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Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant
promoter methylation is a common epigenetic mechanism of gene silencing in cancer
cells. We here performed genome-wide analysis of DNA methylation of promoter regions
by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer
samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed
frequent aberrant methylation, but the other three cases showed no aberrant methylation
at all. Distribution of the hypermethylation among cancer samples was non-random,
which implied existence of a subset of preferentially methylated papillary thyroid cancer.
Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J,
POU4F2, SHOX2, PHKG2, TLX3, HOXA7 ) was validated quantitatively by pyrosequencing.
Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was
confirmed by gene re-expression following treatment with 5-aza-2′-deoxycytidine and
trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was
validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples.
Among the 34 cancer samples in total, 26 cancer samples with preferential methylation
were significantly associated with mutation of BRAF /RAS oncogene (P = 0.04, Fisher’s
exact test). Thus, we identified new genes with frequent epigenetic hypermethylation
in papillary thyroid cancer, two subsets of either preferentially methylated or hardly
methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation
and gene methylation. These hypermethylated genes may constitute potential biomarkers
for papillary thyroid cancer.
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INTRODUCTION
Papillary thyroid cancer is the most common cancer derived from
follicular cells. It is estimated that approximately 23,500 cases
of differentiated thyroid cancer occur per year in the United
States (Jemal et al., 2005), and 19,000 papillary thyroid cancer
cases per year in the European Union (http://globoca fr/).
In Japan, about 8000 patients suffer from thyroid cancer every
year, 80% of which are papillary cancer. While prognosis for
papillary thyroid cancer is generally good, with a 10-year sur-
vival rate above 90%, some patients die of distant metastases
and/or repeated recurrence (Ezaki et al., 1992; Yamashita et al.,
1998).

RET/PTC (Rearranged in Transformation/Papillary Thyroid
Carcinoma) re-arrangement, BRAF (V-Raf murine sarcoma viral
oncogene homolog B) and RAS (Rat Sarcoma viral oncogene
homolog) point mutations are frequently observed in papillary
thyroid cancer (Mitsutake et al., 2006; Knauf and Fagin, 2009).
Mutation of T to A at 1799 in the exon 15 of the BRAF gene has
been reported in 28–69% of papillary thyroid cancer cases, while

point mutations of RAS genes are detected in 5–20% (Cohen
et al., 2003; Kimura et al., 2003; Namba et al., 2003; Kondo et al.,
2007). Papillary thyroid cancer with poor prognosis is associated
with BRAF mutation (Xing et al., 2005; Lee et al., 2012), whereas
concomitantly, lengthy disease-free interval is not (Ulisse et al.,
2012).

Patients with papillary thyroid cancer are generally treated by
surgery. But it is difficult to decide whether total thyroidectomy,
hemithyroidectomy, prophylactic central neck dissection or no
dissection, should be performed in patients without preoperative
or intraoperative evidence of metastatic lymph nodes (Xing et al.,
2013). Association of BRAF mutation with occult central neck
lymph node metastases (Joo et al., 2012) might support use of
BRAF mutation as an indication for prophylactic central neck dis-
section for patients with conventionally low- to intermediate-risk
papillary thyroid cancer. But precise diagnosis to define prognosis
and suitable therapy is currently impossible. Molecular biomark-
ers would therefore simplify disease management (McLeod et al.,
2013).
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Along with genetic alterations, accumulation of epigenetic
alterations is known to affect cancer development (Baylin and
Ohm, 2006; Feinberg et al., 2006; Esteller, 2007). Aberrant DNA
methylation at promoter regions is a major epigenetic alter-
ation to silence tumor suppressor genes in many cancer types.
RASSF1A (Ras association (RalGDS/AF-6) domain family mem-
ber 1) is methylated in 20% of papillary thyroid cancer, lead-
ing to activation of the RAS-MAPK (Mitogen-Activated Protein
Kinase) signal (Xing et al., 2004). Papillary thyroid cancer is also
reported to involve methylation of other genes, including RARB
(Retinoic Acid Receptor, Beta), p16INK4A (CDKN2A, Cyclin-
Dependent Kinase Inhibitor 2A), TSHR (Thyroid Stimulating
Hormone Receptor), CDH1 (Cadherin 1, type 1, E-cadherin),
DAPK (Death-Associated Protein Kinase 1), and MLH1 (mutL
Homolog 1) (Hoque et al., 2005; Guan et al., 2008; Mohammadi-
asl et al., 2011). While a few genes known to be aberrantly methy-
lated in other cancers were analyzed in these studies, methylation
frequencies ranged from 15 to 33%. Involvement of genes in aber-
rant DNA methylation, however, has not been well-clarified in
papillary thyroid cancer. Whether any subset of papillary thyroid
cancer shows preferential aberrant methylation, and whether such
methylation and other clinicopathological factors are associated
are also unclear.

We here analyzed DNA methylation status of promoter
regions on a genome-wide scale, using the Illumina Infinium
HumanMethylation27 BeadChip technique on 14 clinical papil-
lary thyroid cancer samples and 10 normal thyroid samples. For
genes frequently hypermethylated in cancer, methylation status
was validated quantitatively by pyrosequencing, using 20 addi-
tional clinical cancer samples and 10 additional normal samples.
Methylation-associated gene silencing was confirmed by gene re-
expression following 5-aza-2′-deoxycytidine and trichostatin A
treatment, and by quantitative reverse transcription-polymerase
chain reaction (RT-PCR) on thyroid cancer cell lines. We found a
number of genes with frequent aberrant methylation and silenc-
ing in papillary thyroid cancer, and a subset of cancer with
preferential aberrant methylation.

MATERIALS AND METHODS
CLINICAL SAMPLES AND CELL LINES
We obtained 79 primary papillary thyroid cancer samples from
patients who underwent thyroidectomy at The University of
Tokyo, with written informed consent. These samples were
immediately frozen with liquid nitrogen and stored at −80◦C.
The frozen materials were microscopically examined for can-
cer cell contents by pathologists and were dissected to enrich
cancer cells when necessary. Thirty-four cancer samples contain-
ing more than 40% of cancer cells were selected and used for
further analysis. DNA was extracted by QIAamp DNA Micro
Kit (QIAGEN, Valencia, CA). Thyroid cancer cell line BHT-
101 was obtained from DSMZ (Leibniz Institute DSMZ-German
Collection of Microorganisms and Cell Cultures), TPC-1 was
provided from Dr. Mitsutake, University of Nagasaki (Ishizaka
et al., 1989) and KTC-1 and KTC-3 cell lines were provided
from Dr. Kurebayashi, Kawasaki Medical University (Kurebayashi
et al., 2000, 2006). These cell lines were maintained in RPMI
1640 (Gibco, Grand Island, NY) supplemented with 10% fetal

bovine serum, streptomycin sulfate (100 mg/L), and penicillin G
sodium (100 mg/L). Peripheral blood cell samples were purchased
from The Coriell Cell Repositories. This research was certified
by the Ethics Committee of The University of Tokyo and Chiba
University.

INFINIUM ASSAYS
High-resolution methylation analysis was conducted on the
Illumina Infinium HumanMethylation27 microarray platform.
This BeadChip assay measures methylation, given as a β-value, at
more than 27,000 CpG loci covering 15,000 genes. For each CpG
site, the β-value is the ratio of the fluorescence signal from the
methylated probe over the sum of methylated and unmethylated
probe signals. The β-value, ranging from 0.00 to 1.00, reflects
the methylation level of the individual CpG site. Bisulfite conver-
sion, whole-genome amplification, labeling, hybridization, and
scanning were carried out according to the manufacturer’s proto-
cols. According to the previously proposed classification (Weber
et al., 2007), Infinium probes were classified into three categories:
high-CpG, intermediate-CpG, and low-CpG probes, on the basis
of CpG ratio (the ratio of observed CpG count over expected
CpG count) and GC contents within 500 bp region around the
probe site (Matsusaka et al., 2011). Genes in X and Y chro-
mosomes were excluded to avoid gender differences. Infinium
enables us to analyze DNA methylation levels systematically for
more than 14,000 genes, but methylation level of a single CpG
site detected by Infinium may not precisely represent methyla-
tion status of promoter CpG island. Some Infinium probes might
be less quantitative; in analysis of control samples with known
levels of methylation (0, 25, 50, 75, 100%), the observed β-
values generally correlated with the expected β-values, while some
probes showed lower β-values (0.0–0.3) for 75% control or higher
β-values (0.7–1.0) for 25% control (Nagae et al., 2011).

PYROSEQUENCING ANALYSIS
Quantitative validation for methylation status was carried out by
pyrosequencing as previously reported (Matsusaka et al., 2011).
Primers were designed to include no or only one CpG site in
a primer sequence using Pyro Q-CpG Software (QIAGEN), to
amplify bisulfite-treated DNA regions containing several CpG
sites. For C of CpG site within a primer sequence, a nucleotide
which does not anneal to C or U was chosen, e.g., adenosine (A).
Briefly, the biotinylated PCR product was bound to streptavidin
sepharose beads HP (Amersham Biosciences, Sweden), washed,
and denatured using a 0.2 mol/L NaOH solution. After addition
of 0.3 μmol/L sequencing primer to the purified, single-stranded
PCR product, pyrosequencing was carried out using PyroMark
Q96 ID System (QIAGEN) according to the manufacturer’s
instructions. Primer sequences and conditions for HIST1H3J
(Histone cluster 1, H3j), POU4F2 (POU class 4 homeobox 2),
SHOX2 (Short stature homeobox 2), PHKG2 (Phosphorylase
Kinase, Gamma 2), TLX3 (T-cell Leukemia homeobox 3), and
HOXA7 (Homeobox A7), are shown in Table 1. Control samples
with known levels of methylation (0, 25, 50, 75, 100%) were pre-
pared as previously described (Yagi et al., 2010). Pyrosequencing
is not systematic, but highly quantitative (Matsusaka et al., 2011),
and enables us to precisely validate the methylation level at one
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Table 1 | Primer sequences for pyrosequencing of six potential methylation biomarkers.

Genes Primer sequences for PCR (Forward/Reverse) Sequencing primers

HIST1H3J F GTTATAAATTTTGGTAGAAGTTATTGT ATGGTTAGGAAGAAGTAGATAGT

R* ACCTTAATAACCAACTACTTCC

POU4F2 F GGGGAGAGGGGAGTATAA ATTAGTTTAGATTGATAGTAGAGG

R* AAAAAAAACTATACCAAATTAAACTCACCC

SHOX2 F* TTGGGGGGGTTGGAGTAGTAAA AACCCCCTAAATTCTTCCAT

R CTCCTTCTTCTCCTTCACTTTCTAATC

PHKG2 F GTTTGTAATTTTAGTATTTTGGGAGGTTGA AAGTTTAAGGTTGTAGTGA

R* TCCCTAACTAAATTCAACATTTTCTCTT

TLX3 F TGGTTGAGGTAGGAGAGGAATTAGTA GGTTTAAGAAAGATGATATAGAG

R* CACTAAAACTTTACCAAAAATAC

HOXA7 F* GGGAGTAAAGGAGTAAGAAGT CAACAAATCACAAATCAAAATTA

R ACCCAACAACAAATCACAAATCAAAATT

*Primers with 5 ′-biotin tag.

CpG site, as determined by the Infinium assay, as well as at
surrounding CpG sites. Mean methylation levels of these CpG
sites were calculated to represent methylation status of each gene
promoter, and were displayed in figures by heatmap or dot chart.

Mutation analysis
Mutations at BRAF 1799, KRAS (Kirsten Rat Sarcoma viral onco-
gene homolog) 34, 35, 38, NRAS (Neuroblastoma RAS viral
oncogene homolog) 181, 182, 183, HRAS (Harvey Rat Sarcoma
viral oncogene homolog) 35, 37, 181, 182, 183, were analyzed by
genotyping assays on MassARRAY platform, by detecting mass
difference of the extended nucleotide using matrix assisted laser
desorption ionization-time of flight-mass spectrometry (MALDI-
TOF-MS) (Yagi et al., 2012). First, PCR amplification primers and
a post-PCR extension primer were designed using MassARRAY
Assay Design 3.0 software (Sequenom), and listed in Table 2.
Those mutations were analyzed in a single reaction by multiplex
PCR. PCR amplification was performed in 5-μL volume contain-
ing 0.5 unit of Taq polymerase, 5 ng of genomic DNA, 0.5 pmol
of PCR primer and 2.5 nmol of dNTPs. PCR reactions were cycled
at 94◦C for 15 min, followed by 45 cycles of 94◦C for 20 s, 56◦C
for 30 s and 72◦C for 1 min. Shrimp alkaline phosphatase treat-
ment was performed at 37◦C for 20 min and 85◦C for 5 min.
Post-PCR primer extension was carried out using 5.6 pmol of
extension primer. Extension reaction was cycled at 94◦C for 30 s,
followed by 40 cycles of 94◦C for 5 s, 5 cycles of 52◦C for 5 s
and 80◦C for 5 s, and 72◦C for 3 min. Reaction products were
transferred to a SpectroCHIP (Sequenom) and mass difference
was analyzed using MALDI-TOF-MS. Irradiation of the matrix-
oligonucleotide-cocrystal with a laser beam ultimately results in
desorption and ionization of the oligonucleotides, which then can
be accelerated in an electrical field into the TOF device. The TOF
device separates the accelerated analyte ions of different mass-to-
charge (m/z) ratios by providing a field-free drift tube of defined
length. After passing through the tube, ions are detected; every
signal is assigned to a specific molecular mass calculated from
the TOF. The extended bases at possible mutation sites are deter-
mined from the difference of nucleotide molecular masses (Vogel
et al., 2009).

5-Aza-2′-DEOXYCYTIDINE AND TRICHOSTATIN A TREATMENT
Thyroid cancer cell lines were cultured at a density of 3 × 105

cells/10-cm dish on Day 0. Cells were exposed to 3 μM 5-
aza-2′-deoxycytidine (Sigma-Aldrich, St. Louis, MO) on Days
1, 2, and 3, and to 300 nM trichostatin A (Sigma-Aldrich) on
the Day 3. 5-Aza-2′-deoxycytidine induces hypomethylation of
DNA by inhibiting DNA methyltransferase, and re-expression
of silenced genes by 5-aza-2′-deoxycytidine treatment is syn-
ergistically enhanced by trichostatin A, a histone deacetylase
inhibitor (Suzuki et al., 2002). 5-Aza-2′-deoxycytidine is unsta-
ble in aqueous solution, and thus a 20 mM solution in dimethyl
sulfoxide (DMSO) was freshly prepared, and diluted in medium
to 3 μM every day immediately before medium change. The
medium was changed every 24 h, and the cells were harvested on
Day 4.

QUANTITATIVE PCR ANALYSIS
RT-PCR was performed using CFX96 Touch TM Real-Time PCR
Detection System (BIORAD Laboratories). cDNA was synthe-
sized from 1 μg of total RNA treated with DNase I with a
Superscript III kit (Invitrogen, Life Technologies). The quan-
tity of cDNA of each gene in a sample was measured by
comparing it with standard samples that contained 101 to
106 copies of the genes, and normalized to that of PPIA
(Peptidylprolyl Isomerase A). Primer sequences are shown in
Table 3.

STATISTICAL ANALYSIS
P-values were calculated to compare methylation(+) cancer and
methylation(−) cancer and to analyze the correlation of the
methylation status to clinicopathological features. Fisher’s exact
test was used for analysis of binary features such as sex, distant
metastasis, recurrence, and mutation of BRAF/RAS oncogenes
(with simple choice between male and female, occurrence and no
occurrence); t-test was used for more descriptive features that do
not imply a choice, such as age, tumor size, number of lymph
nodes with metastasis, and thyroglobulin. When P < 0.05, the
correlation was considered statistically significant. P-values were
also calculated by t-test to compare distribution of methylation
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Table 2 | Primer sequences used for mutation analysis (MALDI-TOF-MS assays).

Mutation sites Primer sequences (Forward/Reverse) Extend primers

BRAF_1799 F ACGTTGGATGTTCAAACTGATGGGACCCAC TGATTTTGGTCTAGCTACAG

R ACGTTGGATGTCTTCATGAAGACCTCACAG

HRAS_34 F ACGTTGGATGAATGGTTCTGGATCAGCTGG ACTCTTGCCCACACCGC

R ACGTTGGATGGACGGAATATAAGCTGGTGG

HRAS_35 F ACGTTGGATGAATGGTTCTGGATCAGCTGG AGCGGGTGGTGGTGGGCGCCG

R ACGTTGGATGGACGGAATATAAGCTGGTGG

HRAS_37 F ACGTTGGATGAATGGTTCTGGATCAGCTGG TCATCGCACTCTTGCCCACAC

R ACGTTGGATGGACGGAATATAAGCTGGTGG

HRAS_38 F ACGTTGGATGAATGGTTCTGGATCAGCTGG CAGCGCACTCTTGCCCACA

R ACGTTGGATGGACGGAATATAAGCTGGTGG

HRAS_181 F ACGTTGGATGTGGCAAACACACACAGGAAG CATGGCGCTGTACTCCTCCT

R ACGTTGGATGTGTTGGACATCCTGGATACC

HRAS_182 F ACGTTGGATGTGGCAAACACACACAGGAAG CATGGCGCTGTACTCCTCC

R ACGTTGGATGTGTTGGACATCCTGGATACC

HRAS_183 F ACGTTGGATGTGGCAAACACACACAGGAAG CGCATGGCGCTGTACTCCTC

R ACGTTGGATGTGTTGGACATCCTGGATACC

KRAS_34 F ACGTTGGATGTAGCTGTATCGTCAAGGCAC ACTCTTGCCTACGCCAC

R ACGTTGGATGAGGCCTGCTGAAAATGACTG

KRAS_35 F ACGTTGGATGTAGCTGTATCGTCAAGGCAC CTGTGGTAGTTGGAGCTG

R ACGTTGGATGAGGCCTGCTGAAAATGACTG

KRAS_37 F ACGTTGGATGTAGCTGTATCGTCAAGGCAC GAGGGGCACTCTTGCCTACGC

R ACGTTGGATGAGGCCTGCTGAAAATGACTG

KRAS_38 F ACGTTGGATGTAGCTGTATCGTCAAGGCAC AGGCACTCTTGCCTACG

R ACGTTGGATGAGGCCTGCTGAAAATGACTG

NRAS_181 F ACGTTGGATGTCGCCTGTCCTCATGTATTG ATACTGGATACAGCTGGA

R ACGTTGGATGCCTGTTTGTTGGACATACTG

NRAS_182 F ACGTTGGATGTCGCCTGTCCTCATGTATTG ATGGCACTGTACTCTTCT

R ACGTTGGATGCCTGTTTGTTGGACATACTG

NRAS_183 F ACGTTGGATGTCGCCTGTCCTCATGTATTG CTGGATACAGCTGGACA

R ACGTTGGATGCCTGTTTGTTGGACATACTG

Table 3 | Primer sequences for real-time RT-PCR in gene re-expression analysis.

Gene Primer sequences (Forward/Reverse) Anneal (◦C) Product (bp)

HIST1H3J F AAATCAAGCAGAGGCGAAGTCGGA 58 106

R GGATAGTGGGTCTCGTCAAAAAGC

POU4F2 F CACCAAGCCTGAACTCTTCAAT 58 101

R GCTGAATGGCAAAGTAGGCTTCG

SHOX2 F AAATCAAGCAGAGGCGAAGTCGGA 58 85

R GGATAGTGGGTCTCGTCAAAAAGC

PHKG2 F TGATCTTGTTCACACTCCTGGCT 58 145

R GAGATCAGGTCTTTGACAGTGCT

TLX3 F CTGTCTGCACAACTCGTCACTCTT 60 79

R GACAGCGGGAACCTTGGAACTATC

HOXA7 F AGTTCCACTTCAACCGCTACCTGAC 58 131

R GTCCTTATGCTCTTTCTTCCACTTC

ratios between cancer and normal samples. When P < 0.05, the
difference of the methylation ratios between cancer and normal
samples was considered statistically significant. The dot chart and
heatmap were drawn using Excel software and Java TreeView
software (http://jtreeview.sourceforge.net/).

RESULTS
ONCOGENE MUTATION STATUS IN PAPILLARY THYROID CANCER
We analyzed mutation status of BRAF and RAS (HRAS, NRAS,
and KRAS) oncogenes in 34 papillary thyroid cancer samples
using MALDI-TOF-MS (Figure 1). BRAF mutation was detected
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FIGURE 1 | Representative data obtained from MALDI-TOF-MS

imaging for three cancer samples. Cancer samples #1, #4, and #5
correspond to papillary cancer samples #1, #4, and #5 in Figure 3.
First column: photomicrograph of a tumor section with

hematoxylin/eosin (H/E) staining. Second, third, and fourth columns:
MALDI-TOF-MS profile with detection of BRAF /RAS mutations. X-axis
indicates mass-to-charge ratio (m/z) to distinguish wild-type and mutant
allele, and Y-axis indicates signal intensity.

in 67% (23/34) of the 34 samples, whereas HRAS, NRAS, and
KRAS mutations were detected less frequently, in 3% (1/34), 3%
(1/34), and 0% (0/34) sample, respectively. Each oncogene muta-
tion was mutually exclusive; 25 among the 34 samples (75%) were
oncogene-mutation(+) cancer.

DNA METHYLATION ANALYSIS USING ILLUMINA INFINIUM
BEADARRAY
Among 34 papillary thyroid cancer and 24 normal thyroid
samples, 14 and 10 samples, respectively, were analyzed using
Infinium 27K BeadArray. Methylation data of other cancer types
(80 head and neck squamous cell cancers, 50 gastric cancers,
80 colorectal cancers, 80 prostate cancers, 24 chronic myeloid
leukemias, 50 glioblastomas), and normal samples of correspond-
ing tissues were collected from National Center for Biotechnology
Information, Gene Expression Omnibus (http://www.ncbi.nlm.

nih.gov/gds: GSE25089 for head and neck squamous cell carci-
noma, GSE31789 for gastric cancer, GSE27130 for colorectal can-
cer, GSE26126 for prostate cancer, GSE31600 for chronic myeloid
leukemia, and GSE22867 for glioblastoma). To analyze aberrantly
methylated genes in cancer samples, probes with β-value < 0.17 in
all the normal samples and with standard deviation of β-values in
cancer samples >0.15 were selected, and shown in Figure 2. Each

cancer type including papillary thyroid cancer showed a unique
pattern of aberrant promoter methylation.

ABERRANTLY METHYLATED GENES IN PAPILLARY THYROID CANCER
While the number of aberrantly methylated genes was relatively
small in papillary thyroid cancer (Figure 2), 25 genes showed
frequent hypermethylation (β > 0.25) in three or more samples
among the 14 papillary thyroid cancer samples, and no methyla-
tion (β < 0.2) in all the 10 normal samples (Figure 3). To check
that the hypermethylation status was not due to contaminated
blood cells, the methylation status of these genes in peripheral
blood cells was also analyzed to see that none of them were
methylated in blood (Figure 3).

Among 14 papillary cancer samples, 11 samples showed aber-
rant methylation in three or more genes, whereas the other three
samples showed no aberrant methylation at all (Figure 3). When
methylation status was compared with clinicopathological fac-
tors, the two cancer cases with recurrence were both methylation-
negative (P = 0.03, Fisher’s exact test) (Figure 3). Nine of the 11
frequently methylated samples showed mutation of BRAF/RAS
oncogenes, whereas none of the three methylation-negative sam-
ples showed oncogene mutation (P = 0.03, Fisher’s exact test).
Other clinicopathological factors, including tumor size, lymph
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FIGURE 2 | Heatmap for methylation status of several cancer types.

Genes with β-value <0.17 in normal samples and with standard deviation of
β-value in cancer samples >0.15, were selected and their β-values were
shown by heatmap. Each cancer type showed different methylation profile,
and papillary thyroid cancer displayed fewer aberrantly methylated genes
than other cancer types. HNSCC, head and neck squamous cell carcinoma;
CRC, colorectal cancer; PC, prostate cancer; CML, chronic myeloid
leukemia; GC, gastric cancer; GBM, glioblastoma; PTC, papillary thyroid
cancer; N, normal samples corresponding to these cancer types.

node metastasis, distant metastasis, tumor stage, age, or sex, did
not show significant difference.

To validate the methylation status of these genes, six out
of the 25 genes, HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3,
and HOXA7, were randomly chosen and analyzed by pyrose-
quencing, a highly quantitative method (Figure 4). Although one
normal sample showed high methylation in POU4F2, frequent
hypermethylation of these genes in papillary cancer samples
was confirmed, while normal thyroid samples were generally
unmethylated.

EVALUATION OF GENE SILENCING
The analyzed tissue samples include a part of non-tumor cells
(see Materials and Methods). To evaluate whether these aber-
rantly methylated genes were silenced in cancer cells, we analyzed
methylation status of these six genes in papillary thyroid cancer
cell lines (TPC1, KTC1, and KTC3) and anaplastic thyroid can-
cer cell line BHT-101 (Figure 5A). All the genes except SHOX2
showed dense methylation in at least one papillary thyroid can-
cer cell line, confirming that hypermethylation detected in cancer
tissue samples is due to hypermethylation in cancer cells.

We next performed real-time RT-PCR for the six genes. All the
genes except SHOX2 showed no or very low expression in the
analyzed, methylated cancer cell line, and showed re-expression

in cells treated with 5-aza-2′-deoxycytidine and/or trichostatin
A (Figure 5B). SHOX2 was neither expressed, nor methylated in
KTC1 (Figure 5A). Consequently, its expression was not reversed
by the deoxycytidine/trichostatin treatment (Figure 5B). This is
presumably because SHOX2 was silenced in KTC1 by mecha-
nisms other than promoter methylation, e.g., by depletion of
appropriate transcription factors.

METHYLATION ANALYSIS OF THE SIX GENES IN ADDITIONAL
SAMPLES
To statistically extend the validation of aberrant methylation of
the six genes, we analyzed the methylation status in 20 additional
papillary thyroid cancer samples and 10 additional normal thy-
roid samples by pyrosequencing (Figure 6). A similar fraction of
cancer samples showed high methylation in each gene (2/20 for
HIST1H3J, 8/20 for POU4F2, 4/20 for SHOX2, 5/20 for PHKG2,
6/20 for TLX3, and 4/20 for HOXA7).

When methylation ratios were compared between 34 can-
cer samples in total and 20 normal samples in total, five genes
(HIST1H3J, SHOX2, PHKG2, TLX3, and HOXA7) showed sig-
nificantly higher methylation in cancer (P < 0.05, ranging from
0.0001 to 0.004, t-test), and POU4F2 tended to show higher
methylation in cancer (P = 0.07, t-test) (Figure 7A). Among
the 34 cancer samples, 26 showed aberrant methylation in at
least one gene, but eight showed no aberrant methylation at
all (Figure 7B). When clinicopathological features were com-
pared between methylation(+) cancer and methylation(−) can-
cer, mutations of BRAF/RAS oncogenes significantly correlated to
methylation(+) groups (P = 0.04, Fisher’s exact test) (Table 4).
Although it was not statistically significant, methylation(+) can-
cer tended to show larger size of tumor (P = 0.06, t-test) and
higher levels of thyroglobulin (P = 0.08, t-test).

DISCUSSION
In this study, we performed genome-wide DNA methylation anal-
ysis in 14 human papillary thyroid cancer samples and 10 normal
samples. Although papillary thyroid cancer apparently involves
fewer aberrantly methylated genes than other types of cancers,
we detected 25 genes frequently hypermethylated in papillary thy-
roid cancer. Methylation status was quantitatively validated in six
out of the 25 genes by pyrosequencing, using the genome-widely
analyzed samples and additional samples. Gene silencing in papil-
lary thyroid cancer cell lines was confirmed by real-time RT-PCR.
While a subset of cancer cases had no aberrant methylation at
all, cancer with preferential methylation tended to have oncogene
mutation and to be larger tumor.

Papillary thyroid cancer displayed fewer aberrantly methylated
genes, compared with other cancer types (Figure 2). For genes
previously reported to be methylated in thyroid cancer, such
as TSHR (Xing et al., 2003), or in other cancer types, such as
RASSF1A, RAR-β2, p16, CDH1, DAPK, and MLH1, the methy-
lation frequency in papillary thyroid cancer ranges from 15 to
33% (Hoque et al., 2005; Guan et al., 2008; Mohammadi-asl
et al., 2011). In these reports, no or few normal samples were
analyzed (Guan et al., 2008; Mohammadi-asl et al., 2011), methy-
lation was also detected in normal samples (Hoque et al., 2005),
or a non-quantitative method, i.e., standard methylation-specific
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FIGURE 3 | Aberrantly methylated genes frequently observed in

papillary thyroid cancer. PBC, peripheral blood cells. We detected 25 genes
that were hypermethylated (β > 0.25) in at least three of 14 papillary thyroid
cancer samples, but not methylated (β < 0.2) in 10 normal samples. Among
the 14 papillary cancer samples, 11 showed aberrant methylation in three or
more genes, whereas the other three samples had no aberrant methylation.

Purple, tumor size; brown, number of metastatic lymph nodes >3; gray,
distant metastasis(+); green, age over 45 years old; pink, female; pale blue,
stage III or IV; red, recurrence (+); orange, BRAF mutation(+); blue, RAS
mutation (+). The two samples with recurrence (red) had no aberrant
methylation (P = 0.03, Fisher’s exact test). BRAF /RAS oncogene mutations
were all observed in methylation(+) samples (P = 0.03, Fisher’s exact test).

PCR, was used (Guan et al., 2008). Standard methylation-specific
PCR (Herman et al., 1996) can amplify and detect minor fraction
of methylated alleles, but its high sensitivity can lead to overesti-
mation of methylation frequency. Our analysis did not select these
genes as frequently methylated ones in the first 14 cancer samples,
because normal thyroid tissues also showed high methylation lev-
els or because methylation frequencies in papillary thyroid cancer
samples were low (≤2 of 14 cancer samples). Instead, we detected
25 novel genes that were frequently aberrantly methylated (β >

0.25) in at least three of the 14 cancer samples, and not methylated
in any of the 10 normal thyroid samples (β < 0.2).

Interestingly, three of the 14 papillary thyroid cancer samples
showed no aberrant methylation in the 25 genes, but the other 11
cancer samples showed hypermethylation in at least three of the
25 genes. No cancer sample showed aberrant methylation in just
one or two genes. This unusual distribution of aberrant methyla-
tion is similar to the CpG island methylator phenotype (CIMP),
which was first proposed in colorectal cancer (Toyota et al., 1999).
As Toyota et al. demonstrated in colorectal cancer (Toyota et al.,

1999), we calculated probability of methylation distribution in
papillary thyroid cancer using these 25 genes. The fraction of
methylated tumors in each gene was 3/14 for ATP8A2, 3/14 for
C19orf4, . . ., 5/14 for ANKRD45, . . ., 6/14 for MYLK, . . ., 4/14
for NRN1, . . ., 5/14 for SHOX2, and 3/14 for SST (Figure 3).
Assuming that methylation of these genes is random, the prob-
ability that none of the 25 genes would be methylated in three
cancer samples is P = 1.2 × 10−8. This was calculated using the
following formula:

p(x) =

(
N
x

) ∏
g

(
N − x
f (g)

)

∏
g

(
N

f (g)

)

where x indicates number of samples which do not have methy-
lated genes (x = 3 in the present case), N indicates number of
cancer samples (N = 14 here), g indicates one of the 25 genes,
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FIGURE 4 | Confirmation of aberrant methylation by pyrosequencing.

Six genes were randomly chosen among the 25 frequently methylated
genes, and their methylation status was quantitatively validated by
pyrosequencing, using the 14 papillary thyroid cancer samples and 10
normal thyroid samples that were analyzed by Infinium. Although one
normal sample showed high methylation in POU4F2, aberrant methylation
of the six genes in the papillary cancer samples was confirmed. Bottom,
the corresponding data for aberrant methylation obtained by Infinium
analysis (Figure 3).

and f(g) indicates the number of samples in which g is methy-
lated. Similarly, the probability that at least three of the 25 genes
are methylated in 11 cancer samples would be P = 0.0028. In each
case, a random event is highly unlikely. We rather observe that
the associated methylation or un-methylation events both occur
at relatively high frequencies. Our data thus suggest that there are
two distinct classes of papillary thyroid cancer. One is a subset of
hardly methylated cancer. The second one is a subset of prefer-
entially methylated cancer, prone to transcriptional silencing and
with the potential to inactivate several genes simultaneously, as
CIMP has been proposed in colorectal cancer and other cancers
(Toyota et al., 1999; Kaneda et al., 2002; Noushmehr et al., 2010).

Although the number of analyzed samples was not large, pref-
erentially methylated papillary thyroid cancer showed mutation
of BRAF/RAS oncogenes more frequently than methylation(−)
cancer (P = 0.04, Fisher’s exact test). In previous studies of pap-
illary thyroid cancer, although methylation of RASSF1A and
BRAF mutation were detected in a mutually exclusive manner
(Xing et al., 2004; Hoque et al., 2005), methylation of RAR-
β2 or MLH1 significantly correlated to BRAF mutation (Hoque
et al., 2005; Guan et al., 2008). Correlation of aberrant methy-
lation and oncogene mutation are also reported in colorectal
cancer; high-methylation and intermediate-methylation epigeno-
types strongly correlated to BRAF mutation and KRAS mutation,
respectively, and low-methylation epigenotype strongly corre-
lated to lack of oncogene mutation (Shen et al., 2007; Yagi et al.,
2010; Hinoue et al., 2012). The mechanism of these correla-
tions is still unknown, but oncogene mutation may somehow
induce aberrant methylation, or aberrant methylation may help
escape from senescence by disrupting factors critical in RAF/RAS-
induced senescence (Kaneda and Yagi, 2011).

FIGURE 5 | Silencing of aberrantly methylated genes. (A) Methylation
status of the HOXA7, POU4F2, HIST1H3J, TLX3, PHKG2, SHOX2 genes
was analyzed in papillary thyroid cancer cell lines TPC1, KTC1, and KTC3
and anaplastic thyroid cancer cell line BHT-101 by pyrosequencing. Open
box, 0–30% methylation, presumably no allele methylation. Hatched box,
30–70% methylation, presumably hemi-allelic or partial methylation. Closed
box, 70–100% methylation, presumably bi-allelic and dense methylation. All
the genes except SHOX2 showed dense methylation in at least one
papillary thyroid cancer cell line. (B) Real-time RT-PCR analysis of the
methylated genes. Cells were treated with 5-aza-2′-deoxycytidine (5-AZA)
and/or trichostatin A (TSA). Gene expression levels were normalized to that
of PPIA (Peptidylprolyl Isomerase A, or cyclophilin A). All the genes except
SHOX2 showed no or very low expression in the analyzed cancer cell line,
and showed re-expression in cells treated with 5-AZA/TSA.

Preferentially methylated cancer also tended to have larger
tumors and higher thyroglobulin levels, which might relate to
cancer progression (Piccardo et al., 2013). Although 90% of pap-
illary thyroid cancers are considered to be at low risk with a
mortality rate of 1–2%, the mortality rate of the high risk group
is 50–75% (Hay et al., 1993; Noguchi et al., 1994; Shaha et al.,
1996; Dean and Hay, 2000). The tumor-node-metastasis (TNM)
classification is a tool for cancer prognosis; each variable used in
TNM staging (age, tumor size, extent of primary tumor, and pres-
ence of nodal or distant metastases) shows significant association
with observed end points of cancer recurrence or death. Cancer
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FIGURE 6 | Aberrant methylation of HOXA7, POU4F2, HIST1H3J, TLX3,

PHKG2, SHOX2 genes in additional samples: 20 cancer samples and 10

normal ones. Methylation status of the six genes was confirmed by
pyrosequencing. Bottom, color scale with known methylation degrees
(0–100%).

FIGURE 7 | Methylation status of the six genes in 54 samples analyzed

by pyrosequencing. (A) Each gene was methylated to a different extent in
each sample. C, 34 cancer samples. N, 20 normal samples. Circle,
methylation ratio of each sample. Filled circles indicate that the gene is
methylated with the methylation ratio >25%. Bars, the mean and standard
error of methylation ratios. P-values were calculated by t-test to compare
distribution of methylation ratios between cancer (C) and normal (N)
samples. Five genes (HIST1H3J, SHOX2, PHKG2, TLX3, and HOXA7 )
showed significantly higher methylation in cancer (P < 0.05, t-test).
POU4F2 tended to show higher methylation in cancer (P = 0.07, t-test). (B)

Heatmap for methylation status of the 54 analyzed samples. Among the 34
papillary thyroid cancer samples, 26 were aberrant methylation(+) in at least
one of six genes, while eight had no methylation. In Table 4, the number of
cancer samples with aberrant methylation (n = 26) and the number of
samples without aberrant methylation (n = 8) refer to these data.

recurrence and mortality ratios are significantly lower in stage I
(15.4% and 1.7%, respectively) compared with more advanced
tumors (22% and 15.8% in stage II, 46.4% and 30% in stage
III, and 66.7% and 60.9% in stage IV, respectively) (Loh et al.,
1997). Molecular diagnostic markers are still not used, although
their development is anticipated (McLeod et al., 2013). Although

Table 4 | Aberrant methylation and clinicopathological features.

Clinical

features

All Cases

(n = 34)

Aberrant

Methylation(+)

(n = 26,

Figure 7B)

Aberrant

Methylation(−)

(n = 8,

Figure 7B)

P-values

SEX

Male/female 11/23 10/16 1/7 0.17
(Fisher)

AGE (YEAR)

Mean ± SE 56.0 ± 2.7 57.2 ± 3.1 52.4 ± 4.9 0.45
(t-test)

TUMOR SIZE (mm)

Mean ± SE 26.2 ± 2.6 28.3 ± 3.3 20.1 ± 2.0 0.06
(t-test)

NUMBER OF LYMPH NODES WITH METASTASIS

Mean ± SE 2.6 ± 0.7 2.2 ± 0.6 3.3 ± 1.6 0.53
(t-test)

DISTANT METASTASIS

(+)/(−) 0/34 0/26 0/8 1 (Fisher)

RECURRENCE

(+)/(−) 5/28 3/22 2/6 0.37
(Fisher)

Unknown 1 1 0

THYROGLOBULIN (ng/ml)

Mean ± SE 104.6 ± 52.1 129.3 ± 68.6 30.5 ± 9.3 0.08
(t-test)

MUTATION OF BRAF/RAS ONCOGENES

(+)/(−) 26/7 22/3 4/4 0.04*
(Fisher)

Unknown 1 1 0

SE, standard error. P-values were calculated to compare methylation(+) group

and methylation(−) groups and to analyze the correlation of methylation status

to clinicopathological features. Fisher, calculated by Fisher’s exact test. t-test,

calculated by t-test. *P < 0.05, which is considered as statistically significant.

Mutations of BRAF/RAS oncogenes are thus considered to correlate significantly

with methylation(+) groups.

aberrant methylation was not significantly associated with lymph
node metastasis, distant metastasis, or recurrence in analysis of
the 34 cancer samples in this study, further study should be per-
formed using larger set of clinical samples for comparison of
aberrant methylation, gene mutation status, and prognosis.

As for detected genes, TLX3 (HOX11L2) is a transcription fac-
tor highly expressed in T-cell leukemia (Baak et al., 2008), and its
aberrant methylation was observed in cisplatin-resistant bladder
cancer (Tada et al., 2011). SHOX2 is a member of the homeobox
gene family, and is reported to relate to a short-stature phenotype
of Turner syndrome (Clement-Jones et al., 2000). DNA methyla-
tion of SHOX2 was suggested to be a biomarker for diagnosis of
lung cancer based on bronchial aspirates (Schmidt et al., 2010).
HOXA7 is also a transcription factor belonging to the home-
obox gene family that regulates gene expression, morphogenesis,
and differentiation (La Celle and Polakowska, 2001). POU4F2
is one of POU family genes with Pit-Oct-Unc domain, and is
a transcription factor with a role in cell identity and regulation
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of nerve cell or retinal development (Weishaupt et al., 2005).
PHKG2 is the gamma subunit of phosphorylase kinase, contain-
ing the active site of the enzyme. Phosphorylase kinase-deficient
liver glycogenosis can be caused by mutations of phosphorylase
kinase subunits, PHKA2, PHKB, or PHKG2, but PHKG2 muta-
tion was reported to cause a severe phenotype of this disease
(Burwinkel et al., 2003). HIST1H3J encodes a member of his-
tone H3 family, and is found in the small histone gene cluster
on chromosome 6p22-p21.3 (NCBI gene data bank). If the role
of histone modifications is known to affect the regulation of gene
expression, less is known about the possible direct involvement
of histones, an H3 variant in the present case, in thyroid tumori-
genesis. Further investigation is necessary to clarify tumorigenic
roles of these genes and their methylation, in papillary thyroid
cancer and other types of cancer (Schmidt et al., 2010; Tada et al.,
2011).

In summary, 25 new genes were found to be frequently methy-
lated in papillary thyroid cancer. There might be subsets of
papillary thyroid cancer hardly methylated and preferentially
methylated, and aberrant methylation of these genes correlates
a priori to BRAF/RAS oncogene mutation in papillary thyroid
cancer.
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