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INTRODUCTION

Mapping of chromosomal regions harboring genetic polymorphisms that regulate complex
traits is usually followed by a search for the causative mutations underlying the observed
effects. This is often a challenging task even after fine mapping, as millions of base pairs
including many genes will typically need to be investigated. Thus to trace the causative
mutation(s) there is a great need for efficient bioinformatic strategies. Here, we searched
for genes and mutations regulating growth in the Virginia chicken lines — an experimental
population comprising two lines that have been divergently selected for body weight at 56
days for more than 50 generations. Several quantitative trait loci (QTL) have been mapped
in an F2 intercross between the lines, and the regions have subsequently been replicated
and fine mapped using an Advanced Intercross Line. We have further analyzed the QTL
regions where the largest genetic divergence between the High-Weight selected (HWS)
and Low-Weight selected (LWS) lines was observed. Such regions, covering about 37 % of
the actual QTL regions, were identified by comparing the allele frequencies of the HWS
and LWS lines using both individual 60K SNP chip genotyping of birds and analysis of
read proportions from genome resequencing of DNA pools. Based on a combination of
criteria including significance of the QTL, allele frequency difference of identified mutations
between the selected lines, gene information on relevance for growth, and the predicted
functional effects of identified mutations we propose here a subset of candidate mutations
of highest priority for further evaluation in functional studies. The candidate mutations were
identified within the GCG, IGFBP2, GRB14, CRIM1, FGF16, VEGFR-2, ALG11, EDN1, SNXB,
and BIRC7 genes. We believe that the proposed method of combining different types of
genomic information increases the probability that the genes underlying the observed QTL
effects are represented among the candidate mutations identified.
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2010; Dunnington etal., 2013). Both lines started from the same

Economically important production traits in domestic animals
are generally complex, i.e., determined by factors that may include
both genetic and environmental regulators. This is also true for
many diseases in humans and animals. Thus, while it is often
highly desirable to understand the regulation of specific complex
traits, the task can be extremely challenging. For example, regions
identified by quantitative trait loci (QTL) analysis will even after
fine mapping of the QTL typically indicate regions including mil-
lions of base pairs and hundreds of genes that need to be explored
to find causative mutation(s).

In this study our aim was to develop a bioinformatics strategy
to mine already identified QTL regions to identify candidate genes
for growth trait in chicken. The QTLs have been identified for body
weight at 56 days of age in the Virginia chicken lines — an experi-
mental population comprising two lines that have been divergently
selected for body weight at 56 days for more than 50 generations
at Virginia Tech (Dunnington and Siegel, 1996; Marquez etal.,

base population, which was produced from crosses of seven par-
tially inbred lines of White Plymouth Rocks and now differ by
more than 10-fold in body weight at selection age. Individuals
from the 41st generation of these High-Weight selected (HWS)
and Low-Weight selected (LWS) lines were used as founders in a
QTL mapping pedigree and several QTL regions were mapped in
an F2 intercross between the lines (Jacobsson etal., 2005). These
regions have subsequently been replicated and fine mapped using
an Advanced Intercross Line (Besnier et al.,2011). Candidate genes
and mutations were here sought in the regions of the QTLs where
the greatest allele frequency differences between HWS and LWS
founder lines of the QTL cross were observed by individual SNP-
chip genotyping and next generation sequencing (NGS) of DNA
pools from the HWS and IWS. Based on a bioinformatic analysis
of these regions and the SNPs detected by NGS we present candi-
date genes and mutations of high priority for further investigations
in order to explain the observed QTL effects.
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MATERIALS AND METHODS

Here, we present a bioinformatic strategy that in a structured and
objective way helps to prioritize candidate genes for further study
in mapped QTL regions by integrating information from multiple
sources. First, the region to be evaluated further is narrowed down
by, at each SNP-location in the evaluated region, calculating a com-
bined score for the potential that each part of the region harbors
a mutation underlying the phenotype. This is done by combining
the statistical support from significance of the QTL effect at the
particular marker, which is a measurement of the effect of the alter-
native alleles on the studied phenotype, with two measures of the
genetic divergence between the founder lines (i.e., allele-frequency
differences) at the particular location, which is an indicator of the
direct or indirect selective pressure on the region due to an asso-
ciation with the phenotypes of importance when generating the
divergent founder lines. Then, all the polymorphisms in the prior-
itized region are evaluated in more detail to select the most likely
genes affecting the analyzed trait and bioinformatically predict
the potential functional effects of each identified polymorphism.
The details of the procedure, and its application to our particular
chicken dataset, are described with a flowchart in Figure 1 and in
the text below.

MAPPED QTL REGIONS TO BE EXPLORED

We studied seven fine-mapped QTL on chicken chromosomes 1—
5, 7, and 20,with previously observed effects on body-weight at
selection age in a QTL mapping pedigree founded with HWS and
LWS chickens from generation 41 (Jacobsson etal., 2005; Besnier
etal.,2011). The fine-mapping of the QTL was previously reported
by Besnier etal. (2011) where the effect of each SNP in the QTL
regions was estimated using a Flexible Intercross Analysis model
(Ronnegard etal., 2008). The statistical QTL support curve across
the regions from the analysis based on this model (Model B in the
original paper) was here used for identification and evaluation of
candidate regions.

INDIVIDUAL GENOME-WIDE 60 K SNP CHIP GENOTYPING
Genome-wide 60K SNP chip genotypes of 20 individuals from
each of the HWS and IWS lines, generation 41 (Marklund and
Carlborg, 2010) was available. We used these genotype data to
estimate the allele-frequency differences between the lines across
the QTL regions to be explored.

GENOME RESEQUENCING OF POOLED POPULATION-SAMPLES AND
SNP-CALLING

Genome resequencing was performed in two separate runs using
DNA pools from the HWS and LWS lines. The data from the two
experiments were combined to maximize the sensitivity in the SNP
detection.

For earlier studies DNA from two pools of genomic DNA, one
from each of the HWS and LWS lines, were used to generate
resequencing data with 5x average depth coverage for each line.
The reads were aligned to the Red Jungle Fowl’s (RJF) reference
genome assembly (WUGSC 2.1/galGal3, May 2006; Marklund and
Carlborg, 2010; Rubin et al., 2010).

For the current and future studies the second round of rese-
quencing was performed using two new pools of DNA samples.

Available datasets:
1: Fine-mapped QTL
2: 60K SNP chip
3: 1st round of whole genome resequencing
4: SNP-calling from 1st 5X resequencing

(S

2nd 7X resequencing

SNP-calling on merged datasets from 1st and 2nd
round of whole genome resequencing

Genetic divergence analysis using the flanking
SNP value (FSV) method on SNP-calling data in
fine-mapped QTL

Plotting the following datasets in fine-mapped
QTL:

1: SNP-chip allele frequencies

2: Flanking SNP values

3: QTL model-B score with its significance
4: Combined data score (CDS)

Selection of candidate segments in each fine-
mapped QTL for further bioinformatic analysis
of candidate genes and mutations

Variant effect predictor (VEP) annotation of SNP-
calling data in selected candidate segments

Functional prediction of amino acid substitutions
using the PASE software

Extracting Ensembl genes in candidate segments
and annotating them with DAVID bioinformatics
resources

Analysis of DAVID-annotated Ensembl genes
along with VEP annotations and PASE predictions

Candidate genes and mutations for further
functional validation studies

FIGURE 1 | Flow diagram of the bioinformatic analysis methods used
here to identify candidate genes and mutations.
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The individuals selected for each pool were guided by data from
earlier performed 60K SNP-chip genome-wide genotyping. From
each line, the eight individuals with the most non-representative
genotype pattern in the QTL regions were selected to increase the
possibilities for detection of variation within lines and thereby
allow improved precision in the fine mapping of regions with
high degree of between-line fixation. The ABI SOLID resequencing
was carried out by the Uppsala Genome Center using mate-pair
libraries and 50 bases per read with ~7x depth coverage in each
line. We aligned the reads to the RJF reference genome assembly
(WUGSC 2.1/galGal3, May 2006) using the MOSAIK software
(Lee etal., 2013) The resequencing datasets from the two rounds
of sequencing were combined for SNP calling based on a total of
~12x depth coverage in each line. However in each line SNP alleles
were called at each SNP position as determined using the threshold
of three non-RJF reads that we set for SNP detection including the
total number of reads from both lines (i.e., ~24x depth coverage)
to increase the sensitivity. The GigaBayes software, a newer version
of PolyBayes (Marth etal., 1999), was used for SNP calling.

GENETIC DIVERGENCE ANALYSIS USING THE FLANKING-SNP-VALUE
METHOD IN RESEQUENCING DATA

We applied the flanking-SNP-value (FSV) method (Marklund and
Carlborg, 2010) to the resequencing data from the HWS and IWS
lines across the selected QTL regions. The FSV method computes
estimated allele frequency differences between the HWS and LWS
lines for each evaluated SNP position based on information from
the SNP itself as well as from data of flanking SNPs in both direc-
tions within an interval presumed to show a high degree of linkage
disequilibrium with the SNP. Thus, the input data for FSV com-
putation are the AB scores at all these positions, which in each line
indicate the proportion of resequenced reads that are in agreement
with reference sequence of RJE

A COMBINED SCORE FOR CANDIDATE GENE PRIORITIZATION

The allele frequency differences based on the individual SNP
genotyping, the genetic divergence estimates (FSV) from the
population-pool genome resequencing were plotted across the
QTL regions together with the QTL support-curve from the QTL
fine-mapping (Besnier etal., 2011). A combined data score (CDS)
was also calculated based on these three information sources as:

CDS = {[(FSVscore + SNPchip-allele freq.)/2]
+ (Normalized score of QTL_ModelB)}/2

The CDS was plotted to provide an objective statistic to priori-
tize regions for further analysis and evaluations of candidate genes
and mutations. In most cases the regions were selected above the
QTL significance and with high CDS.

IDENTIFICATION OF CANDIDATE GENES AND MUTATIONS IN
PRIORITIZED REGIONS

Genes were identified in the prioritized regions within the QTL
using the Ensembl database (version 67; Flicek etal., 2012).
The general functions and gene annotations for each gene was
compiled using information from the Database for Annotation,
Visualization and Integrated Discovery (DAVID; Huang etal,

2009a,b). DAVID integrates annotations for genes from differ-
ent omics databases including, for instance, gene ontology (GO),
KEGG and PANTHER.

All SNPs detected by resequencing in selected candidate regions
were analyzed with variant effect predictor (VEP) from Ensembl
(McLaren etal.,2010). VEP maps the locations of SNPs, insertions
and deletions to different functional parts of Ensembl genes, tran-
scripts and regulatory sequences. It differentiates coding SNPs
in exons as synonymous or non-synonymous and shows amino
acid substitutions. For some species, however not in chicken, it
also predicts the functional consequences of non-synonymous
SNPs (nsSNPs) on carrying proteins. We analyzed nsSNPs in
protein coding sequences in the prioritized QTL regions using
an in-house developed tool for prediction of amino acid sub-
stitutions based on their physicochemical properties (PASE) and
evolutionary conservation (Li etal., 2013).

The DAVID annotated gene list was then filtered to identify the
most likely candidate genes for growth in each QTL region. This
was done by selecting the genes that had been associated with any
of the following growth-related keywords: growth, development,
morphogenesis, formation, proliferation, differentiation, regen-
eration, mineralization, elongation, biosynthetic, biogenesis, and
organization. This set of terms was selected arbitrarily from ontol-
ogy literature. The whole annotated gene list description was also
reviewed to ensure no obvious candidates for growth were omitted.

RESULTS

In an earlier study, Besnier etal. (2011) fine-mapped a num-
ber of QTL affecting body-weight at 8 weeks of age (Table 1;
Figures 2A-E). The evaluated QTL regions are located on chicken
chromosomes 1-5, 7, and 20 and cover in total 121.4 Mbp of the
genome.

Using the prioritizations strategy described above, 44.7 Mbp
of these original QTL were selected using the combined informa-
tion from the QTL analysis and estimates of differences in allele
frequencies between the lines inferred from SNP chip genotyping
and FSV computation (Table 2).

Table 1| Fine-mapped growth QTL regions with significance
according to Besnier etal. (2011).

GGA! QTL2 Region Start End Size
name (Mbp3) (Mbp3) (Mbp)
1 Growth1 C1G1 169.6 181.0 1.4
2 Growth2 C2G2 479 65.4 175
3 Growth4 C3G4 24.0 68.0 43.9
4 Growth6 C4aG6 1.3 13.5 12.1
5 Growth8 C5G8 33.6 39.0 5.3
7 Growth9 C7G9 10.9 35.4 24.5
20 Growth12 C20G12 71 13.8 6.7
Total 121.4

1GGA: Gallus Gallus Autosome; 2QTL names as in Besnier etal. (2011);
3 Coordinates based on the Chicken (Gallus gallus) assembly v 2.1/galGal3
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FIGURE 2 | (A-E) Five of the fine-mapped growth QTL regions based on
model B (QTL Support curve), and their significance threshold (QTL Sign.
Threshold line) as in Besnier etal. (2011). The FSV curve represents FSV
computations from resequenced NGS data from the HWS and LWS lines
(Marklund and Carlborg, 2010), the SNP chip curve represents allele

frequency differences between HWS and LWS from SNP genotyping, and
the combined data score curve represents the formulated score from all of
the above stated dataset curves. The Selected Region line represents the
selected candidate regions for bioinformatic analysis of genes and
mutations.

Table 2 | Candidate regions selected based on QTL data and allele frequency differences between the lines inferred from SNP chip genotyping

and FSV computation from resequencing. The selected percentages of the QTL regions significant with model B, are given (Besnier etal., 2011).

Region name Start Mbp' End Mbp' Size (Mbp) QTL support? Ensembl genes®
C1G1 169.6 175.0 5.4 5.4 97

C2G2 59.7 65.4 5.7 2.1 52

C3G4 241 35.8 1.7 10.3 142

C4G6 10.6 12.9 2.3 0.0 62

C5G8 34.2 36.8. 2.6 0.0 20

C5G8 38.2 39.0 0.8 0.0 16

C7G9 20.4 35.4 15.0 4.3 209

C20G12 8.3 9.5 1.2 12 38

Total 44.7 23.3 636

1 Coordinates based on the Chicken (Gallus gallus) assembly v 2.1/galGal3; 2 Size of the selected regions significant with QTL model B (Besnier etal., 2011); 3 Number

of Ensembl genes in the initial list in the selected regions
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Table 3 | The variant effect predictor summary of SNPs in selected candidate segments of the QTL regions (according to Table 2).

Location within gene Region

C1G1 C2G2 C3G4 C4G6 C5G8 C7G9 C20G12 Total
3Prime UTR 200 93 200 153 73 348 75 1142
3Prime UTR, Splice site 1 1 2
5Prime UTR 22 9 44 20 3 50 28 176
5Prime UTR, Splice site 1 4 5
Coding unknown 1 1 2
Downstream 6118 2636 5318 2373 1395 7930 1384 27154
Essential splice site 2 3 6 1 1 4 3 20
Non-synonymous coding 215 82 255 92 60 470 80 1254
Non-synonymous coding, Splice site 6 4 8 5 3 17 1 44
splice site, Intronic 78 37 133 33 24 191 31 527
Stop gained 5 7 3 2 10 27
Stop gained, Non-synonymous coding 1 1
Synonymous coding 350 208 543 165 99 1113 159 2637
Synonymous coding, splice site 9 9 12 5 6 20 12 73
Upstream 5506 2626 5755 2570 1200 8312 1479 27488
Within mature miRNA 1 1
Within non-coding gene 4 2 1 3 12 4 26
Within non-coding gene, splice site 1 1
Total 12516 5708 12284 5422 2870 18484 3256 60540

In Table 3, we provide a summary of the results obtained using
the Ensembl VEP tool. Nearly 61,000 SNPs (excluding intergenic
and intronic SNPs) were found to be located within functional
elements across the selected candidate segments in this analysis. In
Table 4, we provide a selection of one or two of the best candidate
mutations in each region.

DISCUSSION

In this study we have developed and applied a bioinformatic
strategy to search for candidate mutations affecting body weight
at 56 days in several QTL regions that were previously identi-
fied and fine-mapped in an intercross between two divergently
selected chicken lines. Given the 40 generations of divergent
selection for body weight it is reasonable to assume that many
of the underlying functional mutations will display a relatively
large allele frequency difference, or complete fixation, between
the lines. This assumption is supported by earlier work with
the lines that many regions across the genome have been driven
to fixation for alternative alleles in the lines and that most
selection has been on standing genetic variation present in the
common base-population at the onset of selection (Johansson
etal., 2010). At a smaller number of selected loci mutations
might have arisen after the initiation of selection. It is, how-
ever, unlikely that the QTL evaluated here are due to such new
mutations as they are identified using a statistical analysis that
assumes that the crossed lines are fixed for alternative QTL
alleles.

To narrow down the target regions and identify the most
plausible mutations, we used several independent sources of infor-
mation. First, measurements of the genetic divergence between the
founder lines of the intercross were used as indicators of regions
that have been under strongest selection. Both individual SNP chip
genotyping and genome resequencing of pools of individuals were
used to provide stability and high-resolution in the estimates of
the allele frequency difference between the lines.

The potential functional impact of genes and SNPs located
within the target regions was bioinformatically evaluated to iden-
tify a set of candidate mutations to be further tested and evaluated
in functional studies. In regions where there exist several possible
candidate genes, our use of a combined and objective selection
criteria helped to localize the most promising candidate genes
and mutations. The genes and mutations listed in Table 4 qual-
ified as the strongest candidates underlying the observed QTL.
Among these, the glucagon (GCG) gene on chromosome 7 (C7G9
region) is perhaps the most obvious candidate gene due to its
well-documented effect on appetite (Suzuki etal., 2010), a trait
for which the HWS and LWS lines show an extreme difference.
No non-synonymous mutations were found in the glucagon gene,
but a mutation was identified in a downstream CpG island with
a large (0.87) estimated allele frequency difference between the
lines (AFD), and possibly a regulatory effect on glucagon gene
expression. The C7G9 region also included mutations in CpG
islands with even larger AFD estimates and possibly regulatory
roles in genes that in turn can regulate other genes with effects
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on body weight. Such mutations were found in the insulin-like
growth factor binding protein 2 (IGFBP2) and the growth fac-
tor receptor-bound protein 14 (GRB14; e.g., Holt and Siddle,
2005) genes. The IGFBP5 gene is also located in this target region
but at this stage we have not found sufficient support for any
strong candidate mutation in that gene. The IGF binding pro-
teins can specify the actions of insulin-like growth factors which
have key roles in vertebrate growth and development (e.g., Wood
etal,, 2005). Interestingly, the possibly regulatory IGFBP2 muta-
tion reported here is located in a coding sequence that is a part of
a CpG island. Even though it is a synonymous mutation it may
affect the IGFBP2 expression through mechanisms of codon usage,
GC content and/or mRNA stability and folding (reviewed by Sha-
balina etal., 2013). Overexpression of IGFBP2 has been shown to
reduce postnatal body weight gain in transgenic mice (Hoeflich
etal., 1999). The GRBI14 gene encodes a cellular adapter protein
that can bind to receptor tyrosine kinases and intracellular proteins
and thereby be involved in various processes. For example, it can
bind and modify the signals from the insulin receptor and insulin-
like growth factor 1 and its implication in growth regulation has
been shown (reviewed by Holt and Siddle, 2005).

Strong candidate genes and mutations were also found in QTL
regions on chromosome 3 (C3G4) and 4 (C4G6). In the C3G4
region, the gene encoding the cysteine rich transmembrane BMP
regulator 1 (CRIM1I),showed a non-synonymous mutations with
large allele frequency difference between the lines and high PE
scores (i.e., combined PC and EC scores; Table 4) with the PASE
tool. CRIM1 interactions with growth factors may be important
for the development of the central nervous system (CNS) and
other organs (Kolle etal., 2000). Perhaps most interesting is the
impact the CRIMI gene possibly has on the CNS because Ka
etal. (2009) reported genes that regulate neuronal plasticity to
be differentially expressed between the HWS and LWS lines in
the brainstem and hypothalamus. Moreover, electrolytic hypotha-
lamus lesions has been shown to increase appetite in the LWS
but not in the HWS line which further supports that CNS is
highly involved in the differences between these chicken lines
(Burkhart et al., 1983).

In the C4G6 region, candidate CpG island mutations were
identified within the fibroblast growth factor 16 (FGF16) and
vascular endothelial growth factor receptor 2 (VEGFR-2) genes.
FGF16 is known to be involved in embryonic development
and cell growth (Antoine etal., 2006) whereas the VEGFR-2
gene has been reported to be of importance for angiogenesis
(Patterson etal., 1995).

In the chromosome 1 QTL region (C1G1) we also found a
candidate mutation, possibly regulatory, in the asparagine-linked
glycosylation 11 homolog (ALG11) gene. ALG11 has been reported
to be involved in biosynthetic processes and required for normal
growth in yeast (Cipollo etal., 2001).

The chromosome 2 QTL region (C2G2) showed CpG island
mutations at the endothelin 1 (EDN1) gene with the two chicken
lines fixed for opposite alleles. EDN1 is known for roles in
regulation of blood pressure and development (Kurihara etal.,
1994).

In the regions on chromosome 5 (C5G8) and 20 (C20G12) the
genes found in the analysis were less obvious candidates. However,

such genes may still have key roles in processes with complex and
indirect effects on growth-related traits. Keeping this in mind,
we consider mutations identified in the sorting nexin 6 (SNX6;
Caldwell etal., 2005; C5G8 region) and baculoviral IAP repeat-
containing 7 (BIRC7; Kasof and Gomes, 2001; C20G12 region)
genes are of most interest to investigate further.

In conclusion, the described combination of data from QTL
mapping, next-generation sequencing, SNP chip genotyping and
bioinformatic analysis has provided a list of plausible candidate
genes and mutations that will facilitate further verification and
experimental evaluation. The support for this list from differ-
ent types of data and analysis enhances the probability that the
selected genes and mutations underlying the QTL effects are an
unbiased selection of genes and that the contributing gene(s) are
included in the set. Further studies based on this list may therefore
reveal mutations which underlie the observed QTL effects and can
increase our understanding of growth regulation as well as be more
emphasized in animal breeding programs with genomic selection.
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