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Heart failure (HF) is the end stage of several pathological cardiac conditions including
myocardial infarction, cardiac hypertrophy and hypertension. Various molecular and cellular
mechanisms are involved in the development of HF. At the molecular level, the onset
of HF is associated with reprogramming of gene expression, including downregulation
of the alpha-myosin heavy chain ( 2α-MHC) gene and sarcoplasmic reticulum Ca + ATPase
genes and reactivation of specific fetal cardiac genes such as atrial natriuretic factor and
brain natriuretic peptide. These deviations in gene expression result in structural and
electrophysiological changes, which eventually progress to HF. Cardiac arrhythmia is caused
by altered conduction properties of the heart, which may arise in response to ischemia,
inflammation, fibrosis, aging or from genetic factors. Because changes in the gene
transcription program may have crucial consequences as deteriorated cardiac function,
understanding the molecular mechanisms involved in the process has become a priority in
the field. In this context, various studies besides having identified different DNA methylation
patterns in HF patients, have also focused on specific disease processes and their
underlying mechanisms, also introducing new concepts such as epigenomics. This review
highlights specific genetic mutations associated with the onset and progression of HF, also
providing an introduction to epigenetic mechanisms such as histone modifications, DNA
methylation and RNA-based modification, and highlights the relation between epigenetics,
arrhythmogenesis and HF.
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INTRODUCTION
Genetic mutations can contribute to the diverse pathologies of
heart failure (HF) by altering structure and therefore, the function
of proteins responsible for various cellular activities (Creemers
et al., 2011). While several studies have been devoted to the eval-
uation of genetic factors related to heart disease and genetic
complications, much less is known about the relevance of epi-
genetics. The term “epigenetics” is defined as changes in gene
expression that cannot be explained by changes in DNA sequence
(Egger et al., 2004) but rather result from alterations related to
packaging and/or translation of genetic information (Bird, 2007).
Epigenetic mechanisms can be acquired or heritable and consti-
tute a mean by which interactions between genes and environment
can occur. Epigenetic regulation occurs by three key mechanisms:
(i) methylation of CpG islands, mediated by DNA methyltrans-
ferases (DNMTs), (ii) modification of histone proteins and (iii)
microRNAs (miRNAs). Such modifications will lead to differential
expression of similar information depending on the surrounding
conditions, resulting in gene activation or silencing. Although
epigenetic variability of genetic information is part of normal
development and differentiation, it also depends on exogenous
stimuli (e.g., smoking, drug abuse) and can, therefore, reflect the
influence of those factors on the development of disease (Feinberg,
2007). The role of epigenetics has been mainly evaluated in can-
cer but recent studies have begun to address the involvement of
epigenetics in the development and progression of cardiovascular
diseases (CVD).

Heart failure is the end stage of several pathological cardiac con-
ditions including myocardial infarction (MI), cardiac hypertrophy
and hypertension. Various molecular and cellular mechanisms are
involved in the development of HF. At the molecular level, the
onset of HF is associated with reprogramming of gene expres-
sion, including downregulation of the alpha-myosin heavy chain
(α-MHC) gene and sarcoplasmic reticulum Ca2+ ATPase genes
and reactivation of specific fetal cardiac genes such as atrial natri-
uretic factor (ANF) and brain natriuretic peptide (BNP; Herron
and McDonald, 2002; Olson et al., 2006). These deviations in gene
expression result in structural and electrophysiological changes,
which eventually progress to HF. Cardiac arrhythmia is caused
by altered conduction properties of the heart, which may arise in
response to ischemia, inflammation, fibrosis, aging or from genetic
factors. Because changes in the gene transcription program may
have crucial consequences such as deteriorated cardiac function,
understanding the molecular mechanisms involved in the process
has become a priority in the field. In this context, various studies
besides having identified different DNA methylation patterns in
HF patients (Movassagh et al., 2011a,b), have also focused on spe-
cific disease processes (Yan et al., 2010; Kim et al., 2011) and their
underlying mechanisms (Baccarelli and Bollati, 2009; Handy et al.,
2011; Shirodkar and Marsden, 2011), also introducing new con-
cepts such as epigenomics. This review highlights specific genetic
mutations associated to the onset and progression of HF, also pro-
viding an introduction to epigenetic mechanisms such as histone
modifications, DNA methylation and RNA-based modification,
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and highlights the relation between epigenetics, arrhythmogenesis
and HF.

GENETICS OF HEART FAILURE
Genetic forms of HF are mainly known as familial dilated car-
diomyopathy (FDCM). There are, however, two other familial
forms of cardiomyopathy: hypertrophic cardiomyopathy (FHCM)
and arrhythmogenic right ventricular cardiomyopathy (ARVC).
In fact, FHCM is the most common form of inherited HF with a
prevalence of 1 in every 500 individuals (Rodriguez et al., 2009).
FHCM is mainly defined as unexplained left ventricular hyper-
trophy with increased heart mass (Elliott and McKenna, 2004).
The majority of patients with FHCM (approximately 60%) exhibit
autosomal dominant mutations in genes encoding for sarcomere
proteins such as β-myosin heavy chain (MYH7), cardiac myosin
binding protein C (MYBPC3), cardiac troponin T (TNNT2),
troponin I (TNNI3), alpha-tropomyosin (TPM1), myosin light
chains (MYL2 and MYL3) and cardiac actin (ACTCI; Morita et al.,
2008, 2010; Lopes and Elliott, 2013).

Familial dilated cardiomyopathy is characterized as idiopathic
DCM with a prevalence of 20–50% determined by epidemiologi-
cal studies using family history and clinical, electrocardiographic
and echocardiographic screening of first-degree relatives (Michels
et al., 1992; Grunig et al., 1998). FDCM is mainly inherited in
an autosomal dominant manner (approximately 90%) however,
X-linked (5–10%) and much less commonly autosomal reces-
sive (AR) or mitochondrial inheritance have also been reported
(Hershberger et al., 2009). A genetic cause of FDCM was iden-
tified in 30–35% cases and mainly mutant variants of Laminin
A/C (LMNA) have been reported as the most common cause of
FDCM (in 7.3% of patients with DCM; Hershberger et al., 2009;
Hershberger and Siegfried, 2011). In a recent study, Titin (TTN)
truncating mutations were attributed as the cause of FDCM in 27%
of a total of 312 DCM patients (Herman et al., 2012). Furthermore,
GATA zinc finger domain containing protein 1 (GATAD1) has
been identified as a disease-causing gene for AR DCM by genome-
wide mapping and exome sequencing in a unique family (Theis
et al., 2011).

EPIGENETIC MECHANISMS
There are several epigenetic mechanisms in eukaryotes and many
have already been linked to cardiac development, CVD and/or
HF. The main alterations encompassing epigenetics in CVD are
described below and include ATP-dependent chromatin remod-
eling, DNA methylation, histone modification and RNA-based
mechanisms.

CHROMATIN REMODELING THROUGH ATP-DEPENDENT ENZYMES
The ATP-dependent chromatin-remodeling complexes do not per-
form covalent modifications of the DNA or histones but rather
use energy derived from ATP hydrolysis to move, destabilize,
eject or restructure nucleosomes. There are four different families
of ATP-dependent chromatin remodeling complexes: switching
defective/sucrose non-fermenting complexes (SWI/SNF); imita-
tion switch complexes (ISWI); chromodomain, helicase, DNA
binding complexes (CHD) and inositol-requiring 80 complexes
(INO80; Li, 2002; Yang and Seto, 2008; Clapier and Cairns,

2009; Ho and Crabtree, 2010). Although all members of each
family have distinct flanking domains, they all share an evolu-
tionarily conserved SWI-like ATPase catalytic domain that serves
as vehicle to adjust histone-DNA contacts for DNA movement
and chromatin restructuring. In turn, the other domains act
in the recognition of covalently modified histones, modula-
tion of ATPase activity and/or interaction with other chromatin
and transcription factors. Consequently, these unique domains
and their associated proteins determine the genomic targeting
specificity and biological functions of each family of chromatin
remodelers. In fact, chromatin modification through ATP-
dependent enzymes is associated with regulation of expression
of distinct gene programs in organ development and adaptation
(Ho and Crabtree, 2010).

DNA METHYLATION
DNA methylation is the most common epigenetic modification
in the mammalian genome. This long-term stable epigenetic
modulation involves the addition of a methyl group to the 5′
carbon of a cytosine by DNMT enzymes (Figure 1) and mostly
occurs at the CpG (cytosine preceding guanosine) dinucleotide
sequences, also known as CpG islands, in the mammalian genome
(Feinberg, 2008). CpG islands, in contrast to the remainder
genome, are cytosine-guanosine-rich sequences (CpG-rich), gen-
erally not methylated (Deaton and Bird, 2011), and mostly
acting as sites of transcription initiation once they are associ-
ated with promoter regions of genes (∼70% of gene promoters;
Li et al., 1993; Saxonov et al., 2006). DNA methylation is known
to be catalyzed by three different DNMTs: DNMT1, DNMT3a
and DNMT3b (Broadbent et al., 2008), where DNMT1 is the
core enzyme in mammals. Methylation of DNA is considered a
maintenance function of DNMTs as it results in post-replicative
restoration of hemi-methylated sites to full methylation (Laird,
2003). Reduction of DNMT1 activity may result in demethyla-
tion and recent studies even showed that this is an active process
(Bhutani et al., 2011). However this has not been shown yet for the
cardiovascular system.

DNA methylation is, generally, attributed to gene silenc-
ing by hampering the accessibility of cis-DNA binding elements
present in the promoter regions of genes of the transcriptional
machinery (Suzuki and Bird, 2008) and plays a crucial role in
the regulation of chromatin structure including X chromosome
inactivation, genomic imprinting, silencing of repetitive DNA ele-
ments and transposon transcription (Li et al., 1993; Panning and
Jaenisch, 1996; Li, 2002). Moreover, DNA methylation has been
linked to biological processes underlying various diseases from
cancer (Feinberg and Tycko, 2004) to CVD, such as hyperten-
sion (Millis, 2011), diabetes (Ling and Groop, 2009; MacFarlane
et al., 2009), atherosclerosis and inflammation (Wierda et al.,
2010).

HISTONE MODIFICATIONS
The eukaryotic DNA is tightly compact and organized in chro-
matin. The nucleosome is the central unit of chromatin and
is composed of an octomer center of two copies of each his-
tone protein (H2A, H2B, H3, and H4; Jenuwein and Allis, 2001)
around which a DNA segment of 14–150 base pairs is looped.
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FIGURE 1 | Schematic representation of the role of DNA methylation and histone modifications in transcriptional gene regulation.

Each histone has an amino-terminal tail that protrudes from the
surface of the nucleosome and which can be subjected to var-
ious posttranscriptional modifications such as phosphorylation,
sumoylation, ubiquitination, methylation, ADP-ribosylation, pro-
line isomerization, deimination and acetylation (Handy et al.,
2011). These modifications lead to conformational changes in the
chromatin resulting in altered gene expression (Margueron and
Reinberg, 2010) depending on whether DNA becomes accessible
(euchromatin) or inaccessible (heterochromatin) for transcription
(Figure 1).

HISTONE ACETYLATION
Histone acetylation occurs at the lysine residues of the histone tails
resulting in de-condensation of the chromatin structure and serv-
ing as a binding site for bromodomain proteins and transcriptional
activators, and eventually leading to transcriptional activation
(Elliott and McKenna, 2004; Rodriguez et al., 2009). Conversely,
histone deacetylation induces chromatin condensation and there-
fore transcriptional repression (Clayton et al., 2006; Shahbazian
and Grunstein, 2007; Figure 1). Acetylation of histones is a
dynamic process mediated by two counteracting enzyme fami-
lies, the histone acetyltransferases (HATs) and histone deacetylases
(HDACs). The harmony between the activities of these two sets of
enzymes is a crucial element during regulation of gene expression
and its deregulation is linked to several pathological conditions
varying from cancer to CVD (Ordovas and Smith, 2010; Burgess,
2012).

HISTONE METHYLATION
Other key modulator of posttranslational regulation is histone
methylation which can occur on all basic amino acid residues
of the histone tail; arginines, lysine and histidines (Cheung and
Lau, 2005). In addition, different amino acids can be methy-
lated to a different extent and while lysine can be subjected
to mono-, di- and trimethylation, arginine residues can only
become mono- or dimethylated (Cheung and Lau, 2005). Methy-
lation of histones is a dynamic process mediated by histone
methyltransferases (HMTs) and histone demethylases (HDMs;
Teperino et al., 2010) and, unlike acetylation, histone methyla-
tion can induce either activation or repression of gene expres-
sion depending on the target sites and degree of methylation
(Lachner and Jenuwein, 2002; Figure 1). In contrast to his-
tone acetylation, histone methylation governed mainly by HMTs
SUV39H1 and G9a (Martin and Zhang, 2005; Shi and Whet-
stine, 2007), has long been considered to be a permanent
epigenetic mark (Jenuwein and Allis, 2001). However, the dis-
covery of new players such as HDMs has shifted the paradigm
and, in fact, several studies showed that histone methylation
is tightly regulated in inflammatory and metabolic disorders
(Saccani and Natoli, 2002; Villeneuve et al., 2008; Brasacchio et al.,
2009).

RNA-BASED MECHANISMS
It is now proven and accepted that the majority of the
genomic DNA is transcribed as non-coding RNAs and that
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such RNA species play pivotal regulatory roles during devel-
opment (Sayed and Abdellatif, 2011), in response to envi-
ronmental adversity (Ferguson, 2011), and at the onset
and progression of disease (Sayed and Abdellatif, 2011). In
this context, many studies were directed at revealing the
role of non-coding RNAs in physiological and pathological
processes.

There are two main classes of non-coding RNAs: infras-
tructural (small nuclear and nucleolar RNAs, ribosomal RNAs)
and regulatory RNAs (miRNAs, long non-coding RNAs,
small interfering RNAs and Piwi-interacting RNAs). To date,
only miRNAs have been associated with epigenetic regula-
tory mechanisms in HF. Epigenetic regulation through long
non-coding RNAs have been extensively studied in cancer but
have also been associated with cardiovascular disease, mainly
in maintenance of vascular homeostasis (Robb et al., 2004;
Li et al., 2010).

MICRORNAs
MicroRNAs were first described in the nematode Caenorhabdi-
tis elegans, in the early 1990s (Lee et al., 1993). From then on, a
multitude of miRNAs have been identified and investigated, and
presently there are ∼1600 human miRNA sequences annotated at
miRBase19 (Kozomara and Griffiths-Jones, 2011).

MiRNAs are transcribed as primary transcripts (pri-miRNA)
from intergenic, intronic or exonic regions in the genome, by
RNA polymerase II. These pri-miRNAs fold into an hairpin shape
with a five prime (5′) capped (mGpppG) and a polyadenylated
tail which is subsequently cleaved by an enzyme complex com-
posed of the RNase III endonuclease Drosha and the dsRNA
binding protein Pasha (also known as DiGeorge critical region
8; DGCR8; Lee et al., 2003, 2004). The resulting shorter (70–100
nucleotide in length) hairpin-shaped precursor miRNA (pre-
miRNA) is transported from the nucleus into the cytoplasm by
Ran-GTP and exportin-5 (Kim, 2004). In the cytoplasm, pre-
miRNAs are further processed by a RNase III enzyme, Dicer,
into a short (20–25 nucleotides in length) transient double
stranded RNA molecule. At this stage, the formed mature RNA
molecule is included in a protein complex – the so-called RNA-
inducing silencing complex (RISC), while the passenger strand
is degraded (Winter et al., 2009). The RISC-miRNA complex
specifically targets mRNA sequences leading to negative regula-
tion of protein synthesis or mRNA degradation (Winter et al.,
2009). One miRNA can regulate a vast number of mRNAs simul-
taneously (Lewis et al., 2005) by predominantly acting through
destabilization of target mRNAs and subsequently leading to
reduced protein output (Guo et al., 2010). Therefore, decreased
protein production can result from a combination of mRNA
destabilization and translational inhibition. MiRNAs have been
shown to be involved in different pathological processes such
as cancer and CVD (Lujambio and Lowe, 2012; Quiat and
Olson, 2013). While in cancer epigenetic mechanisms have been
widely associated with silencing of miRNA-encoding genes and
thus recognized to greatly influence the expression of genetic
information, only recently the importance of such mechanisms
have started to be addressed in CVD, and more specifically in
HF.

EPIGENETICS AND ARRHYTHMIA
Recent technological advances in DNA sequencing have enabled
epigenome mapping and provided unprecedented insight into the
distribution, interplay, and potential novel functions of chromatin
modification and associated proteins. Remarkably, when using
such technologies in evaluating the heart rhythm prominence of
selected gene networks including epigenetic modulators, not pre-
viously associated with arrhythmia, were identified as relevant
under particular circumstances. A first evidence for epigenetic
regulation of cardiac rhythm was raised from a study conduct-
ing microarrays on heart rhythm determinants (HRD) on tissue
from mice exposed to either intermittent or chronic hypoxia and
untreated wild type mice. A different environment (hypoxia) pro-
foundly restructured the HRD web by changing the hierarchy of
the composing genes and by identifying new role players. This was
the case for the epigenetic modulators HDAC5, Mef2b and Mef2c
(Iacobas et al., 2010).

CHROMATIN REMODELING AND ARRHYTHMIA
Postural tachycardia syndrome (POTS) has multiple symptoms,
one of such being tachycardia. Dysfunction of the norepinephrine
transporter (NET) gene has previously been implicated in POTS,
with a reported coding mutation in the NET gene (SLC6A2;
Bayles et al., 2012). Head-up tilt experiments in POTS patients and
showed that the expression of norepinephrine transported is lower
in POTS patients compared to healthy subjects. In the absence
of altered SLC6A2 gene sequence or promoter methylation, the
observed reduced expression of norepinephrine was directly cor-
related with chromatin modifications. Changes in expression were
attributable to increased binding of the repressive methyl CpG-
binding protein 2 (MeCP2) regulatory complex, in association
with an altered histone modification composition at the promoter
region of the SLC6A2 gene (Bayles et al., 2012).

DNA METHYLATION AND ARRHYTHMIA
The KCNQ1 gene is located on chromosome 11 in a region that
contains a cluster of 6 genes that are expressed from either only
the maternal or the paternal allele. In mice, the KCNQ1 over-
lapping transcript (KCNQ1ot1) is transcribed from a promoter
located in intron 10 of the KCNQ1 gene. This promoter region
is a CpG island and undergoes methylation on the maternal
chromosome, preventing transcription, and therefore allowing
expression of the gene cluster. However, this promoter region is
not methylated on the paternal chromosome allowing expression
of the regulatory transcript and suppressing the expression of the
gene cluster (Mancini-DiNardo et al., 2003). The maternal allele is
transcribed in early embryogenesis with the paternal allele being
progressively methylated and therefore only activated during late
embryogenesis.

Variable imprinting of the KCNQ1 gene provides a possible
explanation for the existence of long QT syndrome (LQTS) in
the absence of a coding sequence mutation in KCNQ1. Paternal
imprinting is probably relieved in cardiac tissue, meaning that
during differentiation methylation of the paternal chromosome
must occur to block production of the suppressive KCNQot1
transcript. Mutations that disrupt the CpG island could pre-
vent methylation and silence the paternal allele in the heart
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(Mancini-DiNardo et al., 2003; Bokil et al., 2010). A more recent
study by Fatima et al. (2012) associates epigenetic modifications
with regulation of the ATP sensitive potassium channel (KATP).
In cardiac myocytes, different isoform combinations of the SURx
(SUR1, SUR2) and Kir6.2 (KCNJ11) will be responsible for dis-
tinct physiological and pharmacological properties, depending on
the isoforms expressed. Promotor CpG methylation appears to be
one of the regulators of SURx isoform expression and therefore,
regulated or aberrant CpG methylation might play a role in con-
trolling channel structure and function under different conditions
(Fatima et al., 2012).

HISTONE MODIFICATIONS IN ARRHYTHMIA
Histone deacetylases-1 and -2 have important functions in regu-
lating cardiac gene expression and cardiomyocyte differentiation.
While myocardium-specific deletion of either HDAC-1 or HDAC-
2 results in no apparent cardiac phenotype, specific deletion
of both in the murine myocardium, results in death within
2 weeks after birth, due to cardiac arrhythmias and dilated car-
diomyopathy (Montgomery et al., 2007). This is likely caused
by upregulation of genes that encode for fetal calcium chan-
nels and skeletal muscle-specific contractile proteins, including
hyperpolarization-activated non-selection cation current (If) and
T-type Ca2+ current (ICa, T), both involved in calcium han-
dling. Such genes are normally transcriptionally repressed by
the RE1-silencing transcription factor (REST) through class I
and IIa HDACs. Knockout of both HDAC-1 and -2 seems to
result in incapacity of REST to repress these fetal genes, result-
ing in, among other things, arrhythmia (Montgomery et al., 2007;
Chang and Bruneau, 2012).

Ablation of PAX-interacting protein 1 (PTIP), a key component
of the histone H3 lysine 4 (H3K4me) methyltransferase complex,
leads to reduced H3K4me expression levels and is sufficient to
alter subsequent gene expression profiles. One of those H3K4me-
regulated genes is the Kv channel-interacting protein 2 (Kcnip2),
a regulator of cardiac repolarization current that is known to
have functions in arrhythmogenesis. Regulation of Kcnip2 by
H3K4me leads to decreased sodium current and action poten-
tial upstroke velocity and significantly prolonged action potential
duration (APD), thereby increasing the risk of lethal ventricu-
lar arrhythmias. These results suggest that maintaining H3K4me
marks is necessary for the stability of a specific transcriptional
program and cellular homeostasis (Stein et al., 2011; Chang and
Bruneau, 2012).

In Duchenne muscular dystrophy (DMD) more than 30% of
deaths result from a progressive deterioration in cardiac func-
tion. Ventricular arrhythmia is a common complication in DMD
patients and a risk factor for sudden cardiac death. Colussi et al.
(2010) used X-chromosome-linked muscular dystrophy (mdx)
mice, a model for DMD, and treated them with the histone
deactylase inhibitor suberoylanilide hydroxamic acid (SAHA). In
resting state there was no difference between treated and untreated
groups, however, upon restraint, an increase was seen in ven-
tricular arrhythmias in untreated mdx animals compared to mdx
SAHA- treated animals or wild type control animals. Epicardial
recordings revealed prolongation of the QRS complex in mdx-
untreated mice in comparison to mdx-SAHA treated mice and WT

mice, together with a significant reduction in impulse propagation
velocity. Further analysis revealed that SAHA induces connexin 40
(Cx40), Cx37 and Cx32 remodeling but expression of Cx43 and
Cx45 remains unaltered. Treatment with SAHA not only reversed
Cx43 lateralization, which was observed in mdx- untreated ani-
mals, but also re-induced Nav1.5 expression. This indicates that in
mdx mice SAHA attenuates arrhythmias by mechanisms in which
connexin-remodeling and sodium channel re-expression may play
a role (Colussi et al., 2010).

Atrial fibrillation (AF), induced by atrial fibrosis, seems to also
be epigenetically regulated and this was suggested in a study sought
to determine whether the HDAC inhibitor trichostatin A (TSA)
reduces the amount of atrial fibrosis and concomitant AF (Liu
et al., 2008). Transgenic mice overexpressing the homeo-domain-
only protein (HopX-Tg), which recruits HDAC activity to induce
cardiac hypertrophy were either treated or untreated with TSA
and compared to control groups. Invasive electrical stimulation
induced more atrial arrhythmias in HopX-Tg untreated mice than
in HopX-Tg TSA-treated mice. TSA reduced atrial arrhythmia
duration and atrial fibrosis in HopX-Tg animals. In the HopX-
Tg untreated mice, atrial Cx40 was found to be lower than in
WT mice, a phenomenon that was abrogated by introducing
TSA in these mice. Myocardial angiotensin II levels were similar
between groups, suggesting that HDAC-inhibition reverses atrial
fibrosis, Cx40 remodeling and atrial arrhythmia vulnerability, ren-
dering the atrium almost refractory to arrhythmia inducibility,
independent of angiotensin II in cardiac hypertrophy (Liu et al.,
2008).

NON-CODING RNA IN ARRHYTHMIAS
Several studies have been conducted to look at the association
between miRNAs and arrhythmias. MiRNA expression profiles
were shown to differ in right atrial disease, with 47 miRNAs being
differentially expressed between disease and control states, whereas
similar changes in expression could not be found in left atrial dis-
ease (Cooley et al., 2012; Kim, 2013). In a different study, miRNAs
that were differentially expressed between AF and sinus rhythm
in patients with mitral stenosis were showed by microarrays (Xiao
et al., 2011; Kim, 2013). These data indicate that miRNAs play
a role in regulating cardiac conduction and in the induction of
arrhythmias.

Multiple studies have shown that miR-208a plays an important
role in action potential conduction. Overexpression of miR-208a
leads to arrhythmia, cardiac fibrosis and hypertrophy, and is a
strong predictor of cardiac death (Oliveira-Carvalho et al., 2013).
Genetic deletion of miR-208a, on the other hand, also leads to
an increased risk of AF and other arrhythmias, due to aberrant
conduction mainly caused by dysregulation of Cx40 (Callis et al.,
2009; Oliveira-Carvalho et al., 2013). Similarly, also miR-328 is
upregulated not only in animal models of AF but also in human
tissue samples from AF patients. Overexpression of miR-328 in
mice increased vulnerability to AF as confirmed by diminished
L-type Ca2+ current and shortened atrial APD. AF vulnerability
could be reversed by concomitant inhibition of the miRNA by an
antagomir (Lu et al., 2010; Kim, 2013).

The most well established cardiac conduction-related miRNA
is by far, miR-1. This miRNA plays a role in myotonic dystrophy, a
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disease where degeneration of the conduction system occurs and
increased CACNA1C (CAV 1.2) expression, a cardiac L-type Ca2+
channel gene, is observed (Kim, 2013). The involvement of miR-
1 in electrocardiophysiology was further confirmed by a targeted
deletion of miR-1-2 by Zhao et al. (2007), which lead to a high
rate of sudden death, caused by conduction blockade due to direct
targeting of Irx5, a transcription factor that regulates cardiac repo-
larization. In rats, induction of MI by occlusion of the left anterior
descending artery results in miR-1 upregulation and arrhythmia
exacerbation but treating the animals with an antisense inhibitor
could abrogate these effects. Furthermore, miR-1 also directly tar-
gets KCNJ2, which encodes for the calcium channel subunit Kir
2.1, providing a possible mechanism for increase of arrhythmias
in MI (Yang et al., 2007). The role of miR-1 in arrhythmogene-
sis was further confirmed in humans where atrial cells from AF
patients display a 86% decrease in miR-1expression, a subsequent
increased Kir 2.1 protein expression and an increase in Ik1 den-
sity (Girmatsion et al., 2009; Kim, 2013). MiR-1 is also involved
in cardiac electrical remodeling in viral myocarditis where it is
upregulated, resulting in decreased Cx43, which is required for
transfer of electric activation, and indicating that miR-1 plays a
role in intercellular communication.

Another prominent miRNA in the regulation of cardiac con-
duction is miR-133. Matkovich et al. (2010) showed that an
increase in miR-133a leads to prolonged QT intervals. This miRNA
is highly and preferentially expressed in cardiac and skeletal muscle
and is known to regulate cardiac ion channels such as Kv4- encoded
Ito,f (Kcnip2; Matkovich et al., 2010; Kim, 2013). Furthermore,
the catalytic and regulatory subunits of protein phosphatase 2A
(PP2A) are decreased in cardiomyocytes in chronic HF and were
shown to be targets of both miR-1 and miR-133. Because pharma-
cologic inhibition of PP2A leads to altered diastolic Ca2+ waves
this indicates a role for these two miRNAs in calcium handling
(Belevych et al., 2011; Kim, 2013).

Interestingly, a relation between nicotine abuse and cardiac
arrhythmias has been suggested by several studies. Nicotine treat-
ment of canine atrial fibroblasts, resulted in upregulation of
transforming growth factor beta-1 (TGF-β1) and TGF- beta recep-
tor type II levels (TGF-βRII), with concomitant decreased levels of
miR-133 and miR-590, both directly targeting TGF-β1 and TGF-
βRII. This effect was abolished by synthetic downregulation of
both miRNAs (Shan et al., 2009; Kim, 2013).

Apart from miR-1 and miR-133, there are several other miRNAs
that have been associated with regulation of cardiac conduc-
tion to some extent. This is the case for miR-212 that seems
to regulate inward rectifier K+ current density by targeting Kir
2.1 (Kim, 2013), and for miR-21 which is increased in the
left atria of patients with AF and which abrogation leads to
repression of atrial fibrosis and AF (Adam et al., 2012; Cardin
et al., 2012; Kim, 2013). Furthermore, conditional overexpres-
sion of miR-17-92 in cardiac and smooth muscle tissue results
in both dilated, HCM as well as in arrhythmias. An increase in
atrial and ventricular ectopy, as well as increased susceptibility
to arrhythmia was observed in homozygous and heterozygous
animals. After programmed electrical stimulation all transgenic
animals developed sustained and lethal ventricular tachycardia
(VT) or ventricular fibrillation (VF) and these effects were mainly

caused by dysregulation of two downstream targets of miR-17-
92, the lipid phosphatase and tensin homolog PTEN and Cx43
(Danielson et al., 2013). Likewise, also miR-155 and miR-181 have
been associated with cardiac conduction defects. Circulating levels
of miR-155 are upregulated in patients with specific angiotensin
receptor type 1 (AT1R) polymorphisms that have been shown to be
associated with an increased risk of ventricular tachyarrhythmias
and sudden death (Blanco et al., 2012). In turn, miR-181a seems
to play a role in VT after MI (Li et al., 2009). Altogether, the data
available regarding the relation between miRNAs and arrhythmias
establish miRNAs as crucial players in regulating cardiac electro-
physiology and electric potential conduction through an array of
different mechanisms.

EPIGENETIC CONTROL OF HEART FAILURE
Recent genetic and biochemical studies indicate that epigenetic
changes play a crucial role in the development of cardiac hyper-
trophy and HF, with dysregulation in histone acetylation status
being directly linked to impaired contraction of cardiac myocytes.
In fact, it has been shown that there is a cardiac chamber – spe-
cific histone acetylation pattern suggesting that cardiac ventricular
chambers are epigenetically distinct (Mathiyalagan et al., 2010).

ATP-DEPENDENT ENZYMES AND CHROMATIN REMODELING IN HF
ATP-dependent chromatin remodeling complexes play crucial
roles in vertebrates, mainly in organ development and adapta-
tion. Most of them have been associated with heart development
and only a few were implicated in heart disease. The BAF
(brahma-associated factor) complex is the vertebrate homolog
of the yeast SWI/SNF family of chromatin remodelers. In mam-
mals, this complex contains 12 protein components from which
an ATPase subunit encoded by either Brm (brahma) or Brg1
(brahma-related gene 1). These two subunits, although highly
homologous, exhibit distinctive functions in vivo. While sev-
eral studies have demonstrated that individual subunits of the
BAF complex are essential during heart development (Lick-
ert et al., 2004; Takeuchi et al., 2007; Takeuchi and Bruneau,
2009) and may be implicated in human congenital diseases
(Kitagawa et al., 2003; Bajpai et al., 2010), BRG1 was recently
involved in cardiac disease (Hang et al., 2010). In embryos,
Brg1 promotes myocyte proliferation and it preserves fetal car-
diac differentiation by interacting with HDACs and poly (ADP
ribose) polymerase (PARP) to repress α-MHC to β-MHC shift.
Brg1 (also known as Smarca4) is not expressed in the adult
heart but it is reactivated by stress conditions such as pres-
sure overload. Once reactivated, Brg1 forms a complex with its
embryonic partners (HDAC and PARP), to induce the patho-
logic α-MHC to β-MHC shift. Adult myocardial gene deletion
of Brg1 inhibited cardiac hypertrophic growth and reversed the
MHC switch. Accordingly, Brg1 is activated in patients with
HCM, correlating with disease severity and MHC changes (Hang
et al., 2010). PPAR is a nuclear enzyme known to respond
to DNA damage and facilitate repair. Besides DNA repair,
PPAR-1 also modulates chromatin to control the transcrip-
tional machinery in response to diverse stimuli. Such stimuli
induce PPAR activation and PAR-dependent striping of histones
from chromatin, thereby favoring the opening of chromatin
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to allow transcriptional regulation (Tulin and Spradling, 2003;
Kim et al., 2004). PARP is activated in cardiac hypertrophy and
its activity is increased in murine and human failing hearts
(Pillai et al., 2005b; Xiao et al., 2005). Deletion of PARP-1 in
mice or pharmacological inhibition of PARP activity decreases
cardiac hypertrophy induced by angiotensin II (Pillai et al., 2006)
or pressure overload (Pillai et al., 2005a; Xiao et al., 2005), delays
the progression from hypertensive cardiomyopathy to HF (Bartha
et al., 2009), decreases cell death and HF after MI (Palfi et al., 2006)
and diminishes myocardial ischemia/reperfusion injury (Szabo
et al., 2002).

Although very preliminary, there seems to be a link, at the
chromatin level, between fetal hearts and adult diseased hearts, and
in the future, targeting the regulation of chromatin remodeling
processes may become a promising approach to prevent or maybe
even reverse pathological cardiac hypertrophic growth and HF.

DNA METHYLATION IN HEART FAILURE
Unlike in other diseases such as cancer, the role of DNA
methylation in HF remains elusive. Movassagh et al. (2010) com-
pared genome-wide methylation profiles of left ventricle tissue
from HF patients and healthy controls by methylated DNA
immunoprecipitation-chip (MeDIP-chip), in which immunopre-
cipitation of methylated DNA is followed by microarray hybridiza-
tion and further validated by bisulfite sequencing. As a result,
three differentially methylated angiogenesis-related loci have been
identified and correlated to differential expression levels of the
corresponding gene (Movassagh et al., 2010). Hyper-methylation
of the 5′ regulatory region of platelet endothelial cell adhesion
molecule 1 (PECAM-1) and hypo-methylation of the angiomotin-
like protein 2 (AMOTL2) in failing hearts correlated with reduced
expression of those genes, while hyper-methylation within the
Rho GTPase activating protein 24 gene (ARHGAP24) is corre-
lated with increased expression of ARHGAP24 in failing hearts
(Movassagh et al., 2010). Moreover, a follow up study (Movassagh
et al., 2011a) generated a genome-wide DNA methylation map of
human hearts and revealed a significant decrease in global pro-
moter methylation of genes with increased expression in failing
hearts (Movassagh et al., 2011a). The genome-wide methylation
profile of patients with idiopathic dilated cardiomyopathy was
recently generated (Haas et al., 2013). In an attempt to validate
the methylation profiling of the 20 most differentially methylated
genes, MassARRAY and Bisulfite sequencing were used in a large
independent cohort (30 patients; Baccarelli and Bollati, 2009).
Interestingly, 12 (out of 20) genes showed similar methylation pat-
terns between the two independent studies. Such approach allowed
the identification of two novel genes with differential methylation
profiles between patient and control subjects, lymphocyte anti-
gen 75 (ly75) and adenosine A2a receptor (adora2a). Curiously,
downregulation of those genes in zebrafish by using specific mor-
pholino technology resulted in reduced ventricular contractility
and HF (Haas et al., 2013). More recently, DNA methylation was
found to be responsible for the hypermutability of distinct car-
diac genes. This is the case for the cardiac isoform of the myosin
binding protein C gene (Mybpc3) that has a significantly higher
level of exonic methylation of CpG sites than the skeletal isoform
(Mybpc2; Meurs and Kuan, 2011). This suggests that there are

unique aspects of the Mybpc3 gene or its epigenetic environment
that are prone to generate genetic mutations.

Very recently, a report in the Journal of the American Heart
Association (Bellavia et al., 2013) provided evidence for the effects
of ambient particulate-matter (PM) on blood pressure (BP). In
humans, exposure to fine and coarse concentrated ambient parti-
cles (CAPs) induce blood hypomethylation of Alu, a transposable
repeated element, and Toll-like receptor 4 (TLR4). Hypomethy-
lation of both factors was found to be associated with increased
systolic BP after exposure. This is of great interest since many
epidemiological studies (O’Toole et al., 2008; Brook et al., 2010)
have reported a correlation between PM exposure, cardiovascular
disease and death, and may, therefore, represent a novel mech-
anism that mediates environmental effects on BP and indirectly
cardiovascular disease and HF.

HISTONE MODIFICATION IN HEART FAILURE
Histone acetylation
Cardiac hypertrophy is the initial response to cardiac stress
leading to adverse cardiac remodeling and eventually to HF.
In order to elucidate the underlying mechanisms behind the
development of cardiac hypertrophy, the role of histone acety-
lation/deacetylation has been extensively studied. Gusterson et al.
(2003) and Morita et al. (2010) demonstrated that overexpres-
sion of the transcriptional co-activators CREB binding protein
(CRB) or p300, individually, could induce hypertrophic growth of
cardiomyocytes depending on their histone HAT activity. Conse-
quently, inhibition of these co-activators repressed phenylephrine
(PE)-induced hypertrophic cell growth (Gusterson et al., 2003).
High expression and induced activity of HAT were observed in
animals subjected to pressure overload, compared to sham oper-
ated animals, while heterozygous p300 transgenic animals revealed
limited cardiac hypertrophy with preserved cardiac function when
subjected to pressure overload (Morita et al., 2010). Intriguingly,
another study showed that p300 transgenic animals develop HF at
baseline, as indicated by high mortality, adverse remodeling and
impaired cardiac function (Yanazume et al., 2003). Although these
studies indicate that p300 is a crucial modulator of cardiac remod-
eling they do not specifically address the importance of its HAT
activity in vivo. To assess this question, studies with transgenic ani-
mals carrying a mutant form of p300, with no HAT activity, were
performed revealing a rescue of MI-induced pathological remod-
eling as well as preserved cardiac function compared to intact
p300-carrying transgenic animals (Miyamoto et al., 2006). These
responses to p300 modulation in vivo are, most likely, related to
the fact that p300 can directly acetylate non-histone proteins such
as hypertrophy-responsive transcriptional factors like MEF2 (Wei
et al., 2008) and GATA-4 (Yanazume et al., 2003; Miyamoto et al.,
2006).

The regulation of gene expression by HDACs seems to be more
complex. HDACs are divided into four different classes (class-I, -
IIa, -IIb and -IV) based on differences in their structure, enzymatic
function, expression patterns and subcellular localization. Class I
HDACs (HDAC1, 2, 3 and 8) are expressed ubiquitously and pre-
dominantly localized in the nucleus. Class IIa HDACs (HDAC4, 5,
7, and 9) shuttle between the nucleus and the cytoplasm and are
strictly expressed in muscle, heart and brain tissues (Haberland
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et al., 2009). A first demonstration of the relevant role of HDAC
activity in cardiomyocytes derived from a study where myocardial
differentiation of monkey ES cells was facilitated by TSA, an HDAC
inhibitor (Hosseinkhani et al., 2007). Furthermore, differential
chromatin scanning (DCS) is a technique used to genome-widely
profile HDAC targets enabling the isolation of genomic fragments
associated with histones and, therefore, carrying different acety-
lation marks (Kaneda et al., 2005). Such studies provide a basis
for all following studies into the role of epigenetic modifications
in cardiac disorders (Table 1). Interestingly, the two classes of
HDACs show opposite roles in cardiac hypertrophy with class I
HDACs being pro-hypertrophic and class IIa HDACs being anti-
hypertrophic (Zhang et al., 2002; Antos et al., 2003; Chang et al.,
2004). Induced expression of HDAC2 in cardiomyocytes mimics
hypertrophic growth in an Akt-dependent manner. In vivo, class I
HDAC2 overexpressing transgenic animals develop cardiac hyper-
trophy whereas HDAC2-null animals are protected from cardiac
hypertrophic response after stimulation either by pressure over-
load or isoproteranol (ISO) administration (Trivedi et al., 2007).
Similar to HATs, HDACs also interact with DNA binding proteins
regulating their activity. For instance, class IIa HDACs (HDAC4, -
5, -7 and -9) can directly interact with MEF2 leading to inhibition
of MEF2 activity and subsequent reduced cardiac hypertrophy
(Backs and Olson, 2006). On the other hand, when MEF2 is dis-
charged of HDACs, it may become an available target for HATs
binding which in turn leads to enhanced activity of MEF2 (Backs
and Olson, 2006).

Besides transcriptional factors, HATs and HDACs can also
interact with sarcomeric proteins. PCAF, a HAT, class II HDAC4
co-localizes with cardiomyocyte sarcomeres in the Z-disk whereas
class I HDAC3 localize mainly in the A-band (Gupta et al.,
2008; Samant et al., 2011). In addition, inhibition of HDAC4
results in altered calcium sensitivity and therefore altered con-
tractility. HDAC4 has an unique docking site for the binding
of calcium/calmodulin-dependent kinase II (CaMKII), which is
absent in other class IIa HDACs. Phosphorylation of HDAC4 by
CaMKII promotes nuclear export and derepression of HDAC tar-
get genes, which, in cardiomyocytes, will lead to hypertrophic
growth (Backs et al., 2006), indicating a central role for CaMKII-
HDAC4 signaling pathways in the development of cardiac hyper-
trophy. From the HDAC class IIb, HDAC6 catalytic activity
seems to be consistently increased in stressed myocardium and
is activated by different extracellular stimuli in cultured cardiac
myocytes (Lemon et al., 2011). Recently, Cao et al. (2011) showed
that inhibition of HDAC by TSA (HDAC inhibitor) treatment lim-
its cardiac hypertrophy by suppressing autophagy. Further in vitro
experiments, by selective downregulation of HDAC isoforms in
cardiomyoctes, indicated HDAC1/2 as responsible for PE-induced
autophagy (Cao et al., 2011). Autophagy is a self-degradative pro-
cess during development and in response to nutrient stress, and
can be altered under pathological conditions (Wang et al., 2013).
Increasing evidence suggests more distinctive roles for HDACs
besides only acting as histone deacetyltransferases.

Histone methylation
The most widely studied histone methylations are lysine
methylations: histone H3 lysine 4 (H3K4), H3K9, H3K27, H3K36,

H3K79 and H4K20 (Martin and Zhang, 2005). There is lim-
ited information about the function of histone methylation in
HF. It is known that differential methylation patterns for H3K4
and H3K9 occur in the vicinity of various gene clusters of failing
human hearts (Kaneda et al., 2009). Because such sets of genes
encode proteins that function in the same signal transduction
pathways and H3K9 mark-profile seems to be less sensitive to
disease status, this indicates differential H3K4 marking during
the development of HF (Kaneda et al., 2009). Furthermore, in a
Dahl salt-sensitive rat model of congestive heart failure (CHF),
genome-wide histone methylation analysis revealed H3K4me3
and H3K9me3 as the most abundant histone methylation marks
(Kaneda et al., 2009). Interestingly, mapping of H3K4me3 and
H3K9me3 enriched regions in the genome of human CHF sam-
ples compared to controls revealed many HF-associated genes
located in these regions (Kaneda et al., 2009). Moreover, histone
methylation has been shown to mark not only protein cod-
ing genes but also non-coding RNA regions (Movassagh et al.,
2011a). The genome wide mapping of H3K36me3 in end-stage
falling human hearts allowed to identify 4 novel non-coding
RNA regions, which have active transcription and might be
involved in HF (Movassagh et al., 2011a). This differential pro-
file of histone methylation marks found in both human and
animal samples suggests a potential role for HMTs and HDMs
in HF. Accordingly, JMJD2A, a histone trimethyl demetyhlase
(Kooistra and Helin, 2012), is found to be upregulated in human
HCM patients compared to control (Zhang et al., 2011). Moreover,
transgenic mice with cardiac-specific overexpression of JMJD2A
develop exaggerated cardiac hypertrophy compared to control
mice following transverse aortic constriction (TAC) whereas
jmjd2a-null animals seem to be protected against TAC-induced
cardiac stress (Zhang et al., 2011). All in all, these experiments
indicate a potential modulator function for histone modification
in HF.

NON-CODING RNA IN HEART FAILURE
Post-transcriptional regulation of gene expression is mainly
achieved by non-coding RNA molecules including miRNAs and,
based on rather recent findings, long-noncoding RNAs (lncRNAs).

Comparison of miRNA expression profiles in healthy and
failing heart samples from humans or animal models revealed
differential miRNA expression patterns indicating their potential
involvement in the development and progression of HF. In this
regard, miRNA microarray analysis of cardiac tissue from mouse
models of cardiac hypertrophy and CHF detected five upregu-
lated miRNAs (namely miR-24, miR-125b, miR-195, miR-199a
and miR-214), which were further confirmed in idiopathic end
stage failing human hearts (van Rooij et al., 2006). Furthermore,
mice overexpressing miR-195 developed pathological remodel-
ing, impaired cardiac function and subsequently HF (van Rooij
et al., 2006). Besides distinct expression signatures of miRNAs
in healthy and failing hearts, the differential miRNA expression
profile among failing hearts is dependent on the underlying HF eti-
ology (Ikeda et al., 2007; Sucharov et al., 2008). Ikeda et al. (2007)
found 14 aortic stenosis-specific miRNAs while a set of other eight
miRNAs were mainly expressed in a cardiomyopathic form of
HF. In a similar study, different sets of miRNAs were found for
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idiopathic dilated and ischemic cardiomyopathy (Sucharov et al.,
2008). Furthermore, the expression levels of miRNAs can vary as
the disease progresses (Bagnall et al., 2012). This was shown in a
double transgenic mouse model, harboring mutations in both the
myosin heavy chain gene and the cardiac troponin I gene, resulting
in severe HCM and premature mortality by age of 21 days. Global
miRNA profiles in those mice, at age of 10 and 16 days, revealed
stable downregulation of specific miRNAs such as miR-1 and miR-
133, suggesting a functional role for these miRNAs throughout the
progression to HF. Counterwise, miR-31 was upregulated at the
end-stage of HF which points to a specific function for this miRNA
during the final phase of the disease (Bagnall et al., 2012).

Another miRNA microarray profiling study has been carried
out in human end-stage CHF with or without left ventricular
assist device (LVAD) compared to healthy subjects (Matkovich
et al., 2009). Twenty-eight miRNAs were differentially expressed
in diseased hearts regardless of LVAD support and, interestingly,
the expression levels of 20 of those miRNAs were either normalized
or reversed in the CHF group after LVAD support suggesting an
eventual value of such miRNAs as prognostic tools for end-stage
CHF patients (Matkovich et al., 2009). Recent data also emphasizes
the variations between adult and child idiopathic dilated car-
diomyopathy patients, regarding their miRNA expression profile
(Stauffer et al., 2013). Naga Prasad et al. (2009) performed miRNA
microarrays in end stage dilated cardiomyopathic hearts (with >15
ejection fraction) followed by in silico network analysis in order to
obtain a global picture of the molecular networks and key proteins
regulated by the dysregulated miRNAs. As a result, eight miRNAs
displayed different expression levels in DCM subjects compared
to controls and two out of these eight miRNAs, namely miR-7
and miR-378, were novel miRNAs, shown for the first time to
be downregulated in end stage failing hearts (Naga Prasad et al.,
2009). Confirmation of network analysis revealed upregulation
of erythroblastic leukemia viral oncogene homolog 2 (ERBB2)
and collagen, type I, alpha 1 (Col1A1) which are predicted tar-
gets of miR-7 and thus, confirming that the regulatory function of
miRNAs results in alterations of global signaling networks during
development and progression towards cardiac hypertrophy and
HF (Naga Prasad et al., 2009).

A more recent study, besides showing that miRNA expression
profiles differ between healthy and failing hearts, in consensus
with previous findings, also demonstrated that failing adult hearts
and fetal hearts display similar miRNA profiles supporting the
paradigm of reactivation of a fetal gene program (Thum et al.,
2007; Barry et al., 2008) at onset and/or during the development
of HF.

On top of these profiling studies, a myriad of selected miRNAs
were associated with cardiac disease-specific roles. miRNAs have
also become a research focus on defining novel biomarkers of
HF by characterizing miRNA patterns in easy accessible sources
such as serum, plasma and even whole blood, and specific miRNA
signatures have been identified as biomarkers of MI (Meder et al.,
2011).

Interestingly, but not yet studied in the context of CVD, miRNA
genes can be subject of DNA methylation with direct impact on
the miRNA expression levels. Epigenetic-regulation of miRNA
genes was mainly showed, so far, for different types of cancer.

miRNAs such as miR-127 and miR-137 are sensitive to DNMT
inhibitors and chromatin-modifying drugs. Interestingly, the miR-
127 gene is embedded in a CpG island and is subject of epigenetic
silencing (Saito et al., 2006). Because miR-127 is physiologically
expressed as a member of a miRNA cluster together with miR-
136, -431, -432 and -433 not only in normal tissues but also in
cultured fibroblasts this could hint for a role of epigenetic reg-
ulation of this miR in cardiovascular disease, e.g., fibrosis, but
this remains to be clarified (Saito et al., 2006). Similarly, the pro-
moter region of miR-137 is heavily methylated in cancer cell
lines and this is reversible after treatment with DNMT inhibitors
(Balaguer et al., 2010).

To date, the epigenetic regulation of miRNA expression through
methylation of CpG islands or other modifications in the promoter
regions that encode for specific miRNAs has not been assessed in
the context of CVD. Nevertheless, the above-mentioned studies
strongly suggest a crucial role for such mechanisms at the onset of
cardiovascular pathologies.

PHARMACOEPIGENETICS IN HEART FAILURE
The existent therapies for HF seem to be insufficient since HF
remains the leading cause of death in the developed countries.
Therefore there is an increasing necessity for finding novel ther-
apeutic targets. Because the wide variability in an individual’s
disease predisposition and response to treatment is only partially
ascribed to heritable factors, epigenetical modifications diverging
from DNA methylation to non-coding RNAs have gained much
attention in several diseases, including HF (Feinberg, 2007; Mano,
2008). Therefore, epigenetic changes are currently being consid-
ered as therapeutic approaches in synergy with nucleotide varia-
tions at the drug response level (Szyf, 2004). This rapidly emerging
new discipline, so-called pharmacoepigenomics, assesses the influ-
ence of epigenetic factors in the interindividual variation to drugs
with the ultimate goal of discovering novel therapeutic targets
(Ingelman-Sundberg et al., 2007). To date, the most advances
have been made in the oncology field (Ingelman-Sundberg et al.,
2007). However, the knowledge obtained from such studies com-
bined with the knowledge on the role of epigenetic modifications
is being applied to other complex forms of disease including
HF.

In this context, several studies performed in animal models
of disease endorse modifiers of epigenetic marks as therapeu-
tic target points. Curcumin, a natural compound found in the
spice trumeric, has an HAT inhibitory activity with specificity to
p300/CREB-binding protein. It has been shown to rescue patho-
logical cardiac remodeling and preserve cardiac function in two
different rat models of HF, namely the salt-sensitive Dahl rats
and in rats that were subjected to MI (Morimoto et al., 2008).
An analogous study suggests that administration of curcumin in
combination with a conventional therapy such as angiotension
conversion enzyme inhibitors (ACEi), in MI-induced rats results
in a beneficial additive effect on cardiac function (Sunagawa et al.,
2011). Additionally, TSA, an HDAC inhibitor, was showed to blunt
the hypertrophic response of cardiomyocytes to PE-treatment in
a dose dependent manner and excluding the eventual cytotoxic
effect of TSA (Antos et al., 2003). Moreover, treatment with TSA
and valproic acid (VPA), another HDAC inhibitor, was able to
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attenuate cardiac hypertrophic growth in transgenic mice with car-
diac overexpression of the atypical homeodomain protein Hop,
known to be able to inhibit certain cardiac-gene expression by
blocking serum response factor (SRP) transcription activity in a
HDAC dependent way (Kook et al., 2003). TSA is also able to atten-
uate pathological cardiac remodeling in other mouse models such
as isoprotenol-, angiotensin II- and pressure overload-induced
hypertrophy (Kook et al., 2003; Kee et al., 2006).

Considering that epigenetics regulates phenotypic variation in
health and disease, it is conceivable to expect that understanding
and controlling the epigenome will prime great developments in
the prevention and treatment of common diseases, including HF.

CONCLUSION
The dynamic aspects of epigenetics may not only provide more
accurate evidences to the role of changing environmental fac-
tors in the drug response, associating the environment with the
genome, but also offer a way to reactivate silenced genes. While

pharmacogenetics has been very valuable in the identification of
interindividual variation in drug uptake and metabolism, epige-
nomics offers yet another layer of information that may help
developing more personalized therapy. In the oncology field,
epigenetic drugs have already entered the clinical arena and methy-
lation patterns are used as biomarkers to subtype and stage various
cancers as a critical and more personalized care (Coppede, 2011;
Litzow, 2011).

It is clear that epigenetic modifications such as DNA methy-
lation, histone modifications and RNA-based mechanisms are
the molecular targets for disadvantageous environmental stim-
uli and may lead to the onset of other complex and het-
erogeneous diseases such as arrhythmia and HF. However,
additional research is obviously necessary to further clar-
ify how epigenetic mechanisms impact the onset and devel-
opment of heart disease, to eventually identify new drug-
gable targets in HF and allowing disease classification or risk
stratification.
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