reason,
these 2 genes were also selected for inclusion in the functional
studies of their potential possibility to influence cytotoxicity. A
total of 4 genes were selected for functional validation based on
SNP vs. cytotoxicity associations, as summarized in Table 1B.

Integrated analysis
In order to determine if the SNPs that were associated with cyto-
toxicity might regulate the expression of genes whose mRNA
expression influenced cytotoxicity, “integrated” analyses were
performed among SNPs, mRNA gene expression and AUC val-
ues for the two mTOR inhibitors studied, as described previously
(Storey). Specifically, for the top mTOR associated SNPs (i.e.,

SNPs with P < 10−4), we determined their association with gene
expression using P < 10−4 as a cutoff. These SNP-associated
genes were then narrowed down to those whose mRNA gene
expression probe sets were also associated with mTOR cytotox-
icity (P < 10−3). As the focus of these analyses was exploratory
in nature and designed to generate a list of potential candidate
genes for functional follow-up, we used less stringent criteria for
statistical significance for this selection process.

Twenty SNP-gene pairs for Rapamycin and Everolimus
were identified through this integrative analysis (Supplementary
Tables S5, S6), with 3 common SNP-gene pairs overlapping
between both drugs: rs10780752-SLC39A9, rs7543260-DMD, and
rs10870177-YARS2, as listed in Table 1C. The SLC39A9, DMD,
and YARS2 genes, and genes harboring the SNPs (C9orf153, JUN,
and MAN1B) were all included for functional validation. In addi-
tion, we also included GYPC during our functional study, since
GYPC was one of the 7 genes containing multiple significant SNPs
that were associated with Rapamycin cytotoxicity (P < 10−4)
and the 2 significant SNPs (rs4144048 and rs2219206) located in
GYPC were also associated with expression levels of the PIP4K2A
and LOC100131081 genes (P < 10−4) for Rapamycin.

Functional validation of candidate genes in tumor and primary cell
lines
In summary, we selected 23 genes based on the strategy shown
in Figure 3 to perform siRNA screening, followed by MTS and
colony formation assays to determine the effect of these candi-
date genes on the cytotoxicity of mTOR inhibitors. We performed
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FIGURE 2 | Genome-wide association of mRNA expression and SNPs

with Rapamycin and Everolimus cytotoxicity. Association of basal gene
expression with AUC values for Rapamycin (A) and Everolimus (B).
Genome-wide association of SNPs with AUC values for Rapamycin (C) and

Everolimus (D). The x-axis represents chromosomal locations of gene probe
sets or SNPs, and the y-axis represents the −log10(P -value) for the
association of individual expression array probe sets or SNPs with AUC
values. A P -value of 10−4 is represented by a horizontal line.

these studies using Caki2 renal carcinoma cells, U87 glioblastoma
cells, and IMR90 primary fibroblast cells. The two cancer cell lines
were chosen because mTOR inhibitors are used to treat glioblas-
toma and renal carcinoma. The IMR90 cell line was chosen to be
a normal cell line used in the study. Eleven out of twenty-three
genes were verified to have a significant impact on the cytotox-
icity of Rapamycin and/or Everolimus using the MTS assays in
at least one cell line. Figure 4A shows the data for representa-
tive genes with a significant influence on the cytotoxicity of each
drug treatment in each cell line. Specifically, knockdown of 5
genes, ECOP, MGLL, SLC39A9, ZNF765, and MAN1B1 sensitized
the cells to Rapamycin and/or Everolimus in at least 2 cell lines
(P < 0.05). Down-regulation of NDUFAF2 and SLC39A9 desen-
sitized the cells to Rapamycin treatment in IMR90 and U87 cell
lines, respectively (P < 0.05). Additional genes that significantly
altered cell sensitivities are shown in Supplementary Figures S2,
S3, S4 for each cell line. All of the genes that were functionally
verified are listed in Table 2.

Furthermore, colony formation assays were also performed for
the genes expressed in the Caki2 cell line, due to the relative ease
of colony formation with this cell line compared to the other cell
lines studied. We confirmed that knockdown of ECOP and MGLL
significantly reduced colony formation as compared with the neg-
ative siRNA control (P < 0.05) after treatment with Rapamycin
and/or Everolimus (Figures 4B,C), an observation that was con-
sistent with the cytotoxicity assay results for the same cell line.
In addition, even though the ABCC1, PITPNM3, and DMD

genes were not verified by MTS assay, they were also shown to
significantly decrease colony formation after Rapamycin or/and
Everolimus treatment. However, we realize that the performance
of colony formation assays using only the Caki2 cell line may be
biased since not all the candidate genes were well expressed in this
particular cell line. Overall, we functionally validated 13 out of 23
candidate genes selected from the GWAS analyses in at least one
cell line with at least one assay (refer to Table 2).

Effect of miR-10a on cytotoxicity of rapamycin and everolimus and
gene regulation
MicroRNAs are a class of non-coding RNAs that regulate genes
and/or protein expression by binding with mRNA to mediate
mRNA degradation or block mRNA translation (Bartel, 2004,
2009). Therefore, microRNAs could also contribute to response
to mTOR inhibitor effect. The microRNA screening proce-
dure that we used is outlined graphically in Figure 5A. Briefly,
228 association tests were conducted between each microRNA
expression probe and AUC values for both Everolimus and
Rapamycin using the 262 cell lines for which we had both
cytotoxicity and microRNA data sets. One microRNA expres-
sion probe, ILMN_3167552 (miR-10a), was highly associated
with Everolimus AUC (P = 1.04 × 10−4, R = 0.2377), a value
that reached genome-wide significance (Figure 5B). This same
microRNA probe was also the most significant probe associated
with Rapamycin AUC (P = 4.25 × 10−4, R = 0.2610). MiR-10a
was further validated for its functional impact on cytotoxicity for
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FIGURE 3 | Schematic diagram of the strategy for selecting candidate

genes for functional validation. A total of 23 candidate genes were
selected based on genome-wide associations of expression (Exp) vs. AUC,
SNP vs. AUC and an “Integrated” analysis, as described in the text.

both drugs in the Caki2 cell line. MiR-10a mimic significantly
desensitized the cell to Rapamycin and Everolimus (P < 0.05), as
shown in Figure 5D.

To further pursue the effect of microRNA on gene expres-
sion, we performed an association study of miR-10a with mRNAs
whose expression levels were highly associated with Rapamycin
and Everolimus cytotoxicity (P < 10−4). Thirty-one mRNA
expression probe sets (28 genes) were determined to be highly
associated with miR-10a expression (P < 10−4) (Supplementary
Table S7). Specifically, 9 out of the 28 genes had already been
included for siRNA screening, as highlighted in Supplementary
Table S7. Therefore, those 9 genes were tested further for the
effect of miR-10a on gene regulation. HOXA1, a known target
for miR-10a, was used as a positive control gene (Mansfield et al.,
2004; Garzon et al., 2006). All of the genes (including the positive
control, HOXA1) were regulated by miR-10a in the same man-
ner: miR-10a mimic significantly suppressed gene expression,
while miR-10a inhibitor rescued gene expression (P < 0.05), as
shown in Figure 5E. Four of those 9 genes (PHLDA1, FBXW7,
NDUFAF2, and MGLL) were shown to have an effect on response
to Rapamycin or Everolimus in one or more cell lines (Table 2).
Down-regulation of 3 of the 4 genes (all except NDUFAF2) desen-
sitized the cells to mTOR inhibitors. In addition, Rapamycin
treatment significantly enhanced miR-10a expression in a dose
dependent manner (Figure 5C, P < 0.05), suggesting that miR-
10a might be suppressed by mTORC1 activation. We also tested
the effect of miR-10a on mTORC1 signaling by measuring phos-
phorylated S6K and 4EBP1 and found that knockdown or over-
expression of miR-10a did not result in a change of mTORC1
activity (data not shown).

DISCUSSION
mTOR inhibitors are a class of novel targeted agents that have
shown promising results in cancer treatment. However, the
response to mTOR inhibitors varies widely, ranging from lack of
efficacy to the occurrence of undesired side effects. Genetic vari-
ation is one of the major factors that can play an important role
in determining drug response (Wang et al., 2011). However, there

are only few published data on the influence of genetics on mTOR
inhibition effect. Examples include CYP3A5 and ABCB1 geno-
type effect on the pharmacokinetics of Rapamycin (Sirolimus)
as an immunosuppressant for organ transplantation (Anglicheau
et al., 2005; Mourad et al., 2005; Le Meur et al., 2006; Renders
et al., 2007; Miao et al., 2008). Therefore, it would be important
to identify and understand the biology underlying the possible
role of genetic variation in determining drug response to mTOR
inhibitors.

In this study, we took a genome-wide approach to screen
for pharmacogenomic candidates that might alter the effect of
mTOR inhibitors by taking advantage of extensive genomic data
that we have obtained for 272 LCLs (SNPs, gene expression and
microRNA expression), together with cytotoxicity data that we
generated with two mTOR inhibitors, Rapamycin and Everolimus
(Figures 1, 2). We used these two drugs to help inform the can-
didates identified between the drugs. This GWA analysis served
as a hypothesis generating step, allowing us to screen for genomic
candidates (SNP and genes) that showed strong associations with
mTOR inhibitor-induced cytotoxicity. We then focused primar-
ily on common candidates identified for both drugs. Genes such
as BTG2 and FBXW7 that are known to affect the mTOR signal-
ing pathway were also found to be associated with cytotoxicity of
mTOR inhibitors in our study (Kim et al., 2008; Mao et al., 2008),
suggesting that our association approach performed with 272
LCLs was capable of generating biologically relevant candidates
for follow-up study.

The LCLs have limitations, as we have previously discussed
(Niu et al., 2010). For example, EBV transformation can induce
chromosomal instability and cellular changes (Sie et al., 2009).
In addition, other factors such as cell growth rate and ATP level
can have an effect on cytotoxicity (Choy et al., 2008). Since these
cell lines do not necessarily represent the response of other types
of tissues or cells (Dimas et al., 2009), we selected the top candi-
date genes based on our analyses to determine their contribution
to variation in response to mTOR inhibitors. Two clinically rele-
vant tumor cell lines, renal carcinoma (Caki2) and glioblastoma
(U87), were selected for functional validation (Supplementary
Figures S2, S3) since mTOR inhibitors are used as a treatment
for these two types of tumors (Pantuck et al., 2006; Brugarolas
et al., 2008; Cloughesy et al., 2008) and because our data sug-
gested that these two cell lines were relatively more sensitive to
mTOR inhibitor treatment. A fibroblast cell line (IMR90) was also
included as a comparison to the tumor cell lines (Supplementary
Figure S4). The two tumor cell lines, Caki2 and U87, tended to
show similar results for several of the genes tested: ECOP, MGLL,
and MAN1B. Our study showed that knockdown of these genes
sensitized both Caki2 and U87 cells to mTOR inhibitors. ECOP
(EGFR-coamplified and overexpressed protein), a gene which is
amplified and overexpressed in at least a third of glioblastomas
with EGFR amplification (Eley et al., 2002), is known to be a
key regulator of NF-κB transcriptional activity that can con-
tribute to cell survival (Park and James, 2005). IMR90 cells, on the
other hand, seemed to be impacted by a different panel of genes,
BTG2, FBXW7, NDUFAF2, PHLDA1, and DMD, whose knock-
down did not have a significant impact in the two tumor cell
lines, suggesting cell line-specific effects. Many of these genes have
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FIGURE 4 | Functional validation of candidate genes with siRNA

knockdown in IMR90, U87 and Caki2 cell lines, followed by cytotoxicity

assay (A) and colony formation assays (B). Data shown are representative
experiments for selected genes in each cell line. siRNA knockdown for each
individual gene (dashed line) were compared with negative control siRNA

(solid line). (C). Knockdown efficiency was determined by qRT-PCR.
Experiments were repeated in triplicate with at least two independent
experiments. Significant P -values are listed for every gene. Error bars
indicate standard error of the mean (SEM) values. Significance of AUC values
between the control and specific siRNA was determined by student t-test.

not been previously reported to interfere with the mTOR pathway
except for FBXW7 (F-box and WD repeat domain containing 7),
which is known to target mTOR for degradation and which coop-
erates with PTEN for tumor suppression (Mao et al., 2008), and
BTG2 (B-cell translocation gene 2), which has been reported to
inhibit AKT phosphorylation and mTOR signaling. Our results
were compatible with the conclusion that down-regulation of
FBXW7 restored the target for mTOR inhibitors, thus sensitizing

cells to mTOR inhibitors, while knockdown of BTG2 activated the
mTOR pathway which might cause the cells to become “addicted”
to the mTOR pathway and, therefore, to benefit from mTOR
inhibition. It is also worth noting that knockdown of ZNF765
(zinc finger protein 765) was found to sensitize cells to mTOR
inhibitors in both the IMR90 and U87 cell lines (Table 2). ZNF765
is located on chromosome 19 and little is known with regard to
its function. Therefore, its involvement in the mTOR pathway and
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Table 2 | Summary of functional validation of candidate genes.

Gene Association Cytotoxicity (siRNA KD) Colony formation

(siRNA KD)

miR-10a regulation

Caki2 IMR90 U87 Caki2 Caki2

mRNA Exp vs. AUC
(13 genes)

BTG2 Exp vs. AUC (R = 0.27) Rap↓

ECOP Exp vs. AUC (R = 0.29) Rap↓ Eve↓ Eve↓ Rap↓
FBXW7 Exp vs. AUC (R = 0.26) Rap↓ Yes

GIMAP1 Exp vs. AUC (R = −0.24) Yes

GIMAP6 Exp vs. AUC (R = −0.26) Yes

GIMAP7 Exp vs. AUC (R = −0.25) Yes

MGLL Exp vs. AUC (R = 0.23) Rap↓ Eve↓ Eve↓ Rap↓ Eve↓ Yes

NDUFAF2 Exp vs. AUC (R = −0.24) Rap↑ Yes

PBX3 Exp vs. AUC (R = 0.28) Yes

PHLDA1 Exp vs. AUC (R = 0.24) Eve↓ Yes

SLC39A9 Exp vs. AUC and 3 way (R = 0.24) Rap↓ Rap↓ Rap↑ Eve↑
STAU Exp vs. AUC (R = 0.25) Yes

ZNF765 Exp vs. AUC (R = 0.25) Rap↓ Rap↓ Eve↓

SNP vs. AUC (4
genes)

ABCC1 SNP vs. AUC Rap↓

MCPT2 SNP vs. AUC Eve↓
BTNL2 SNP vs. AUC (non-synonymous)

PITPNM3 SNP vs. AUC (non-synonymous) Rap↓

Integrated analysis
(Exp, SNP and AUC)
(6 genes)

c9orf153 Integrated analysis (SNP)

GYPC Integrated analysis (SNP)

JUN Integrated analysis (SNP)

MAN1B1 Integrated analysis (SNP) Rap↓ Eve↓ Rap↓ Eve↓
YARS2 Integrated analysis (R = −0.24)

DMD Integrated analysis (R = 0.20) Rap↓ Rap↓ Eve↓

“Rap” represents Rapamycin treatment; “Eve” represents Everolimus treatment. “↓” indicates siRNA knockdown of the gene sensitizes to the Rapamycin and/or

Everolimus response (P < 0.05). “↑” indicates siRNA knockdown of gene desensitizes to the Rapamycin and/or Everolimus response (P < 0.05). “Yes” indicates

miR-10a was verified to regulate gene expression. Blank indicates no significant change in cytotoxicity after knockdown.

response to mTOR inhibitors needs to be investigated further in
the future.

Besides mRNA expression and SNPs, other genetic mecha-
nisms, such as copy number variation, epigenetic effects (CpG
methylation sites) and microRNAs might also influence response
to mTOR inhibitor (Shenouda and Alahari, 2009). Despite
the well-recognized importance of microRNAs and mTOR in
cancer, very few studies have linked microRNAs with mTOR
activity. MiR-99 was reported to mediate down-regulation of
mTOR/FGFR3 and suppress tumor growth; miR-100 is known
to inhibit mTOR signaling and enhance sensitivity to Everolimus
in clear cell ovarian cancer (Nagaraja et al., 2010; Oneyama et al.,
2011); and mTORC1 was recently reported to regulate miR-1 in
skeletal myogenesis (Sun et al., 2010). Therefore, in this study
we also attempted to determine whether microRNA might affect
response to mTOR inhibitors. One microRNA (miR-10a) was
shown to desensitize response to mTOR inhibitors (Figure 5D),
and also affected the expression of several candidate genes that

influenced sensitivity to mTOR inhibitors (Figure 5E). MiR-10a,
a member of the miR-10 family members, maps to chromo-
some 17 upstream of the HOX gene cluster and putatively reg-
ulates expression of the HOXA1, HOXA3, and HOXD10 genes
(Garzon et al., 2006; Han et al., 2007). It is upregulated in
glioblastoma, anaplastic astrocytomas and hepatocellular carci-
noma (Ciafre et al., 2005; Gaur et al., 2007; Lund, 2010), and
is known to be involved in the development of chronic and
acute myeloid leukemia (Agirre et al., 2008; Jongen-Lavrencic
et al., 2008). We also demonstrated that miR-10a can be induced
by mTOR inhibitors and that genes highly associated with
miR-10a were all negatively regulated by miR-10a. Based on
this evidence, we hypothesize that mTOR inhibitors upregulate
miR-10a expression, which in turn desensitizes cells to mTOR
inhibitors response. This process probably occurs through the
regulation of a set of genes whose expression levels are also crit-
ical in determining mTOR inhibitor response (Supplementary
Table S7). Therefore, upregulation of miR-10a might be one
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FIGURE 5 | MicroRNA screening and functional validation of miR-10a.

(A) Schematic diagram of the strategy used to select microRNAs for
functional validation. (B) Genome-wide associations of microRNAs with
AUC values for Rapamycin and Everolimus. MiR-10a was the most
significant microRNA associated with AUC values for both Rapamycin
and Everolimus. The x-axis represents 226 microRNA probes, and the
y-axis represents the −log10(P -value) for the association of individual
microRNA probe sets. A −log10(P -value) of 3.66 is highlighted with a
horizontal line, indicating a p-value with genome-wide significance after
Bonferroni correction for 228 tests. (C) Effect of Rapamycin on miR-10a

Expression. MiR-10a expression was significantly enhanced by Rapamycin
treatment compared with controls in Caki2 and U87 cell lines.
(D) Effect of miR-10a on the cytotoxicity of Rapamycin and Everolimus.
miR-10a overexpression (mimic) desensitized Caki2 cell to Rapamycin
and Everolimus. (E) Gene regulation by miR-10a. miR-10a inhibitor
“rescued” gene expression and mimic repressed gene expression in
Caki2 cell line compared with inhibitor negative control or mimic
negative control. The arrow indicates the positive control, the HOXA1
gene. Experiments were performed in duplicate and were repeated 3
times. Error bars indicate mean ±SEM values. ∗P < 0.05; ∗∗P < 0.001.

mechanism for acquired resistance after Rapamycin therapy.
Among the 9 genes that we tested, 5 had predicted binding sites
for miR-10a. However, several genes were found experimentally
to be negatively regulated by miR-10a, which was not consis-
tent with the positive association values between miR-10a and
mRNA expression (ex. FBXW7, R = 0.367; STAU1, R = 0.273;

PHLDA1, R = 0.431, etc) observed in our LCLs. This might
be due to the different cell specificity in terms of transcrip-
tion regulation. We have also shown that inhibition of mTOR
by Rapamycin upregulated miR-10a (Figure 5C), a process that
might create a feedback loop resulting in desensitization of cells
to mTOR inhibitors. However, the exact mechanisms by which
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miR-10a determines mTOR inhibitor response still need to be
investigated in future studies.

CONCLUSIONS
In summary, a pharmacogenomic approach based on the use
of genomic data rich LCLs allowed us to identify a series of
novel genetic candidates and a microRNAs that might con-
tribute to variation in response to mTOR inhibitors. Functional
validation of these candidates demonstrated the feasibility of uti-
lizing this cell-line based model system and a GWA approach
to generate hypotheses. These findings might help to enhance
our understanding of the regulation of the mTOR pathway and
of the mechanisms underlying variation in response to mTOR
inhibitors. Obviously this study represents an early attempt to
trying to identify biomarkers for response to mTOR inhibitors.
These candidates can now be tested in clinical settings in future
studies and, if confirmed, these studies could enhance our ability
to individualize treatment with mTOR inhibitors.
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