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In the recent decade, high-throughput genotyping and next-generation sequencing plat-
forms have enabled genome-wide association studies (GWAS) of many complex human
diseases. These studies have discovered many disease susceptible loci, and unveiled
unexpected disease mechanisms. Despite these successes, these identified variants only
explain a small proportion of the genetic contributions to these diseases and many more
remain to be found.This is largely due to the small effect sizes of most disease-associated
variants and limited sample size. As a result, it is critical to leverage other information to
more effectively prioritize GWAS signals to increase replication rates and better understand
disease mechanisms. In this review, we introduce the biological/genomic features that have
been found to be informative for post-GWAS prioritization, and discuss available tools to
utilize these features for prioritization
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INTRODUCTION
With the developments of affordable and reliable high-throughput
genotyping and next-generation sequencing platforms, many
genome-wide association studies (GWAS) have been successfully
conducted to identify DNA variants associated with many com-
plex human diseases and traits, such as cancer, autoimmune
diseases, height, blood pressure, body mass index, among others.
As of 11/16/13, there were 11,907 single nucleotide polymor-
phisms (SNPs), 940 traits with 15,052 associations documented in
the GWAS catalog, maintained by the National Human Genome
Research Institute (Hindorff et al., 2009). These studies have
uncovered many novel genes and implicated unexpected pathways
associated with disease mechanisms, leading to great insights on
disease etiology.

In spite of these accomplishments, many challenges remain in
GWAS design and analysis. The first limitation is the limited statis-
tical power to identify all disease-associated loci. Although many
susceptible loci have been identified, they only explain a small
fraction of the overall heritability, with the majority of heritability
remaining unexplained. One possible reason is that the missing
heritability is due to the lack of coverage of genetic variations
on the genotyping platforms, such as those rare or even private
variations. Another explanation is that most disease-associated
variants have small effect sizes that are not likely detected due
to low statistical power, even with thousands of subjects. To
better identify these variants, more powerful and cost-effective
designs and statistical methods are desired. Several approaches
have proved cost-effective to enrich signals and increase statis-
tical power. For example, a number of customized genotyping
platforms have been used to target certain genomic regions with
high density to fine map disease-associated variants. The success-
ful examples include the use of the ImmunoChip (Trynka et al.,
2011) to fine map 186 distinct loci associated with 12 autoimmune
diseases, and the use of the MetaboChip (Voight et al., 2012) to
fine map established trait-associated loci. As for rare variant anal-
ysis, a number of whole exome sequencing studies have enjoyed

success for diseases like autism and schizophrenia (Xu et al., 2011;
Sanders et al., 2012). It has also been found that studies focusing
individuals with extreme phenotypes can increase statistical power
because of the enriched genetic signals in the study subjects (Lin
et al., 2013). In addition to improved platforms and study designs,
many statistical methods have also been developed to increase sta-
tistical power. Meta-analysis is commonly applied to leverage all
the information from separate studies to increase statistical power
to identify disease-associated loci. A number of methods aim to
investigate the combinatorial effects of a group of SNPs, including
both marginal and interaction effects. These are accomplished by
explicitly modeling the interactions of two or more SNPs; joint
analysis of all the SNPs in a gene or defined region; and joint con-
sideration of the SNPs in proximity of all the genes annotated in
a specific pathway/network. The advances in study designs and
statistical methods have led to many novel discoveries. For exam-
ple, a recent study of the inflammatory bowel disease (IBD; Jostins
et al., 2012), which is a meta-analysis of both ImmunoChip and
GWAS datasets, increased the number of IBD loci to 163, where
these loci account for 13.6% of the genetic risk of Crohn’s disease
(CD) and 7.5% of ulcerative colitis. See Cantor et al. (2010) for a
comprehensive review of some of the topics.

The second limitation is the difficulty to interpret the biolog-
ical relevance of susceptible loci and link them with the disease
etiology. Because the ultimate goal of association studies is to
understand disease etiology and develop effective strategies to pre-
vent and treat diseases, it would be desirable that GWAS results
can implicate functional variants and disease pathways that can
be experimentally studied in follow-up functional studies. How-
ever, a large proportion of disease-associated variants fall into
non-coding regions of the genome, with 88% of the associated
SNPs in GWAS catalog non-coding (Hindorff et al., 2009), making
it difficult to form testable hypothesis. Even when the variants in
the coding region, it is often not clear whether they are functional
due to the presence of several closely linked variants. To address
this problem, many statistical methods have been proposed to
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prioritize GWAS signals by incorporating diverse functional evi-
dence, so that variants with small effect sizes but possessing
functional features may be prioritized over variants with simi-
lar effect sizes but less likely to be functional. GWAS signals can
be prioritized at both the SNP level and gene level, depending
on the biological features considered and the input signals. Sta-
tistical approaches that prioritize at the SNP level are especially
helpful in pinpointing the causal variants with sequence data,
where essentially all the variations in the genome can be iden-
tified. This is contrast to earlier GWAS that only interrogated
a subset of SNPs, such as tag SNPs, in genotyping platforms.
One benefit of such approaches is that the functional evidence
provides paths to derive plausible and testable hypotheses for
the prioritized genes or loci. Moreover, with the incorporation
of other data informative about disease association, the pri-
oritized genes/loci are more likely to be truly associated with
disease. For example, it has been observed that trait-associated
loci are more concentrated in regions with certain genomic fea-
tures, such as protein coding regions and expression quantitative
trait loci (eQTL). In this review, we will review (1) biologi-
cal/genomic features that are informative for prioritizing GWAS
results; and (2) computational methods and tools that prioritize
disease-associated SNPs by integrating these biological/genomic
features.

BIOLOGICAL FEATURES USED IN PRIORITIZATION AND
THEIR JUSTIFICATIONS
The first step, and sometimes the only step of many SNP prioritiza-
tion approaches is to annotate the candidate SNPs by intersecting
GWAS signals with desired genomic features, such as eQTLs, tran-
scription factor binding sites, DNase hypersensitive sites, histone
modifications, and others. For CD, Fransen et al. (2010) showed
that cis-eQTL SNPs were enriched in known CD-associated SNPs.
Based on this observation, the authors proposed to select a sub-
set of SNPs to follow-up a public CD GWAS dataset, to intersect
the top 500 GWAS hits with cis-eQTLs in an eQTL database. The
SNPs thus selected, cis-eQTLs of the genes UBE2L3 and BCL3, were
replicable in two independent replication cohorts. This represents
a successful application of the annotation-based prioritization
methods.

The genomic features may implicate functional roles of the
prioritized SNPs to disease etiology, and these hypotheses can be
formally tested through molecular studies. These include variants
both in coding and non-coding regions. Through these filter-
ing/intersecting methods, researchers can focus on a much smaller
number of SNPs in follow-up studies. Although the proximity of a
SNP with a documented genomic feature may suggest a functional
role of the SNP, it may not necessarily increase the probability
that it will affect the phenotype of interest, nor the probability
that the locus is truly susceptible. In general, the genomic fea-
tures discussed above are considered biologically plausible and
extensively used to prioritize SNPs, but whether each feature is
informative on a SNP’s functional relevance is disease and context
dependent. In a recent study, Minelli et al. (2013) tried to identify
features that are important in selecting SNPs for follow-up stud-
ies by surveys in experts. They sent questionnaires to ten experts
who conducted GWAS studies, and asked their opinion on the

importance of a set of selected features. The features included
relative position of the SNP to a nearby transcript, whether the
SNP causes an amino acid change, etc. (see Table 2 in their
paper). The result was not surprising, as experts considered gene
level evidence more important, such as the SNP in a gene that
is previously associated with the phenotype, or that encodes a
protein in a phenotype related pathway, or that has gene/protein
interaction relevant to the phenotype. Experts opinions are valu-
able, however, they might be biased toward existing knowledge
and also expertise in specific diseases. Nevertheless, this paper
highlighted the need for understanding what features should be
considered in prioritization. In the following, we review these
features and statistical methods to use these features, to inform
human geneticists in their applications of the annotation-based
approaches.

EXPRESSION QUANTITATIVE TRAIT LOCI
By contrasting the SNPs documented in the GWAS catalog
(Hindorff et al., 2009) with those randomly sampled SNPs with
matching minor allele frequency distribution, Nicolae et al. (2010)
showed that complex trait-associated SNPs are more likely to be
eQTLs. The conclusion remained valid for a linkage disequilib-
rium (LD)-pruned subset of SNPs in the GWAS catalog. Since the
eQTL annotation considered by Nicolae et al. (2010) was derived
from an expression dataset of lymphoblastoid cell lines, it was
of interest to investigate whether cell line-specific eQTLs showed
different levels of enrichments across diseases with different focal
tissues, including cancer, neurological/psychiatric disorders, and
autoimmune disorders. By tissue of relevance, the lymphoblastoid
cell lines should be a good proxy for autoimmune disorders, and
relatively poor for cancer and neurological/psychiatric disorders.
As expected, there was greater enrichment of eQTLs in the group
of autoimmune disorders, while only moderate enrichment for
the other two groups of diseases. Furthermore, in the examination
of the results in the Wellcome Trust Case Control Consortium
(WTCCC) GWAS dataset of CD, eQTLs were enriched in SNPs
with association p-value less than 0.01, but not for the missense
SNPs, indicating potential loss of information if non-coding SNPs
are ignored.

PROTEIN DELETERIOUSNESS PREDICTIONS
Polymorphisms in the coding region may have different effects
on protein function. Synonymous SNPs do not change the corre-
sponding protein sequence; non-synonymous SNPs change amino
acid composition, or truncate the protein sequence by causing
an early codon; indels can change protein sequence with vary-
ing consequence depending on whether the indel is in-frame or
frame-shifting; SNPs and indels can also interrupt splicing sites,
thus change the mRNA isoform. In other words, mutations in
the coding region may be benign or deleterious to protein func-
tion, with deleterious mutations more likely to have a phenotypic
effect. Many computational tools have been developed to pre-
dict “deleteriousness” of SNPs and indels (Ng and Henikoff, 2003;
Adzhubei et al., 2010). These methods generally take features like
biochemical property of the altered amino acid, conservation and
sequence homology as input, and use machine learning technique
to train a classifier. These methods have been comprehensively
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reviewed by Cooper and Shendure (2011) and Ng and Henikoff
(2006).

The most extreme case of protein function interruption is the
loss of function mutations. However, genome sequencing studies
found that all human carry loss of function mutations without
obvious phenotypic effect, and common loss of function variants
were depleted in polymorphisms associated with complex disease
like CD and rheumatoid arthritis (MacArthur et al., 2012). The
results indicate that the “deleteriousness” feature should be inter-
preted with caution, since disruption of protein function does not
necessarily have a phenotypic effect. In this regard, the “resid-
ual variance intolerance score” has been defined quantitatively
measure the tolerance of a protein to mutations (Petrovski et al.,
2013). The number of missense and non-sense variants found in
each gene in the cohort of the National Heart, Lung, and Blood
Institute (NHLBI) exome sequencing project was compared to the
number of functionally neutral variants, and genes with variants
fewer than expected are assigned a negative score, indicating they
are less tolerant to variations.

DIFFERENTIAL GENE EXPRESSIONS
Gene expression microarrays and RNA-seq are commonly used to
study gene expression profiles in disease cases and matched con-
trols, and differentially expressed genes thus identified may suggest
disease mechanisms and potential biomarkers that can be further
explored in follow-up studies. Chen et al. (2008) analyzed 476
expression datasets in the Gene Expression Omnibus (GEO), and
calculated the frequency that a gene was differentially expressed
in these datasets, which they called “differential expression ratio.”
They found that differential expression ratio is positively corre-
lated with the likelihood that a gene harbors disease-associated
variants, where the list of disease-associated genes was created by
combining information from Genetic Association Database (GAD;
Becker et al., 2004) and Human Gene Mutation Database (HGMD;
Stenson et al., 2003). In addition, they found that among the genes
discovered in the initial scan of the WTCCC type 1 diabetes mel-
litus GWAS dataset, the differential expression ratio was higher in
genes that were replicable than those not replicable in follow-up
studies. These authors have developed an online server, FitSNPs,
to incorporate this feature (see Table 1).

DNase I HYPERSENSITIVE SITES
DNase I hypersensitive sites (DHSs) are markers of accessible
chromatin, which indicate regulatory roles in the transcription
process. DHS have been mapped in 349 cell and tissue sam-
ples genome-wide by next-generation sequencing (Thurman et al.,
2012). Enrichment analysis showed that trait-associated SNPs in

Table 1 | A list of online SNP prioritization tools.

Name Website Reference

FASTSNP http://fastsnp.ibms.sinica.edu.tw Yuan et al. (2006)

FitSNPs http://fitsnps.stanford.edu/fitSNPs.php Chen et al. (2008)

SNPranker 2.0 http://www.itb.cnr.it/snpranker Merelli et al. (2013)

SPOT http://spot.cgsmd.isi.edu Saccone et al. (2010)

the GWAS catalog (Hindorff et al., 2009) are more concentrated
within DHS regions, excluding confounding factors such as allele
frequency and distance from the nearest transcriptional start site
(Maurano et al., 2012).

OTHERS
There are many more genomic features collected and annotated
in large community projects, such as the Encyclopedia of DNA
Elements (ENCODE; Consortium, 2011), which are potentially
valuable for SNP prioritization. Kindt et al. (2013) examined
enrichment or depletion of trait-associated SNPs in 58 genomic
features. The features investigated covered genic and regulatory
features, conservation features, and chromatin state features (see
Table 1 in Kindt et al., 2013). Among those features, genomic
regions annotated as “heterochromatin” and “low expression sig-
nals” are depleted of trait-associated SNPs, while eQTLs and
“strong enhancer” showed the highest level of enrichment.

The biological features discussed so far are measured/inferred
from laboratory cell lines and the sequence and annotation of
the human genome, which do not provide trait-specific infor-
mation. However, trait-relevant features are intrinsically helpful
for prioritization. For example, a DNase-seq experiment in intes-
tine tissues and immune cells of CD patients would be more
informative for prioritizing variants associated with CD than
those measured in brain tissues. Maunakea et al. (2010) and
Portela and Esteller (2010) reviewed recent progress in mapping
the epigenome (including DNA methylation and histone modi-
fication), showing that epigenetic modifications play important
roles in human diseases, including cancer, neurodevelopmen-
tal disorder, neurodegenerative disease, neurological disease, and
autoimmune diseases. Thus, epigenome data in disease states is
valuable for understanding disease and prioritize disease suscepti-
ble loci. However, efforts in disease-specific epigenome mapping
and systematic database to document such data are still lack-
ing and greatly needed. For DNA methylation alone, a database,
DiseaseMeth, has incorporated methylation data for 72 human
diseases (Lv et al., 2012).

SNP PRIORITIZATION APPROACHES AND AVAILABLE WEB
SERVERS
Here we review methods and tools that prioritize GWAS signals
at single SNP level. There are mainly two steps in these meth-
ods. The first step applies annotations or filters based on whether
or not the candidate SNP has the desirable features and the sec-
ond step scores the candidate SNPs by integrating evidence from
multiple sources. Saccone et al. (2008, 2010) developed an online
prioritization tool, SPOT, which systematically combines multiple
biological databases to prioritize SNPs by the genomic informa-
tion network (GIN) model (see Table 1). In their model, each
SNP is assigned a prioritization score, which is a linear sum of
scores derived from pathway information, comparative genomics,
linkage scan, and results of other independent GWAS studies.
The weights are decided by the strength of the link between the
SNP and the annotations. For example, for a SNP that is in LD
with a non-synonymous SNP of a susceptible gene, the assigned
weight will be less than that of SNPs physically in the gene. The
methodology prioritized SNPs with increased biological relevance
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in a GWAS study of nicotine dependence. Thompson et al. (2013)
incorporated biological features in a Bayesian framework, where
the prior probability that a SNP is associated with the phenotype
is determined by its annotations. They first curated a training set,
including SNPs that were confirmed replicable as the positive set,
and 1,000 randomly selected SNPs as control set. For a selected
set of features, a logistic regression model was fit for each disease.
Thus, the log odds ratio that a test SNP is associated with the
disease can be estimated through the model.

There are also web servers that perform SNP prioritization in
an annotation fashion. They annotate the candidate SNPs by single
or multiple features, but do not combine the results. They differ by
the features and strategies they use in prioritization. A list of SNP
prioritization resources are provided in Table 1. Most of these tools
are only applicable to SNPs, and tools that can prioritize indels are
still lacking.

FASTSNP uses a decision tree framework to assign different risk
level to SNPs by considering the genomic location and functional
effect of the SNPs (Yuan et al., 2006).

FitSNPs calculated a differential expression ratio for all genes
in the genome, and prioritize SNPs by the differential expression
ratio of their associated genes (Chen et al., 2008).

SNPranker 2.0 first annotates the SNPs with different features,
and then user a user interactive way to integrate features (Chen
et al., 2008). Users can specify the features they want to include
and the weight of each feature, which would give the users an
opportunity to enforce their biological priors. But they also pro-
vide an optimal set of weights by default. The optimal weights
were determined by a cross-validation approach.

TOOLS FOR VARIANT ANNOTATION
Besides the SNP prioritization tools, there are also many web
servers and software for variant annotation (Table 2), which could
provide useful information for prioritization. Basically, these tools
take a list of query variants as input, and annotate them with their
in-house databases. Among these, HaploReg (Ward and Kellis,
2012a) and RegulomeDB (Boyle et al., 2012) provide annotation
for variations in non-coding regions. HaploReg annotates vari-
ations by their chromatin state, conservation across mammals,
and computationally predicted transcription factor binding sites.
Besides, by utilizing LD information from the 1000 Genomes
Project, HaploReg automatically reports, and annotates all vari-
ations within a user-specified LD threshold of the query variant.
RegulomeDB has incorporated many data sources, including the

ENCODE project, available transcription factor ChIP-seq data,
and eQTL datasets. The other tools are designed for variations in
the whole genome. They annotate the query variations by dbSNP
ID, allele frequency in different ethnic groups, position in a tran-
script (intron, exon, 5′ UTR, etc.,), and the resultant amino acid
change if any. SeattleSeq (Ng et al., 2009) and Variant Effect Pre-
dictor (VEP; McLaren et al., 2010) has convenient web interface,
suitable for users who are not familiar with scripts and program-
ming languages, while ANNOVAR (Wang et al., 2010) and Snpeff
(Cingolani et al., 2012) are stand-alone software packages, so that
they can be easily incorporated into variant analysis pipelines. Dis-
cussions on variant annotation tools can also be found in Ward
and Kellis (2012b).

DISCUSSION
In this review, we have focused on biological and genomic fea-
tures that are informative for SNP prioritization. In the second
phase of association studies, researchers can use these databases or
tools to choose SNPs in follow-up studies. The observation that
eQTLs and open chromatin regions are enriched of trait-associated
SNPs highlights the potential rich information in the non-coding
regions of the genome (Nicolae et al., 2010). Nonetheless, the
gene-centric approaches may be helpful in disease gene discov-
ery, and there are many approaches that perform prioritization at
the gene level. A review of the methods and tools for gene-based
prioritization can be found in Tranchevent et al. (2011).

The prioritization methods discussed here take as input a list
of candidate SNPs, which is usually derived by taking all the SNPs
achieving a specified significance level in GWAS, e.g., all SNP
with p-values less than 0.01. The SNPs are treated equally regard-
less of the association p-values. However, the p-value, the effect
size, and other statistics that summarize the association level of
individual SNP could be informative for SNP selection. A com-
putational framework that incorporates the significance level with
the biological/genomic features discussed above might improve
the performance of the prioritization scheme. A discussion of dif-
ferent signal measures of association was given by Strömberg et al.
(2009).

Although there are many web servers and databases for SNP
prioritization, most of them provide annotations of different types
of features, but do not rank these SNPs through integrating GWAS
and annotation information. Also, these methods do not employ
disease-specific information. There is still a great need for sta-
tistical methods that select and integrate multiple annotations in

Table 2 | A list of tools for variant annotation.

Name Website Reference

ANNOVAR http://www.openbioinformatics.org/annovar/ Wang et al. (2010)

HaploReg http://www.broadinstitute.org/mammals/haploreg/haploreg.php Ward and Kellis (2012a)

RegulomeDB http://regulome.stanford.edu/ Boyle et al. (2012)

SeattleSeq http://snp.gs.washington.edu/SeattleSeqAnnotation137/ Ng et al. (2009)

Snpeff http://snpeff.sourceforge.net Cingolani et al. (2012)

VEP http://useast.ensembl.org/info/docs/variation/vep/index.html McLaren et al. (2010)
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a disease-specific manner, and re-rank SNPs under a coherent
statistical framework.
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