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There are two distinct issues regarding network validation: (1) Does an inferred network
provide good predictions relative to experimental data? (2) Does a network inference
algorithm applied within a certain network model framework yield networks that are
accurate relative to some criterion of goodness? The first issue concerns scientific
validation and the second concerns algorithm validation. In this paper we consider
inferential validation relative to controllability; that is, if an inference procedure is applied to
data generated from a gene regulatory network and an intervention procedure is designed
on the inferred network, how well does it perform on the true network? The reasoning
behind such a criterion is that, if our purpose is to use gene regulatory networks to design
therapeutic intervention strategies, then we are not concerned with network fidelity,
per se, but only with our ability to design effective interventions based on the inferred
network. We will consider the problem from the perspectives of stationary control, which
involves designing a control policy to be applied over time based on the current state of
the network, with the decision procedure itself being time independent. The objective
of a control policy is to optimally reduce the total steady-state probability mass of the
undesirable states (phenotypes), which is equivalent to optimally increasing the total
steady-state mass of the desirable states. Based on this criterion we compare several
proposed network inference procedures. We will see that inference procedure ψ may
perform poorer than inference procedure ξ relative to inferring the full network structure
but perform better than ξ relative to controllability. Hence, when one is aiming at a specific
application, it may be wise to use an objective-based measure of inference validity.
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1. INTRODUCTION
Network validity can be approached from two perspectives: scien-
tific and inferential. Scientific validity is an epistemological issue
concerning the ability of a network model to yield observations
concordant with those predicted by the model (Dougherty and
Bittner, 2011). It involves relations between model characteristics
and experimental observations such that mathematical predic-
tions based on the model are manifested in the phenomena via
these relations. Inferential validity concerns the ability of an infer-
ence procedure to operate on data generated from the model
and yield an inferred model close to the original network rel-
ative to some distance function. Inferential validity is purely a
mathematical issue concerning the inference algorithm. The two
issues, scientific and inferential validity, are not unrelated because
in practice an inferential procedure is used to construct a model
from real data and the scientific validity is therefore dependent
upon the performance of the inferential procedure. In this paper
we are interested in inferential validity [see Dougherty (2011) for
a discussion of the two types of validity].

The validity of inference procedures for gene regulatory net-
works is discussed in Dougherty (2007), where validation is
relative to some network characteristic and quantified by some
distance between the characteristic for the original network and

the characteristic for the inferred network, such as a norm
between the steady-state distributions of the original and inferred
networks. Generally speaking (we shall be more rigorous shortly),
(1) a characteristic is derived for the network; (2) a data sam-
ple is generated from the network; (3) an inference procedure
operates on the sample to produce an inferred network; (4)
the corresponding characteristic is derived for the inferred net-
work; (5) the corresponding characteristics for the original and
inferred networks are compared; and (6) the validity of the infer-
ence procedure is determined by some distance between the
characteristics.

The preceding validation protocol focuses solely on the net-
work itself, not any objective to which the network is to be
used, although clearly successful use of the inferred network will
depend to some extent on the closeness of the inferred and orig-
inal networks. Our aim here is to characterize the notion of
objective inferential validity, where inferential validity is measured
relative to the objective for which the network will be used. In par-
ticular, we are concerned with controllability. Specifically, if the
objective is to derive a control procedure from the inferred net-
work, then it is of utmost importance that the control procedure
works well on the original network (from which the sample
data have been generated). In other words, to what extent is
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Network Inference

• Q: What types of biological networks have been inferred in the paper?
• A: We focus on the inferential validity of genetic regulatory network inference. We evaluate and compare different

inference algorithms in the framework of probabilistic Boolean networks (PBNs) by both synthetic random PBNs and
a melanoma metastatic network inferred from gene expression data.

• Q: How was the quality/utility of the inferred networks assessed?
• A: We propose and discuss different inferential validity criteria for inferring genetic regulatory networks, including

(1) Hamming distance to measure the network topology closeness; (2) steady-state mass difference for network
dynamic behavior similarity; and (3) expected difference of desirable steady-state mass shift by applying derived
optimal control when the operational objective is intervention. We would like to emphasize that objective inferential
validity criteria based on operational objectives such as intervention are viable choices when we typically do not have
the ground truth of real-world gene regulatory networks.

• Q: How were these networks validated?
• A: Both synthetic random networks and the melanoma metastatic network are considered as benchmark networks.

From these network models, we simulate the network dynamics with perturbations, inferred networks by different
algorithms are evaluated by ground truth network models based on the aforementioned three inferential validity
criteria.

controllability preserved by the inference procedure? It may be
that the original and inferred networks are a quire discordant;
however, if their lack of agreement has little impact on derivation
of the control procedure, then this lack of agreement is of little
consequence.

Two basic intervention approaches have been considered for
gene regulatory networks in the framework of probabilistic
Boolean networks (PBNs) (Dougherty and Datta, 2005; Datta
and Dougherty, 2007; Shmulevich and Dougherty, 2007), struc-
tural intervention and external control. Both take advantage
of the fact that the probabilistic characteristics of a PBN are
characterized by an associated Markov chain. Structural interven-
tion involves a one-time change of the network structure (wiring)
to beneficially alter the long-run behavior (steady state) of the
network (Shmulevich et al., 2002b; Xiao and Dougherty, 2007;
Qian and Dougherty, 2008). Given a class of potential structural
changes, the problem is to find the optimal structural intervention
resulting in a desired alteration of the steady-state distribution.
Stationary control is generally based on flipping (or not flipping)
the value of a control gene(s) over time in an effort to favor-
ably move the steady-state mass. Efforts have mainly focused
on infinite-horizon stationary external control. The first pro-
posed approach utilizes dynamic programming to find an optimal
policy relative to a cost function, in which case the steady-
state distribution is altered as a by-product of this optimization
(Pal et al., 2006). A second approach is to utilize a greedy (no
optimality) algorithm to find a policy that directly aims at altering
the steady-state distribution Qian et al. (2009). Here we will use
a more recently proposed approach for gene regulatory networks
that uses linear programming to find a policy that is optimal rel-
ative to minimizing undesirable steady-state mass (Yousefi and
Dougherty, 2013). This latter approach avoids the introduction
of a subjectively defined cost function as in Pal et al. (2006) and
avoids the sub-optimality of greedy algorithms (Qian et al., 2009).
Instead, the amount of shift in the steady-state distribution gives
an intrinsic network measure, as it also does in the case of struc-
tural intervention. The situation is analogous to classification,
where the Bayes error is intrinsic to the feature-label distribution,

as opposed to errors resulting from suboptimal classifiers that
have been derived from data via some ad hoc classification rule. In
this paper we restrict our attention to stationary control because
it is very possible that the optimal structural controller for an
inferred network is based on an inferred function that may not
exist in the original network. In such a case it would not be fea-
sible to apply the identified intervention for the inferred network
back to the original network.

Figure 1 illustrates the main idea of objective inferential valid-
ity for quantifying the performance of different network inference
procedures with respect to controllability. Assuming that we are
interested in an impaired biological system that has a higher
risk of entering into aberrant phenotypes, from the collected
measurements, our goal is to design effective stationary control
policies to reduce the risk of entering into these undesirable or
bad states. One way to characterize network states is based on the
prior knowledge of biomarkers. As a hypothetic example, x1 in
Figure 1 is considered as the marker gene, whose value being 1
(up-regulated) are not desirable as it may represent metastasizing
phenotypes in cancerous systems, for example. Based on what we
can observe, from microarray profiling or other high-throughput
techniques, we may infer the underlying network model that
governs the state dynamics. Many previous inferential validity
measures are solely interested in the network itself. However,
in this scenario, inference procedures should be evaluated in
regard to our final objective of effectively reducing the undesir-
able risk by evaluating the control performance of intervention
strategies derived using the network model inferred from par-
tially observed data. In fact, in real-world scenario, we typically
do not have the ground truth of the underlying system. Objective
inferential validity may be the only reasonable framework for
network inference validation.

2. SYSTEMS AND METHODS
2.1. PROBABILISTIC BOOLEAN NETWORKS
Probabilistic Boolean networks (Shmulevich et al., 2002a) extend
the classical Boolean networks (Kauffman, 1969, 1993) by intro-
ducing uncertainty in the rule structure [see Shmulevich and
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FIGURE 1 | Schematic illustration of inferential validity. There are different
criteria to evaluate inferred networks from available temporal measurements.
For example, we can directly measure the difference of inferred regulatory
relationships among genes by the commonly adopted Hamming distance
between the original network adjacency matrix and the inferred adjacency
matrix. We are interested in objective-based inferential validity based on
controllability. For example, assuming that x1 is a genetic marker marked in
red, the network is considered in “undesirable” states when it is
up-regulated (x1 = 1). Hence, from the translational perspective, the ultimate
goal of studying this network system is to develop effective therapeutic
strategies based on collected data from the system. Hence when evaluating
network inference algorithms, instead of comparing other network
characteristics, it may be more appropriate to directly investigate how the
derived intervention strategies based on inferred networks perform on the

original networks by reducing the long-run probability of entering into
undesirable states, which leads to our controllability-based inferential validity.
As shown in the figure, assume that we derive the optimal control based on
the original network to block the regulation from x1 to x2 while the derived
control from the inferred network is to block the regulation from x1 to x3.
Note that both of the derived control policies have to be validated on the true
network. One criterion to evaluate the inferred network as our
“objective-based inferential validity” is to check how the steady-state
distribution π

′′
by blocking x1 → x3 on the original network compares to the

optimally controlled steady-state distribution π
′

after blocking x1 → x2 with
respect to the reduction of undesirable steady-state mass in the original
steady-state distribution π before intervention. This difference reflects the
cost of using the derived control from the inferred network instead of the
optimal control designed from the true network.

Dougherty (2010) for a comprehensive review]. This uncertainty
is motivated by randomness in the inference procedure, inherent
biological randomness, and model stochasticity owing to latent
variables outside the model that are involved in regulation.

A binary Boolean network G (V, F) is defined by a set V =
{x1, x2 . . . , , xn} of binary variables, xi ∈ {0, 1}, i = 1, . . . , n,
and a list of Boolean functions F = (

f1, f2, . . . , fn
)
. The value

of xi at time t + 1 is completely determined by a subset
{xi1, xi2, · · · , xiki} ⊂ V at time t via a Boolean function fi :
{0, 1}ki �→ {0, 1}. Transitions are homogeneous in time and we
have the update xi (t + 1) = fi(xi1(t), xi2(t), · · · , xiki (t)). Each
xi represents the state (expression) of gene i, where xi = 1 and
xi = 0 represent gene i being expressed and not expressed, respec-
tively. It is commonplace to refer to xi as the ith gene. The list F of
Boolean functions represents the rules of regulatory interactions

between genes. All genes are assumed to update synchronously in
accordance with the functions assigned to them and this process is
then repeated. At any time t, the state of the network is defined by
a state vector x(t) = (x1(t), x2(t), . . . , xn(t)), called a gene activity
profile (GAP). Given an initial state, a BN will eventually reach a
set of states, called an attractor cycle, through which it will cycle
endlessly. Each initial state corresponds to a unique attractor cycle
and the set of states leading to a specific attractor cycle is known
as the basin of attraction (BOA) of the attractor cycle.

A Boolean network with perturbation (BNp) is defined by
allowing each gene to possess the possibility of randomly flip-
ping its value with a positive probability p. Implicitly, we
assume that there is an i.i.d. random perturbation vector γ =
(γ1, γ2, . . . , γn), where γi ∈ {0, 1}, the ith gene flips if and only
if γi = 1, and p = P (γi = 1) for i = 1, 2, . . . , n. If x(t) is the
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GAP at time t, then the next state x(t + 1) is either f(x(t)) with
probability (1 − p)n or x(t) ⊕ γ with probability 1 − (1 − p)n,
where f is the multi-output function from the truth table and ⊕
is component-wise addition modulo 2. Larger values of p result
in the regulatory rules being overridden by random alterations to
the regulatory signaling, which one might call “noise.”

A binary probabilistic Boolean network (PBN) is composed
of a family {B1, B2, . . . , Bm} of BNps together with probabil-
ities governing the selection of a BNp at each time. The m
constituent BNps are characterized by m network functions,
{f1, f2, . . . , fm}. At any time point there is a positive probability
q of switching from the current governing constituent BNp (con-
text) to another, with the selection probabilities for transitioning
to B1, B2, . . . , Bm given by c1, c2, . . . , cm, respectively. Note that
the probability of switching to any constituent network B�, 1 ≤
� ≤ m is independent of the current network; indeed, when a
switch is called for, the current network may “switch” to itself. By
definition, a PBN inherits the attractor cycles of its constituent
BNps. There are two modeling interpretations regarding q. If
q < 1, the PBN is said to be context-sensitive (Brun et al., 2005); if
q = 1, as in the original formulation of PBNs (Shmulevich et al.,
2002a), then the PBN is said to be instantaneously random. The
modeling interpretation is that there are latent variables outside
the network model controlling the context of the network and
larger values of q correspond to greater effects of latent variables.
Although we have defined PBNs as having binary gene values,
there is nothing inherent in this restriction and the general def-
inition assumes that each gene can take a finite number of values,
say in the set {0, 1, . . . , d}.

Transition rules of any PBN can be modeled by a homoge-
neous Markov chain, whose states of the transition probability
matrix (TPM) P are the GAPs of the PBN [see Faryabi et al. (2009)
for the particulars on how the Markov chain is derived for dif-
ferent classes of PBNs]. Perturbation makes the corresponding
Markov chain of a PBN irreducible and ergodic. Hence, the net-
work possesses a steady-state distribution πT = πTP, describing
its long-run behavior. For small q and p, most of the steady-
state mass lies in the attractors of the PBN (Brun et al., 2005),
which by definition are the attractors of the constituent BNs. Let
S = {(x, y) : x ∈ B, y ∈ {1, 2, . . . , m}} be the state space of the
PBN, where B denotes the space of all GAPs or network states for
any constituent BN with n genes and y is the index to which con-
stituent BN currently governs the dynamics. We note that when
we have BNps with only one constituent BN, y is redundant. Let
{Zk ∈ S, k = 0, 1, . . .} be the stochastic process of the state of the
PBN that has both the information about the current constituent
BN and GAP of the underlying network. Originating from state
i ∈ S , the successor state j ∈ S is selected randomly according to
the TPM P, with its ijth element defined by pij � P(Zk + 1 = j |
Zk = i) for all k = 0, 1, . . ..

2.2. MAXIMAL STEADY-STATE ALTERATION
We now briefly outline the setting in which an infinite-horizon
policy can be found that achieves maximal steady-state alteration,
meaning that it optimizes the shift of steady-state mass from
undesirable to desirable states. Let D and U denote the sets of
desirable and undesirable states, respectively. One way to define

D and U is based on the values of given genetic markers as illus-
trated in Figure 1. For instance, undesirable states may be those
in which gene WNT5A is up-regulated because such states are
associated with increased risk of metastasis in melanoma, whereas
the desirable states would be those in which WNT5A is down-
regulated (see Section 4.3). We assume that the PBN admits an
external control input A from a set of actions, A, specifying the
type of intervention on a set of control genes. For instance, A = 0
may indicate no-intervention and A = 1 may indicate that the
expression level of a single gene, gc, c ∈ {1, 2, . . . , n}, is flipped. In
this intervention scenario, the control action A = 1 at state (x, y)
replaces the row corresponding to the state (x, y) in the original
TPM of the underlying Markov chain by the row corresponding
to the state (x̃, y), where the binary representation of x̃ is the same
as x except in bit vc, where it is flipped.

Denote by {zk, k = 0, 1, . . .} and {ak, k = 0, 1, . . .} the
sequences of observed states and actions. A policy is a prescrip-
tion for taking actions at each time point k. Actions may be
taken in accordance with a random mechanism, possibly a func-
tion of the entire history of the system up to time k. For time k,
let hk = (z0, a0, z1, a1, . . . , zk, ak) denote the observed history. A
policy υ = (υ0,υ1, . . .) is a sequence prescribed by the decision
maker that steers the dynamics of the underlying system. If the
history hk − 1 is observed up to time k, then the decision maker
chooses an action a ∈ A(zk) with probability υk(a | hk − 1, zk).

The goal is to find an intervention policy to maximally shift the
long-run probability mass of undesirable states to desirable ones.
Let A = A(j) = {0, 1} for all j ∈ S . The amount of shift in the
aggregated probability of undesirable states for a PBN controlled
under υ is defined as

�πU (υ) =
∑
j ∈U

πj −
∑
j ∈U

πj(υ), (1)

where π and π(υ) are the steady-state vectors for the Markov
chains governed by the original and controlled PBNs, respectively.
The goal is to maximize �πU (υ). An optimal policy that is both
stationary (time-invariant) and deterministic can be obtained by
solving a linear programming problem, which we refer to as the
Maximal Steady-State Alteration (MSSA) algorithm (Yousefi and
Dougherty, 2013). The optimal policy depends on the choice of
undesirable states and the control input. In our case, these will
be determined by the values of certain genes, which can be con-
sidered as a priori known biomarkers for example. Since we are
interested in quantifying the performance of inference procedures
on the network, these marker genes will be selected randomly for
random networks without loss of generality.

2.3. INFERENTIAL VALIDATION
Network comparison is based on a distance function, μ, which
need only be a semi-metric because we do not want to require that
μ(M,H) = 0 implies M = H, the point being that we compare
networks via characteristics and two distinct networks might pos-
sess the same characteristic yet be quite different. For instance,
consider the steady-state distribution. If π = (π1,π2, . . . ,πm)

and ω = (ω1, ω2, . . . ,ωm) are the steady-state distributions for
networks H and M, respectively, then a network distance is
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defined by μss(M,H) = ‖π − ω‖, where ‖•‖ is some vector
norm. As a second example, suppose one is interested in net-
work topology. Define the adjacency matrix in the following
manner: given an n-gene network, for i, j = 1, 2, . . . , n, the (i, j)
entry in the matrix is 1 if there is a directed edge from the
ith to the jth gene; otherwise, the (i, j) entry is 0. If A = (aij)

and B = (bij) are the adjacency matrices for networks H and
M, respectively, where H and M possess the same gene set,
then the Hamming distance between the networks is defined
by μham(M,H) = ∑n

i, j = 1 |aij − bij|. Both μss and μham are
semi-metrics.

Focusing on full network inference (and following Dougherty,
2007), the goodness of an inference procedure ψ relative to dis-
tance μ is measured by μ(ψ(S),H), where H is the original
network and sample S is a realization of the random process, �,
governing data generation from H. Hence, μ(ψ(�),H) is a ran-
dom variable and the performance of ψ is characterized by the
distribution of μ(ψ(�),H), which depends on the distribution
of �. We adopt the expectation of the distribution of μ(ψ(�),H)
as the measure for inferential validity, E� [μ(ψ(�),H)] taken
with respect to �.

Rather than considering a single network, we can consider
a distribution, H, of random networks, where the occurrences
of realizations H of H are governed by a probability dis-
tribution. Averaging over the class of random networks, our
interest focuses on EH [E� [μ(ψ(�),H)]]. Inference procedure
ψ1 is better than the inference procedure ψ2 relative to the
distance μ, the random network H, and the sampling pro-
cedure � if EH [E� [μ(ψ1(�),H)]] < EH [E� [μ(ψ2(�),H)]].
In practice, the expectation must be estimated by an average
1
m

∑m
j = 1 μ(ψ(Sj),Hj), where S1, S2, . . . , Sm are sample point

sets generated according to � from networks H1,H2, . . . ,Hm

randomly chosen from H.
The preceding analysis applies unchanged when measuring

validity relative to controllability; indeed, it is just a matter of
defining the distance function. LetH denote the original network,
S be a sample generated from H, υH and υψ(S) be the maxi-
mal steady-state alteration policies for H and ψ(S), respectively,
and πH and πψ(S) be the steady-state vectors for H controlled by
υH and υψ(S), respectively. Then the inferential-validity distance
relative to controllability is defined by

μctrl(ψ(S),H) =
∑
i ∈U

π
ψ(S)

i −
∑
i ∈U

πH
i , (2)

where U is the class of undesirable states. Applying this distance
to a distribution H, of random networks yields the expectation in
which we are interested, namely,

EH [E� [μctrl(ψ(�),H)]] = EH

[
E�

[∑
i ∈U

π
ψ(S)

i −
∑
i ∈U

πH
i

]]
. (3)

For analyzing PBNs, we are confronted by computational issues
in regard to transition probability matrices of their underlying
Markov chains. In the case of controlling binary discrete-time
networks, one is looking at a matrix of dimension N × N, where
N is the number of states. For a PBN, N = m × 2n, where m is

the number of contexts and n is the number of genes. Generally
speaking, networks beyond 15 genes become computationally
intractable with regard to deriving control policies. Larger net-
works require first the application of a reduction algorithm to
reduce the size of the state space (Qian and Dougherty, 2009b;
Ivanov et al., 2010; Qian et al., 2010). These inevitably lose infor-
mation. If one is going to study inference for networks larger than
15 genes, then the analysis must include the reduction algorithm
as part of the design. This can certainly be done but it would not
essentially change the kind of inference analysis in which we are
involved. The price would be that, whereas by using the MSSA
algorithm the entire matter is intrinsic, there being no subjective
cost functions, prior use of a reduction algorithm would destroy
the intrinsic nature of the analysis.

2.4. NETWORK INFERENCE ALGORITMS
Learning regulatory relationships among genes is a major chal-
lenge in computational biology. Numerous methods based on
different mathematical models have been developed; however,
performance evaluation remains problematic (Marbach et al.,
2010). In this paper, we focus on network inference algorithms for
PBNs from one or several time series of observed gene expression
states x(t). We have implemented a few commonly adopted infer-
ence algorithms for PBNs with modifications to allow for more
than one time series: REVEAL (REVerse Engineering ALgorithm)
and its extension (Liang et al., 1998; Akutsu et al., 1999; Murphy
and Mian, 1999; Martin et al., 2007), MDL (Minimal Description
Length) (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty
et al., 2008), and Best-Fit (Lähdesmäki et al., 2003; Marshall et al.,
2007; Lähdesmäki and Shmulevich, 2012).

These inference algorithms aim for identifying regulatory rela-
tionships among genes as well as finding corresponding Boolean
functions for them so that the observed state transitions in time
series data are most “consistently” explained by the inferred
functions. For example, REVEAL (Liang et al., 1998) identifies
predictors for each gene by estimating the mutual information
between the temporal profile of each gene and all the combina-
tion profiles of potential genes as regulators, starting from one
regulator per gene. In order to find a unique solution, in the
worst case, the algorithm requires an exponential number of state
transitions in the observed time course data, with respect to the
number of genes n in the network. However, as most of biolog-
ical networks are sparse (Arnone and Davidson, 1997; Thieffry
et al., 1998), REVEAL works effectively in practice and (Akutsu
et al., 1999) also have proven that only O(log n) state transi-
tions are required when the maximum number of predictors,
K = maxn

i = 1 ki, for all the genes in the network is small. However,
the original REVEAL algorithm and the exhaustive algorithm in
Akutsu et al. (1999) focus on inferring BNs instead of PBNs
and require finding the “consistent” Boolean functions for each
gene. They assume that the observed time course data themselves
are completely consistent based on underlying Boolean functions
without errors.

With random perturbations introduced in PBNs, instead
of finding consistent Boolean functions, the inference algo-
rithm Best-Fit (Lähdesmäki et al., 2003; Marshall et al., 2007;
Lähdesmäki and Shmulevich, 2012) searches for the best-fit
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function for each gene by exhaustively searching for all the
combination of potential regulator sets. Similarly, with small K,
the algorithm is feasible with a given number of state transi-
tions and is efficient with the time complexity O

(
m log mpoly(n)

)
with m state transitions, in which poly(n) is time to compute
the minimum error for one given state transition Lähdesmäki
et al. (2003). For our implementations (Murphy and Mian, 1999;
Lähdesmäki et al., 2003; Lähdesmäki and Shmulevich, 2012)
based on both REVEAL and Best-Fit algorithms, we have mod-
ified the algorithms to get both regulator sets and corresponding
best-fit functions. Finally, with a limited number of observed
state transitions and potential random perturbations, the inferred
regulatory functions may still be partially defined Boolean func-
tions (Lähdesmäki et al., 2003). To obtain a unique solution, we
can further impose other biologically motivating constraints. For
example, in Pal et al. (2005), BNs are inferred simply based on the
attractor structure of network dynamics, which can be extended
to impose dynamic constraints to search for suitable solutions.

In this work, we adopt the MDL-based network inference algo-
rithm (Tabus and Astola, 2001; Zhao et al., 2006; Dougherty et al.,
2008) to penalize the model complexity of inferred networks. We
have modified the algorithm proposed in Zhao et al. (2006) to
identify the best regulator set with the minimum combination of
network coding length, capturing the model complexity, and data
coding length, which is similar to REVEAL based on mutual infor-
mation. The MDL network coding length in Zhao et al. (2006)
has similar asymptotic performance to the Bayesian Information
Criterion (BIC) model complexity, which we also have imple-
mented in our set of inference algorithms. Finally, both MDL
(Zhao et al., 2006) and BIC (Murphy and Mian, 1999) adopt ad
hoc measures of model description length that necessitate tun-
ing parameters as weighting coefficients to balance the model
and data coding lengths (Tabus and Astola, 2001; Dougherty
et al., 2008) and inference performances or validity measures
may change with different tuning parameters. To overcome this
difficulty, we also adopt a universal MDL (uMDL) network infer-
ence algorithm (Dougherty et al., 2008) in which the model
and data coding length together is a theoretical measure derived
from a universal normalized maximum likelihood model and no
tuning parameters are needed (Tabus and Astola, 2001).

3. IMPLEMENTATION
We will compare network inference algorithms for their infer-
ential validity based on both synthetic networks as well as a
well-studied metastatic melanoma network (Bittner et al., 2000;
Kim et al., 2002; Weeraratna et al., 2002; Qian and Dougherty,
2008; Yousefi and Dougherty, 2013).

To evaluate the inference algorithms based on simulated time
series of network states, we first generate random PBNs with
properties that resemble those of biological networks so that we
have the ground truth networks for validation. For appropriate
evaluation, we have imposed a few assumptions: First, as genetic
regulatory networks are commonly believed to have sparse con-
nectivity topology, we have restricted the Boolean functions in
random PBNs to have at most five predictors: K = maxn

i = 1 ki ≤
5. This assumption also enables all the inference algorithms
to run smoothly on these random PBNs as the computational

complexity of these algorithms, especially those based on exhaus-
tive enumerations, reduces significantly as shown in Akutsu et al.
(1999); Lähdesmäki et al. (2003). Second, as the network state
space is exponential with respect to the number of genes or the
network size, the number of state transitions observed will usually
not be large enough to uniquely determine the network structure
and thereafter the regulatory functions. For the inference algo-
rithms adopted in this paper, all of which are based on solving
the consistency problem (Liang et al., 1998; Akutsu et al., 1999;
Lähdesmäki et al., 2003; Zhao et al., 2006; Martin et al., 2007),
we take the most sparse network as the final solution within the
feasible networks that give the same minimum prediction errors
in REVEAL and Best-Fit or the same objective function values
in the inference algorithms with BIC and MDL regularization.
The motivation is that biological networks are usually stable and
robust to random perturbations and larger ki leads to increased
sensitivity of the steady-state distribution to random gene pertur-
bations Shmulevich and Dougherty (2007), Qian and Dougherty
(2009a, 2010).

With either simulated or real ground truth networks, we can
generate time series of gene expression profiles with different
numbers of state transitions based on their underlying Markov
chains so that we can investigate the inference performances with
different available sample sizes. We have implemented REVEAL,
MDL, BIC, uMDL, and Best-Fit to infer networks with these
simulated time series. Our implementations of these different
algorithms are based on the PBN Toolbox (http://code.google.
com/p/pbn-matlab-toolbox/), the Bayes Net Toolbox (https://
code.google.com/p/bnt/), as well as the source code provided by
the authors of Dougherty et al. (2008). The detailed descriptions
of these different algorithms can be found in the corresponding
papers (Liang et al., 1998; Murphy and Mian, 1999; Lähdesmäki
et al., 2003; Zhao et al., 2006; Dougherty et al., 2008; Lähdesmäki
and Shmulevich, 2012).

We compute three distance functions μ(ψ(S),H) to evaluate
an inference algorithm ψ: (1) the Hamming distance μham; (2)
the L1 norm μss between the steady-state distributions of ψ(S)

andH; and (3) the controllability distance μctrl defined in (2). For
inferential validity based on controllability, we find the optimal
stationary control policies for the original and inferred networks
based on the MSSA algorithm (Yousefi and Dougherty, 2013).

4. RESULTS AND DISCUSSION
4.1. SIMULATED BNps WITH 7 GENES
We first evaluate different inference algorithms on synthetically
generated random networks. We generate 1000 random BNps
with n = 7 genes, maximum input degree K = 3, and perturba-
tion probability p = 0.01. For each node, we uniformly assign 1
to K regulators. Hence the average connectivity in this set of ran-
dom networks is 2. After determining the regulatory relationships
among nodes, the regulatory functions for each node are deter-
mined by randomly filling in the corresponding truth tables with
Bernoulli random numbers with the bias following a Beta dis-
tribution with mean 0.5 and standard deviation 0.01. For each
random BNp, we simulate time series of different numbers of state
transitions based on its underlying Markov chain. The number of
“observed” state transitions M ranges from 10 to 60 to reflect the
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difficulty level of network inference. For control, we choose the
first node as the marker gene and define the undesirable states as
these network states with the first node down-regulated. In the
binary representation of network states, U = {x|x1 = 0}. As the
networks are randomly generated, without loss of generality, we
allow intervention on the last node as the control gene, which we
can either knock up or down to derive control policies. In our
simulated random BNps, we have the original average undesirable
steady state mass π

org
U = 0.5071 with standard deviation 0.3575,

with π
org
U ≈ 0.5 because we set the bias to 0.5. When we apply the

MSSA algorithm to derive the optimal stationary control policies
for these random BNps, the average controlled undesirable steady
state mass is πU = 0.3703 with the standard deviation 0.3749.

Based on these simulated time series, we have implemented
REVEAL, BIC, MDL, uMDL, and Best-Fit inference algorithms
and modified accordingly to reconstruct BNps, including regula-
tory relationships and regulatory functions represented as general
truth tables. For BIC and MDL, we set the regularization coeffi-
cients to values previously reported to have good performance in
Zhao et al. (2006), λ = 0.5 for BIC and λ = 0.3 for MDL.

Table 1 provides the network inferential validity measure-
ments: normalized Hamming distance μham (Hamming distance
over the total number of edges in true networks), the steady-state
distance μss, and the controllability distance μctrl for different
network inference algorithms given different numbers of state
transitions. As discussed in (Zhao et al., 2006), BIC and MDL
perform similarly. Regarding the accurate recovery of regula-
tory relationships, it is interesting to see that Best-Fit appears
to achieve the best performance with respect to μham while
REVEAL does not perform very well. One explanation could
be that REVEAL introduces many false positives, hopefully to
best fit the data by using the functions with more regulators.
This is in fact what we observe from our experiments. All the
other inference algorithms choose the functions with the small-
est number of regulators either by complexity regularization in
BIC, MDL, and uMDL; or choosing the “parsimonious” func-
tions with the minimum prediction errors in Best-Fit. For uMDL,
we note that μham improves quickly with the increasing sample
size compared to other complexity regularization algorithms BIC
and MDL. Based on our experiments, uMDL consistently gener-
ates very low false positive edges (close to zero), even with a very
limited number of samples, which is the main advantage of the
uMDL algorithms. This has also been shown in the original paper
(Dougherty et al., 2008). For μss, both REVEAL and Best-Fit per-
form consistently better than BIC, MDL, and uMDL, since both

REVEAL and Best-Fit aim to find the network models that best
fit the observed state transitions. With regularization on model
complexity by BIC, MDL, and uMDL, the steady-state distances
are greater. As mentioned earlier, REVEAL and Best-Fit, especially
REVEAL, reconstruct networks with more edges to explain the
observed data, which leads to smaller μss.

When we investigate the inferential validity with respect to
controllability, μctrl, we see interesting changes of tendency
between the five algorithms. Especially with very few state transi-
tions, M = 10, BIC, MDL, and uMDL algorithms perform better
than REVEAL and Best-Fit, which indicates that the regulariza-
tion on model complexity with a limited number of observations
helps reconstruct network models that yield better controllers.
With more observations, REVEAL and Best-Fit gradually perform
better than BIC, MDL, and uMDL due to introduced bias by
model complexity regularization.

Figure 2 plots μham, μss, and the average undesirable steady-
state mass using the control policy designed on the inferred
network via the MSSA algorithm. For comparison purposes, the
latter average is compared to the average original undesirable
mass and the average undesirable mass following application of
the MMSA control policy designed on the original network. As
M increases from 10 to 60, all algorithms improve. In fact, with
more than 50 observed state transitions for these generated ran-
dom BNps, the derived stationary control policies achieve almost
the same performance compared to the optimal control policies
with complete knowledge of the network models. The average
performances from inferred networks are in fact within 5% for
all five inference algorithms when M = 60.

We further evaluate inference algorithms on a similar set of
1000 random BNps with n = 7 genes with the same settings
but change the maximum input degree K = 5, which increases
the average connectivity to 3. For this set of random BNps, we
have the average undesirable original steady state mass π

org
U =

0.4841 with standard deviation 0.3171 . When we apply the MSSA
algorithm to derive the optimal stationary control policies for
these random BNps, the average controlled undesirable steady
state mass is πU = 0.2529 with the standard deviation 0.3144.
The average shift of undesirable masses is higher compared to
the previous set of random networks, which is expected as the
network sensitivity monotonically increases with the average net-
work connectivity (Kauffman, 1993; Shmulevich and Dougherty,
2007; Qian and Dougherty, 2009a). With higher sensitivity, net-
works can be more effectively controlled. We again compare the
inferential validity as in the previous experiment. Figure 3 shows

Table 1 | The comparison of network inference algorithms (REVEAL, BIC, MDL, uMDL, and Best-Fit) with M different number of observed state

transitions.

Validity μham μss μctrl

M 10 30 50 10 30 50 10 30 50

REVEAL 0.7774 0.6111 0.6511 0.6743 0.4657 0.4216 0.1067 0.0275 0.0049

BIC 0.6966 0.4196 0.3304 0.8679 0.7089 0.5492 0.0739 0.0300 0.0126

MDL 0.7204 0.4260 0.3294 0.9414 0.7225 0.5435 0.0775 0.0311 0.0121

uMDL 0.8000 0.3728 0.2471 1.1957 0.6973 0.4935 0.1058 0.0352 0.0093

Best-Fit 0.7311 0.3919 0.2913 0.6378 0.4244 0.4098 0.1027 0.0250 0.0045
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FIGURE 2 | Performance comparison of five network inference

algorithms by different validity indices based on simulated BNps with 7

genes and K = 3. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

U

A B C

FIGURE 3 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 7

genes and K = 5. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

plots analogous to Figure 2. Especially, we note that in this set of
experiments, we can achieve close-to-optimal intervention with
fairly small sample size as illustrated in Figure 3C. It is clear that
the performance of different inference algorithms depends on
the characteristics of the networks, especially the network sen-
sitivity. More specifically, all three indices become worse for all
the inference algorithms, illustrating that with increasing network
sensitivity, the inference problem becomes more difficult. It is
also clear that the performance improves at slower rates with the
increasing sample size when we have higher network sensitivity.
Another important difference is that for this set of random net-
works, both REVEAL and Best-Fit have higher μham when the
number of samples increase above 40. The reason may be due to
the tendency of random perturbations forcing both algorithms
to bias toward more complex Boolean functions with more input
variables as regulators.

4.2. SIMULATED BNps WITH 9 GENES
For simulations with 9 genes, owing to run time, we generate 200
BNps with n = 9 genes and perturbation probability p = 0.01.

We again make uniformly random assignments of 1 to K regu-
lators, with K = 3 so that the average connectivity is 2. The bias
for the corresponding truth tables follows the same Beta distri-
bution with mean 0.5 and stand deviation 0.01. The number of
“observed” state transitions M range from 10 to 60. The deriva-
tion of control policies is still based on the definition of the
undesirable states U = {x|x1 = 0} and the last node is the con-
trol gene. In the simulated random BNps, the average undesirable
steady state mass is π

org
U = 0.4886 with the standard deviation

0.3764. When we apply the MMSA algorithm to derive the
optimal stationary control policies for these random BNps, the
average controlled undesirable steady state mass is πU = 0.3668
with the standard deviation 0.3863. Figure 4 shows plots analo-
gous to Figure 2 with the trends similar as those observed in the
previous experiments with corresponding random BNps with 7
genes and K = 3.

In the second set of simulated random BNps with 9 genes,
the settings are the same except that K = 5. In these random
networks, the average undesirable steady state mass is π

org
U =

0.4895 with standard deviation 0.3269. When we apply the
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U

A B C

FIGURE 4 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 9

genes and K = 3. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

U
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FIGURE 5 | Performance comparison of five network inference

algorithms by different average validity indices based on BNps with 9

genes and K = 5. (A) Average normalized Hamming distance μham; (B) μss;
(C) average undesirable steady-state mass πU after applying derived

stationary control policies based on inferred networks to the original ground
truth BNps, compared to the average undesirable mass obtained by the
optimal control policy (OPT) based on the complete knowledge of original
BNps and the average undesirable mass before intervention (Original).

MSSA algorithm to derive the optimal stationary control poli-
cies for these random BNps, the average controlled undesirable
steady state mass is πU = 0.2781 with standard deviation 0.3268.
Figure 5 is analogous to Figure 3.

In summary, when we evaluate different inference procedures
with respect to different inferential validity criteria, different
inference procedures show different trends with their increas-
ing sample size. Their performance overall depends on network
characteristics as well as available samples. Finally, when effective
intervention is our final operational objectivel, it is promising that
we can achieve effective intervention based on inferred networks,
even with fairly small sample size as illustrated in Figures 2C, 3C,
4C, 5C.

4.3. A METASTATIC MELANOMA NETWORK
Finally, we evaluate different inference algorithms based on a
metastatic melanoma network used in previous studies on net-
work intervention (Qian and Dougherty, 2008; Qian et al., 2009;
Yousefi and Dougherty, 2013). The network has 10 genes listed
in the order from the most to the least significant bit: WNT5A,

Table 2 | Regulatory functions in the metastatic melanoma network

[Modified from Table 1 in Yousefi and Dougherty (2013)].

Node Gene Boolean function

x1 WNT5A (x3 ∧ x5 ∧ ¬x6) ∨ (¬x5 ∧ x6)

x2 PIR (¬x1 ∧ ¬x3 ∧ x5) ∨ (x1 ∧ ¬x3 ∧ ¬x5)

x3 S100P x7

x4 RET1 (¬x1 ∧ x2 ∧ x4) ∨ (¬x2 ∧ x4)

x5 MMP3 (x4 ∧ x9) ∨ (¬x9)

x6 PLCG1 (¬x4 ∧ ¬x7) ∨ (x4 ∧ x7 ∧ x10)

x7 MART1 x7

x8 HADHB (x1 ∧ x5) ∨ (¬x5 ∧ ¬x9) ∨ (x1 ∧ ¬x5 ∧ x9)

x9 SNCA (¬x1 ∧ ¬x7 ∧ ¬x10) ∨ (x4 ∧ ¬x7 ∧ x10) ∨ x7

x10 STC2 ¬x3

PIR, S100P, RET1, MMP3, PLCG1, MART1, HADHB, SNCA, and
STC2. The order does not affect our analysis. We note here that
this network was derived from gene expression data (Kim et al.,
2002) collected in studies of metastatic melanoma (Bittner et al.,
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2000; Weeraratna et al., 2002). Table 2 and Figure 6 together illus-
trate the regulatory relationships among these selected 10 genes
from 587 genes profiled in Bittner et al. (2000), Weeraratna et al.
(2002), which were derived based on gene expression data rather

FIGURE 6 | Multivariate relationships among genes in the metastatic

melanoma network.

than curated regulatory relationships among genes in literature.
We believe that the model is appropriate for the purpose of illus-
trating the effectiveness of objective inferential validity on quanti-
fying the performance of inference procedures in this work. Based
on these information, we construct a BNp with the perturbation
probability p = 0.01. As in the previous studies, the control
objective is based on the fact that up-regulation of WNT5A is
associated with increased metastasis. Thus, U = {x|x1 = 1}. For
this network, the undesirable steady-state mass is πU = 0.2073
in the original network, which can be reduced as illustrated in
Table 3 with different genes as potential targets using the MSSA
algorithm on the original network. Based on this model, we sim-
ulate 20, 60, and 80 state transitions and infer the network based
on these time series data using all five algorithms. As the pri-
mary objective here is to reduce the undesirable steady-state mass
with WNT5A up-regulated, we focus on its shift derived by the
MSSA algorithm based on the inferred networks using different
inference algorithms.

Table 3 compares this network inferential validity μctrl for dif-
ferent algorithms. According to the table, even with small sample
size, we may obtain effective intervention strategies in most cases
from all five inference algorithms. For example, with M = 60
samples, RET1, MMP3, PLCG1, and MART1 can be success-
fully identified as effective intervention targets based on inferred
networks using different inference algorithms. These potential
targets have been similarly identified in previous publications
(Qian and Dougherty, 2008, 2009a; Qian et al., 2009; Yousefi and

Table 3 | The shifted undesirable steady-state mass in the metastatic melanoma network by the MSSA algorithm for different control genes

derived on inferred networks from five network inference algorithms (REVEAL, BIC, MDL, uMDL, and Best-Fit) with M = [20, 60, 80] different

number of observed state transitions, compared to the optimal shift by applying the MSSA algorithm to the original network.

Control WNT5A PIR S100P RET1 MMP3 PLCG1 MART1 HADHB SNCA STC2

OPT (UC)

0.0847 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M REVEAL

20 −0.0421 0.1319 0.1702 0.1761 0.1739 −0.1375 0.1777 0.0000 0.0227 0.1027
60 0.0054 0.1316 0.1754 0.0634 0.1961 0.1940 0.1622 0.0000 −0.0448 0.1660
80 0.0728 0.1339 0.1737 0.1727 0.1965 0.1965 0.1795 0.0000 0.0235 0.1678

M BIC

20 −0.0421 0.0789 0.1696 −0.4032 0.1802 −0.1246 0.0026 0.0000 −0.2800 0.0132
60 −0.0421 0.0789 0.1264 0.1765 0.1965 0.1965 0.1799 0.0000 0.0259 0.0023
80 0.0738 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M MDL

20 −0.0421 0.0628 0.1696 −0.2655 0.1802 −0.2695 0.0026 0.0000 −0.3586 −0.0574
60 −0.0421 0.0789 0.1264 0.1764 0.1965 0.1965 0.1799 0.0000 0.0259 0.0023
80 0.0738 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M uMDL

20 −0.0421 0.0829 −0.2255 −0.2645 −0.2300 −0.1810 −0.2952 0.0000 −0.2295 0.1065
60 −0.0421 0.1309 0.0363 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.0189
80 0.0844 0.1340 0.1767 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680

M Best-Fit

20 0.0588 0.1330 0.1724 0.1762 0.1793 −0.0662 0.1796 0.0000 0.0256 0.0115
60 0.0816 0.1340 0.1767 0.1764 0.1965 0.1965 0.1798 0.0000 0.0258 0.1677
80 0.0728 0.1339 0.1737 0.1766 0.1965 0.1965 0.1799 0.0000 0.0259 0.1680
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Dougherty, 2013), which demonstrates the feasibility of deriving
effective therapeutic strategies even with partially observed data
from the original system. All the algorithms achieve almost opti-
mal performance for all possible control genes when M = 80.
In fact, Best-Fit appears to obtain the best performance when
M = 60 compared to all the other algorithms as it better cap-
tures network dynamics manifested as steady-state distributions.
Hence, Best-Fit appears to be the best-performing inference algo-
rithm when we consider the operational objective to be beneficial
alteration of network dynamics. We also note that with small sam-
ples (M = 20), it is relatively difficult to derive effective control
based on the inferred network by uMDL; however, when we have
enough samples (M = 80), we can derive the most effective con-
trol for all the target genes based on uMDL. This is again due
to its advantage of obtaining consistently close to zero false posi-
tive regulators, which leads to the best performance when we have
enough samples. This is consistent with the previous results we
have seen using simulated networks.

5. CONCLUDING REMARKS
We have considered inferential validity from three perspectives:
(1) Hamming distance, which relates to accurate network topol-
ogy; (2) steady-state distribution, which corresponds to accurate
phenotyping because attractors dominate the steady-state mass
and attractors correspond to phenotypes; and (3) controllability.
From a translational perspective, controllability is an important
criterion because a key interest in translational genomics is to
derive intervention strategies from gene network models. We
have observed from the experiments that controllability provides
quite a different view of validation than either Hamming distance
or steady-state mass, with performance comparison depending
strongly on the number of observations. The upside is that one
can achieve decent control when there is still considerable dis-
tance between the original and inferred networks relative to
Hamming distance and steady-state mass. This depends on net-
work size, connectivity, sample size, and the inference procedure.
The general point is that it may be wise to use objective-based
measures of validity for practical applications. While the individ-
ual components and connections in a system may overall be fairly
inaccurate, it may be that those that matter for the objective are
determined fairly accurately so that the inaccuracy of the others
is of little consequence. The situation is analogous to uncertainty
in model classes. While entropy provides an overall measure of
model uncertainty, it may be better to use a measure of uncer-
tainty that accounts for the cost of the uncertainty relative to a
particular objective because uncertainty that does not negatively
impact attainment of the objective is of no practical consequence
(Yoon et al., 2013).
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APPENDIX
We plot the normalized false positive rates (the ratio of the
number of false positive regulators over the total number of

edges) in Figure A1, in which we can see that the perfor-
mance of different algorithms are consistent as we discussed
previously.

A B C D

FIGURE A1 | Comparison of five network inference algorithms by normalized false positive rates. (A) BNps with 7 genes and K = 3; (B) BNps with 7
genes and K = 5; (C) BNps with 9 genes and K = 3; (D) BNps with 9 genes and K = 5.

www.frontiersin.org December 2013 | Volume 4 | Article 272 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive

	Validation of gene regulatory network inference based on controllability
	Introduction
	Systems and Methods
	Probabilistic Boolean Networks
	Maximal Steady-State Alteration
	Inferential Validation
	Network Inference Algoritms

	Implementation
	Results and Discussion
	Simulated BNps with 7 Genes
	Simulated BNps with 9 Genes
	A Metastatic Melanoma Network

	Concluding Remarks
	References
	Appendix


