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When analyzing the data that arises from exome or whole-genome sequencing studies,
window-based tests, (i.e., tests that jointly analyze all genetic data in a small genomic
region), are very popular. However, power is known to be quite low for finding associations
with phenotypes using these tests, and therefore a variety of analytic strategies may be
employed to potentially improve power. Using sequencing data of all of chromosome 3
from an interim release of data on 2432 individuals from the UK10K project, we simulated
phenotypes associated with rare genetic variation, and used the results to explore the
window-based test power. We asked two specific questions: firstly, whether there could
be substantial benefits associated with incorporating information from external annotation
on the genetic variants, and secondly whether the false discovery rate (FDRs) would be
a useful metric for assessing significance. Although, as expected, there are benefits to
using additional information (such as annotation) when it is associated with causality, we
confirmed the general pattern of low sensitivity and power for window-based tests. For
our chosen example, even when power is high to detect some of the associations, many
of the regions containing causal variants are not detectable, despite using lax significance
thresholds and optimal analytic methods. Furthermore, our estimated FDR values tended
to be much smaller than the true FDRs. Long-range correlations between variants—due
to linkage disequilibrium—likely explain some of this bias. A more sophisticated approach
to using the annotation information may improve power, however, many causal variants of
realistic effect sizes may simply be undetectable, at least with this sample size. Perhaps
annotation information could assist in distinguishing windows containing causal variants
from windows that are merely correlated with causal variants.
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INTRODUCTION
In genome-wide association studies, stringent testing thresholds
have been recommended (and required by editors) to control
the rate of identification of single nucleotide polymorphisms
(SNPs) that may be falsely associated with a disease or trait of
interest (Risch and Merikangas, 1996; Dudbridge and Gusnanto,
2008). The most commonly used threshold is 5 × 10−8, which
controls the probability of making at least one false positive
conclusion [the family-wise error rate (FWER)] to 5%, assum-
ing approximately one million independent tests. Several studies
have estimated approximately the same threshold, but derived
it from different arguments: Risch and Merikangas used an
early estimate of the potential number of genes in the genome
(Risch and Merikangas, 1996), Dudbridge and Gusnanto exam-
ined the number of independent tests when performing infinitely
dense genotyping of genetic polymorphisms (Dudbridge and
Gusnanto, 2008), and empirical thresholds have been obtained
using extensive permutation analyses (Li and Ji, 2005; Dudbridge

and Gusnanto, 2008; Pe’er et al., 2008). This threshold assumes
that all available common genetic polymorphisms are each tested
against the disease, once. However, sequencing is now known
to identify millions of genetic alterations that may be extremely
rare—unique to one individual or only occurring in a small hand-
ful of people. These new sequence variants (single nucleotide
variants or SNVs) may not have been previously observed, even
in large collections of individuals such as the 1000 genomes
(Abecasis et al., 2012), and linkage disequilibrium between these
rare alterations and nearby known markers is usually very small.
Previous estimates of genome-wide significance thresholds have
not considered this spectrum of allele frequencies in their calcu-
lations (Xu et al., accepted), and as a result, the former standard
significance threshold for controlling type 1 error rates may not
be adequate (Browning and Thompson, 2012).

Using univariate tests, power to detect associations between
SNVs and disease can be extremely low for rare SNVs, even when
power is excellent for common variants. Hence, a whole new suite
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of test statistics has recently been developed to jointly analyze all
of the genetic variation (in particular the rare genetic variation)
in a chosen window or region of the genome (Asimit and Zeggini,
2010; Bansal et al., 2011; Burkett and Greenwood, 2013). One very
popular method is the sequence kernel association test (SKAT)
(Wu et al., 2011), which is a score test derived from a random
effects model where the effects of all variants in a window are
assumed to follow a normal distribution.

One challenge of these methods is that a single SNV may
participate in several different tests resulting from a variety of
different window choices, weighting strategies, or test statistics.
Unlike SNP genotyping of common polymorphisms, where it is
possible to estimate an upper bound on the number of SNPs to be
tested, given known population-specific linkage disequilibrium
patterns, the potential number of region-based tests performed
has no known upper bound. Many different windows could be
defined spanning the same genomic region (e.g., Brisbin et al.,
2012). Furthermore, the genetic variants to be jointly analyzed
do not need to be physically adjacent, but could, for example,
lie in genes in the same pathway. Although choosing an appro-
priate threshold is already challenging when considering exome
sequence data, the difficulties are exacerbated for whole-genome
sequence data. In this latter context, window choices may be quite
arbitrary.

Genome-wide significance thresholds for region-based tests do
need to be established; we believe empirically-derived thresholds
are probably necessary, and have recently shown that they can
be effectively estimated by predicting the genome-wide threshold
from empirical estimates obtained on smaller genomic regions
(Xu et al., accepted). We demonstrated, in a sample of 2432 indi-
viduals from the UK10K consortium, that genome-wide thresh-
olds for the SKAT test (Wu et al., 2011) in windows of 50
rare variants (overlapping by 25 variants) are expected to be
near 7e-08.

Although it is certainly of interest to develop appropriate
thresholds for deciding genome-wide significance for region-
based tests, an alternative perspective on multiple testing cor-
rections for sequence-based analyses may be worth exploring.
Additional sources of repeated testing arise from the choice of
which variants to prioritize and which test statistic to use. The
range of different test statistics available can lead to very different
results on the same set of variants; some statistics are most power-
ful when a large proportion of variants in a window are associated
with an increasing disease risk (acting in the same direction),
whereas other statistics may be optimal for smaller proportions
of causal variants (Lee et al., 2012). Various minor allele fre-
quency (MAF) thresholds can also be applied to restrict analysis
to only “rare” genetic variants (Price et al., 2010). Also, scores
such as PolyPhen-2 (Polymorphism Phenotyping v2) (Adzhubei
et al., 2010) and SIFT (Sorting Intolerant From Tolerant) (Ng and
Henikoff, 2002), which predict the probable functional impact of
amino-acid changes induced by SNVs within exons, have been
incorporated into region-based rare-variant tests. These publicly
available genomic annotations can be used to select subsets of
SNVs that are more likely to be associated with disease, or to
give some SNVs more weight (Price et al., 2010; Wu et al., 2011;
Lopes et al., 2012). Annotation of the entire genome is rapidly

improving and non-coding regions are also known to contain
many functional elements (Maher, 2012).

Therefore, it may not be sufficient to establish one signifi-
cance threshold that will control the genome-wide FWER for
region-based testing of rare genetic variation. An alternative strat-
egy should be more open to exploiting external knowledge when
deciding which associations are interesting, and these alterna-
tive approaches may lead to better power to detect true causal
associations.

For a given choice of test statistic, windows, and weighting or
prioritization of variants, permutation analysis of all the data will,
of course, lead to an appropriate empirical family-wise signifi-
cance threshold for any desired type 1 error rate. However, this is
likely to require very large amounts of computation for genome-
wide sequence data. Another possible approach to interpreting
the results of multiple tests is to consider the false discovery rate
(FDR) (Benjamini and Hochberg, 1995) instead of the FWER for
choosing a significance threshold. The FWER is the probability
of making at least one false rejection of the null hypothesis. For
m independent tests, and if the probability of type 1 error for
each test is chosen to be α, then the FWER rate can be written
as FWER = 1 − (1 − α)m. Therefore, as the number of tests, m,
increases, the significance threshold needed at each test, α, must
get smaller in order to control FWER. In contrast, the FDR is the
proportion of all rejected tests that are truly null—instead of con-
trolling the probability of at least one false positive test, the FDR
attempts to control the proportion of false positive tests which is
a less stringent criterion.

FDR has several potential advantages over p-value measures
of significance. Firstly, by controlling the (estimated) proportion
of false positive associations among the total number of signif-
icant tests, it is usually possible to identify more true positive
associations overall. This feature can be extremely beneficial to
sensitivity and power when there is an apriori expectation of
many true associations. Secondly, if the number of tests per-
formed is increasing due to a range of choices for windows, test
statistics, or variant selection in the same genomic regions, such
tests can be expected to be positively correlated. An upper bound
on the FDR has been demonstrated for situations with positive
dependence (Benjamini and Yekutieli, 2001), such as would be
expected in this situation. Furthermore, empirical estimates of
FDR have been previously shown to be quite tolerant of corre-
lations (Efron, 2007); in that paper by Efron, the estimated FDR
rates were close to true values despite the correlations. However,
recent work has highlighted that FDR estimates may be strongly
biased and have very high variance in the presence of certain cor-
relation patterns (Schwartzman and Lin, 2011). We therefore feel
that the potential advantages of FDR methods over FWER meth-
ods in the presence of correlated tests warrant examination in the
context of rare variant analysis.

Additionally, the use of stratified FDRs may enable further
increases in power to detect associations. A stratified FDR analysis
implies that the test statistics can be divided into subsets or strata
with varying probability that the null hypothesis is true (Sun et al.,
2006; Greenwood et al., 2007). Strata should be defined based on
information that is external to the current study: for example,
biologic plausibility or previously identified associations could be

Frontiers in Genetics | Statistical Genetics and Methodology January 2014 | Volume 5 | Article 11 | 2

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Xu et al. False discovery rates and rare variants

used to define strata. Estimates of FDR within each stratum can
then be combined, and if there truly is variability in the propor-
tion of null tests across strata, the sensitivity and specificity to
detect true associations can be enhanced through the stratified
analysis.

RATIONALE
We therefore undertook this investigation to examine the power
of window-based association tests, and how power is affected by
analytic approaches that depend on external information such
as genomic annotation. Due to the novelty of these window-
based tests as well as the number of possible ways to implement
them, analysts are likely to be particularly tempted to run multi-
ple analyses with different choices for weights or subsets. Hence,
we specifically wanted to know whether FDR estimation could be
a beneficial approach to controlling the number of false-positive
associations while simultaneously increasing power.

OBJECTIVES
Based on our rationale, our goal is to answer the following
questions:

- For window-based tests of rare genetic variation, can impor-
tant power gains be achieved by considering external annota-
tion information, either by weighting or by implementing a
stratified FDR approach?

- Can FDR be accurately estimated for window-based tests of rare
genetic variation?

To answer these questions, genetic sequencing data from a pre-
liminary release of the UK10K project (www.uk10k.org), together
with external information on amino acid alterations are the foun-
dation for a simulation study comparing analytic strategies and
their performance.

METHODS
DATA SETS
Our analyses are based on simulated phenotypes together with
genetic sequencing data from the UK10K project.

Sequencing data
The UK10K project is undertaking whole genome sequencing
and analysis of approximately 10,000 individuals from the UK
with the goal of understanding the contribution of rare genetic
variation to common traits and diseases (www.uk10k.org). For
region-based analysis of rare variants in this consortium, an ini-
tial analysis plan defined regions so that they contain 50 rare
variants, where “rare” is either MAF <0.01 or MAF <0.05.
Adjacent regions were chosen to overlap by 25 rare variants. To
study correlation patterns, we used a portion of this sequencing
data, specifically chromosome 3 sequencing data from an interim
release, including 2432 individuals and 2,577,674 genetic variants.
For an MAF threshold of 0.01 we defined 74,156 analysis windows
or regions, derived from 1,853,923 rare variants at this threshold.

PolyPhen-2 scores, which predict the impact of amino acid
changes on protein structure and function, were obtained for each
exonic variant (Adzhubei et al., 2010). Among SNVs with MAF

<0.01 on chromosome 3 in the UK10K data, there were 3296
variants with PolyPhen-2 scores indicating a “benign” alteration,
1219 variants coded as “possibly damaging,” and 2419 coded as
“probably damaging.”

Simulated phenotype data—design
In order to achieve our objective of studying the performance of
FDR estimation, it was necessary to implement a two-level sim-
ulation design. At the first level, we randomly selected a set of
genes (and variants within genes) to influence the phenotype,
and then using these causal variants, we simulated a continu-
ous phenotype value for each individual in our data set. This
step allowed us to calculate 74,156 region-based tests of associa-
tion across chromosome 3, and thus obtain one estimate of FDR.
Therefore the second level of the simulation design repeats this
process 100 times, so that we can describe the variability in the
FDR estimates and in the distribution of p-values. In addition, we
repeated the entire process with three models varying the strength
of the genetic influences.

Simulated phenotype data—details
Within each simulation, we randomly selected 40 genes to be
causally related to the phenotype from the 1116 genes on the
chromosome. Rare variants in and near these genes were then
randomly sampled to be the influential genetic variants. We
defined, for the purposes of selecting causal variants associated
with each gene, all variants in the adjacent intergenic intervals
as potentially associated with the selected gene. We excluded
singleton variants from consideration since they provide little
additional benefit to power in tests of rare genetic variation
(Ladouceur et al., 2013).

The risk of a variant being causal, and its effect on a contin-
uous phenotype, were generated as a function of the PolyPhen-2
score values. The phenotypes yi, i = 1, . . . , n, for n individ-
uals, were simulated from the model yi = ∑

j βj xij + εi where
εi ∼ N(0, σ) represents random variability in the ith person’s
phenotype. The genotype covariates, xij, represent the number of
minor alleles for individual i at causal variant j, and the effects
of the causal variants, βj, were randomly generated following the
parameters in Table 1. Three different values were chosen for
the standard deviation associated with the random variability,
σ ∈ (0.5, 1.0, 1.5).

For each value of σ, 100 sets of causal genes and variants
were randomly selected, and correspondingly, 100 different phe-
notypes were generated for each person.

DATA ANALYSES
In general, the analysis plan involved region-based tests of asso-
ciation for all defined windows on chromosome 3, followed by
examination of the joint distribution of the resulting p-values in
order to estimate sensitivity and FDR. These two phases were
each undertaken using several strategies to account for external
annotation information about the genetic variants.

Region-based tests of association using SKAT
For each set of phenotypes across all individuals, we performed
region-based SKAT tests of association (Wu et al., 2011) between
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Table 1 | Parameter values for simulating phenotypes, dependent on

PolyPhen-2 scores.

PolyPhen-2 Probability Mean of Normally Standard deviation

score that variant distributed effect normally

is causal on phenotype distributed effect

on phenotype

Benign 0.05 1.00 0.5

Possibly
damaging

0.35 1.65 0.5

Probably
damaging

0.45 2.00 0.5

Missing 0.001 1.20 0.5

Background random variability in phsenotype was normally generated with mean

0 and standard deviation between 0.5 and 1.5.

the generated phenotype set and all 74,156 partially-overlapping
regions of 50 rare variants (MAF <0.01) on chromosome 3.
SKAT is designed to test association between a set of genetic vari-
ants, such as those identified by sequencing methods in a small
genomic window, and a phenotype or trait. The regions or win-
dows for analysis must be chosen by the analyst, and may reflect
gene boundaries or may be simply an arbitrary partitioning of
the data on each chromosome. For a continuous phenotype, the
SKAT test statistic can be written

Q = (y − μ̂)′K(y − μ̂),

where y is a vector of phenotype values, μ̂ is the predicted mean
of y under null hypothesis, and K is the SKAT kernel matrix,
which depends on the genotype matrix and a choice of vari-
ant weights. Under the null hypothesis, the distribution of Q is
asymptotically equal to a positive quadratic form of standard nor-
mal distributions, and the p-value can be calculated using Davies
exact method or other approximation methods (Wu et al., 2011).

Implementation of SKAT analyses on chromosome 3, incorporating
annotation information
The SKAT window-based analyses were performed in three dif-
ferent ways to give different priority to variants with genomic
annotations.

(1) Analysis type “N”: We used the default SKAT weighting of
variants which ignores any annotation information and we
included only variants with MAF <0.01. Here the weights
were defined to give more weight to variants with smaller
minor allele frequencies following a Beta distribution with
parameters a1 = 1 and a2 = 25 (Wu et al., 2011).

(2) Analysis type “P”: Here we weighted each variant also by
PolyPhen-2 scores. For this purpose, we assigned weights
of 0.5 for unknown or missing PolyPhen-2 scores, 0.25 for
benign variation, 0.75 for possibly damaging, and 0.85 for
probably damaging scores. Note, this analysis assumed that
variants known to involve benign changes to the protein
were given lower weights than variants where the change had
unknown impact.

(3) Analysis type “S”: Here we analyzed only the subset of
rare variants in a window that had non-missing PolyPhen-
2 scores. That is, variants were included in the analysis if they
had been assessed as benign, possibly damaging or proba-
bly damaging. Note that the window boundaries were not
changed, so for this strategy there could be very few variants
jointly analyzed in a window, and many windows (espe-
cially those outside genes) contained no annotated variants
and were not analyzed with strategy S. The default SKAT
weighting of variants was also used here.

Defining strata and analysis strategies for FDR estimation
After analysis, region-based test results were summarized across
all windows (All), windows that contained no variants with
damaging PolyPhen-2 scores (Stratum 1), and windows that con-
tained at least one variant with a PolyPhen-2 score of probably
or possibly damaging (Stratum 2). Note, therefore, that analysis
type “S” of Stratum 2 (S-Stratum2) describes windows contain-
ing only damaging variants (possibly or probably), S-Stratum1
describes windows containing non-annotated or benign variants,
and that “S-All” are the windows with any kind of variants.
Furthermore, we categorized windows into those truly contain-
ing at least one causal variant (H1), and windows where at
least one variant was strongly correlated with a causal SNP at
either r = 0.9 (H1-Corr0.90) or r ≥ 0.75 (H1-Corr0.75). All the
nomenclature is presented in Table 2. By considering the strata,
as well as the treatment of annotated variants within the test
statistics, many analysis strategies were defined. For example, “S-
Stratum2” is the analysis of only the damaging variants (and
the windows in which they occur); whereas “N-All” implies
an analysis of all windows and all variants, with default SKAT
weights.

“True” Sensitivity and FDR
Within the set of tests arising from each analytic strategy, we cal-
culated the true sensitivity and the true value of the FDR for
several chosen p-value thresholds. Let pw represent the p-value
for window w using a particular testing strategy, and let α be a
p-value threshold defining whether the null hypothesis is rejected.
With some abuse of notation, let H1w represent the logical event
that the window w truly contains at least one causal variant. We
can therefore define “true” sensitivity as

tSENS =
∑W

w = 1

[
I(H1w) ∩ I

(
pw < α

)]
∑W

w = 1 I(H1)
,

where the sum is across all w = 1, . . . W windows tested.
Similarly the “true” FDR can be written

tFDR =
∑W

w = 1

[
I
(
pw < α

) ∩ I (◦H1w)
]

∑W
w = 1 I

(
pw < α

) ,

where I(◦H1w) indicates that a window does not contain a causal
variant. These sensitivities and FDRs were averaged across the 100
simulations for each threshold α.
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Table 2 | Nomenclature used to describe combinations of analytic

strategies and subsets of regions analyzed.

Description Nomenclature

SKAT tests without any weighting based on
PolyPhen-2 scores, all rare variants with MAF <0.01

N

SKAT tests with weighting based on PolyPhen-2
scores, all rare variants with MAF <0.01

P

SKAT tests only on rare variants (MAF <0.01) with
benign, possibly damaging, or probably damaging
PolyPhen-2 scores

S

All windows All

Windows that contained only variants with either
missing or benign PolyPhen2 scores

Stratum 1 or St1

Windows that contained at least one variant with a
possibly or probably damaging PolyPhen-2 score

Stratum 2 or St2

A stratified analysis that combines results from
Stratum 1 and Stratum 2

Strat or Str

Windows containing at least one causal variant H1

Windows containing at least one variant correlated
with a causal SNP at r ≥ 0.9

H1-Corr0.90

Windows containing at least one variant correlated
with a causal SNP at r ≥ 0.75

H1-Corr0.75

Standard error associated with random error or noise σ

Estimation of FDR
We estimated FDRs using three different methods, and com-
pared the estimates to the true values. The three FDR estimation
methods that we used are the Benjamini and Hochberg (BH)
correction of p-values (Benjamini and Hochberg, 1995), the
beta-uniform model-based parametric approach (BUM) (Pounds
and Morris, 2003), and the modified Grenander density estima-
tor based semi-pararametric approach (software called fdrtool)
(Strimmer, 2008), in each case we estimate the tail area-based
FDR. The BH method is a step-up p-value adjustment which con-
trols FDR at level τ. Let all the p-values for a given testing strategy
be ordered from smallest to largest, p(1), p(2), . . . , p(w), . . . , p(W).
The Benjamini–Hochberg procedure finds w∗, the largest value
of w, such that p(w∗) ≤ w∗

W τ, and rejects the null hypothesis for
all tests with p-values smaller than or equal to p(w∗). Pounds and
Morris (2003) use the fact that p-values under the null hypothe-
sis are expected to follow a uniform distribution, and therefore,
they assume that the distribution of all p-values follows a mixture
distribution where the uniform is mixed with a Beta distribution,
denoted f1,

f (p) = π + (1 − π) f1(p).

Here, π represents the proportion of test statistics that follow
the null hypothesis. The estimated FDR for p-value threshold α

is then the proportion of rejected tests estimated to follow the
uniform distribution, and can be written

FDRBUM(α) = π̂ubα

F̂(α) − (1 − α) π̂ub + π̂ubα

Where π̂ub represents an estimated upper bound on π, and F̂(.)

is the estimated mixture distribution. Instead of assuming a uni-
form distribution for p-values under the null hypothesis, the
method of Strimmer (2008) finds an empirical null distribu-
tion by using a smoothing approach. The mixture distribution is
written more generally as

f (p) = η0f0(p) + (1 − η0) f1(p).

Strimmer writes FDR at a given p-value pi as

FDRS(pi) = η0
1 − F0(pi; θ)

1 − F(pi)

where F(.) and F0(.) represent the distribution functions for
the mixture model and the null distribution, respectively. A
Grenander density estimator is used to obtain a nonparametric
estimate of the distribution F and a truncated maximum likeli-
hood is used to estimate the null density. Therefore, these three
methods encompass very different approaches to the estimation
of FDRs.

An approach conceptually similar to Strimmer’s was taken
by Efron (Efron and Tibshirani, 1998; Efron, 2007) and imple-
mented in the program locfdr (http://cran.r-project.org/web/
packages/locfdr/index.html), but an empirical smoother of the
histogram of test statistics was used instead of the Grenander
function. We were unable to obtain reasonable results with this
method and they are not shown.

Stratified FDR estimation
To implement stratified FDR estimation, the FDR was estimated
separately in each stratum. For the combined analysis, a desired
FDR threshold was chosen and applied separately to the results
for each stratum. This induces different p-value cutoffs and dif-
ferent sensitivity rates across the strata, which are then combined
to obtain overall estimates of sensitivity and power.

Single point analyses
For comparison, results from a small number of simulations were
analyzed using single-marker tests of association. Each SNV along
chromosome 3 was tested for association with the phenotype,
using an additive (0, 1, 2) coding for the number of minor alleles
at the genetic variant.

RESULTS
SIMULATED PHENOTYPE DATA
For each simulation, the phenotypes were designed to depend on
genotypes at a randomly selected set of 40 genes. Then within
the chosen set of genes, a variable number of causal variants
were sampled. Table 3 displays the mean number of causal vari-
ants selected by our two-stage phenotype simulation design, both
for all variants and among the subset of variants with PolyPhen-
2 scores. It is evident from Table 3 that almost 50% of the
causal variants had PolyPhen-2 annotations, and therefore that,
as desired, the proportion of annotated variants that are causal is
much higher than the proportion of non-annotated causal vari-
ants. Also the number of windows that contained at least one
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Table 3 | Number of causal variants generated in the simulations.

Category Number of Number of windows containing at Number of windows containing at least

causal variants least one causal variant one variant correlated with a causal variant at

r ≥ 0.9 r ≥ 0.75

All variants 21.89 (4.57) 41.02 (8.26) 1174.78 (1037.12) 1709.08 (1442.99)

Variants in Stratum 1 10.61 (3.18) 20.96 (6.30) 443.65 (726.19) 779.94 (1106.35)

Variants in Stratum 2 11.28 (2.75) 20.96 (4.89) 758.79 (786.22) 970.75 (995.43)

Variants with
PolyPhen-2 scores

12.46 (3.12) 22.81 (5.25) 845.97 (826.83) 1190.50 (1110.22)

Each simulation first selected 40 genes and then selected variants to be causal in and/or near these genes. Mean (and standard deviation) are reported across the

simulations.

causal variant is very equally split between Stratum 1 and 2.
Table 3 also shows that only a small number of analysis windows
contained at least one causal variant. However, the number of
windows that contain variants strongly correlated with a causal
SNV is much higher. It is worth noting that although 40 genes
were chosen to influence phenotype, it is possible that no causal
variants were randomly selected for some of these genes. In fact
the number of genes containing at least one causal variant varied
between 8 and 22 across the simulations.

REGION-BASED TESTS OF ASSOCIATION: DISTRIBUTIONS OF
p-VALUES
Figure 1 shows QQ-plots of p-values for 3 simulations. The 3
columns in Figure 1 correspond to 3 different sets of simu-
lated phenotypes, and the rows correspond to different analytic
strategies. Region-based test results (rows 1–3) are contrasted
with single-SNP tests (rows 4–5). When σ = 0.5, the power to
detect association at the window level can be extremely sub-
stantial and the QQ-plots may deviate markedly from the line
of expectation. For example, the smallest p-values for simula-
tion #3 reach 10−80. It is also notable that the most signifi-
cant test statistics can vary by almost an order of magnitude
across different simulations. In contrast, when σ = 1.5, there is
very little power to detect association with the genetic variation
in the windows, at a sample size of 2432 individuals, for any
method. Single SNP results can have more power than region-
based tests, as in simulation #1, or less power, as in simulations
2 and 3.

Figure 2 shows histograms of the p-values obtained for all
region-based tests of association for three different simulations,
for all tests, and also separately for Stratum 1 (no damaging causal
variants in the windows) and Stratum 2 (at least one damaging
causal variant in the window). In each histogram there is a vis-
ible peak of small p-values, indicating that a subset of the tests
deviate markedly from the null hypothesis but there is also an
apparent peak of p-values at or near the value of 1.0. This lat-
ter spike is more visible when the background random variability
is at its smallest (σ = 0.5), and particularly dramatic for the “S”
analytic strategy where only annotated variants were analyzed.
Therefore, we believe that this spike is likely due to violations of
the asymptotic convergence of the test statistics. For the S strat-
egy, the data sets of analyzed variants could be very sparse—a
much smaller number of windows were analyzed, and within

those windows there may have been little genetic variability. Since
there was a small number of damaging variants, a window may
contain only one or two analyzable variants. Furthermore, only a
few individuals may carry alternative alleles due to the rarity of
the high risk alleles. When σ = 0.5, individuals carrying one of
these causal variants would appear to have extreme phenotypes
(large outliers) and this may compromise the convergence of the
test statistics.

The tests in Stratum 2 are a very small minority of all tests
for the N and P analysis strategies, but a large proportion of all
tests for the S strategy. This can be seen in Figure 2 in the bottom
row, where the line representing Stratum 2 is higher than Stratum
1. Visually, it is not very easy to distinguish, in any row of this
figure, whether one stratum contains a higher proportion of small
p-values than the other.

TRUE SENSITIVITY AND FDR FOR DIFFERENT ANALYSIS STRATEGIES
The capacity to identify windows containing causal variants is
shown in Table 4 and Figure 3. For a given p-value threshold
for significance, the sensitivity is the proportion, of the windows
where the null hypothesis was rejected, that actually contain at
least one true causal variant. For a p-value threshold of 1e-05,
the performance of five different analytic strategies are presented
in Table 4. Firstly all windows are analyzed with the default
SKAT weights based on MAF (N–All). We then separate windows
containing benign or non-annotated variants from windows con-
taining at least one damaging variant and analyzed these two sets
separately with standard SKAT (N–Stratum1 and N–Stratum 2).
For Stratum 2 only, we also report analyses either with weights
(P-Stratum 2) or restricting to the subset of annotated variants (S-
Stratum 2) using PolyPhen-2 weights (P–Stratum 2). Results are
also shown for all windows, for windows containing at least one
causal variant, and for windows correlated with a causal window
(see Table 2 for nomenclature details). Figure 3 contains some
additional sensitivity results for Stratum 1 tests for σ = 0.5. For
complete results, see Tables S1A–D, 3A–D as well as Figure 4.

Examining strategy H1, where the focus is only on windows
containing causal variants, it can be seen that the sensitivities
tend to be very low for any analytic strategy, and they do not
increase much as the p-value threshold becomes less stringent.
This conclusion appears to contradict the highly deviant QQ-plot
results seen in Figure 1, in particular when σ = 0.5. It appears,
therefore, that some windows containing true causal variants can
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FIGURE 1 | QQ-plots of p-values for analysis of all chromosome

3 windows, for 3 different simulated phenotypes that were

selected to illustrate performance differences. Values of σ are
distinguished by color. Region-based testing using three analysis

strategies (N-All, P-All, and S-All) are shown in the first three
rows. The bottom two rows show the results of single-SNP
analyses, either with all SNPS (row 4) or only annotated SNPs
(row 5).
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FIGURE 2 | Distributions of p-values across 100 simulations, for

window-based tests of variation at all windows on chromosome

3 (gray histogram), for Stratum 1 (blue), and Stratum 2 (red).

The first row shows the standard SKAT weighting of variants (N),

the second row shows analyses weighted by PolyPhen-2 scores (P),
and the bottom row shows analyses of only the subset of
damaging variants (S). Columns 1 to 3 are σ = 0.5, 1.0 and 1.5,
respectively.

be detected with ease (with high power), but many others appear
to be indistinguishable from the windows containing no causal
variants. The best sensitivity for windows truly containing at least
one causal variant (H1), with a liberal p-value threshold of 1e-3
and for the S-Stratum 2 analytic strategy, reaches only 35%.

However, when we relax our definition of sensitivity, the results
improve. Our more inclusive definition calls a “causal window” as
a window containing at least one variant in strong linkage dise-
quilibrium with a causal variant, where linkage disequilibrium is
defined using r ≥ 0.9 (H1-Corr0.90) or r ≥ 0.75 (H1-Corr0.75).
Sensitivity then measures the proportion of this larger set of win-
dows with p-values below the chosen threshold. Table 4 shows
that sensitivity increases substantially for all analytic strategies,
and dramatically for N-All and Stratum 1. Using this liberal defi-
nition of a causal window based on correlation of 0.75, sensitivity
reaches 48% with σ = 0.5, a p-value threshold of 1e-05, and either
N-All or S-Stratum2 (Table 4).

The “true” FDR, or the proportion of rejected tests where the
window contained no causal variants, is also shown in Table 4. It

is evident from the very high tFDR values that most of the sig-
nificant tests correspond to windows that did not contain any
causal variants, even when we relax or enlarge our definition
of success to include windows that are strongly correlated with
those containing causal variants. More focused subsets of win-
dows, obtained for example by the S-Stratum2 analyses, have
smaller tFDR estimates, but they are still greater than 50% even
when a p-value of 1e-08 is used as the threshold (Table S3A).
These results demonstrate clearly that it is extremely difficult to
segregate causal and non-causal windows.

ESTIMATION OF FDR
Using three methods for estimating FDR, we then examined the
proportion of falsely-rejected hypotheses across methods, ana-
lytic strategies, and with the true values. Table 5 shows, of the tests
with FDR estimates less than 0.05 (i.e., an FDR threshold of 0.05),
what proportion is truly null. Tables S2A–I, S4A–I show complete
results for different analytic strategies and three different FDR
thresholds.
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Table 4 | Sensitivity (tSENS) for detection of windows containing causal variants with different analysis strategies, for a p-value threshold of

1e-05.

Analysis Sensitivity (tSENS), i.e., the proportion of Proportion of windows where null is falsely

strategy causal windows identified rejected, the tFDR

σ Windows: Windows: H1- Windows: H1- Windows: Windows: H1- Windows: H1-

H1 Corr0.90 Corr0.75 H1 Corr0.90 Corr0.75

N—All 0.5 0.13 (0.10) 0.40 (0.15) 0.48 (0.16) 0.98 (0.03) 0.92 (0.08) 0.90 (0.09)

N—All 1.5 0.08 (0.08) 0.23 (0.17) 0.26 (0.20) 0.90 (0.24) 0.83 (0.25) 0.81 (0.25)

N—Stratum 1 0.5 0.05 (0.10) 0.28 (0.18) 0.38 (0.22) 0.997 (0.006) 0.97 (0.03) 0.96 (0.04)

N—Stratum 1 1.5 0.03 (0.07) 0.13 (0.16) 0.18 (0.21) 0.94 (0.24) 0.91 (0.24) 0.90 (0.24)

N—Stratum 2 0.5 0.18 (0.14) 0.35 (0.19) 0.40 (0.20) 0.88 (0.16) 0.83 (0.16) 0.82 (0.16)

N—Stratum 2 1.5 0.11 (0.10) 0.22 (0.18) 0.25 (0.19) 0.71 (0.37) 0.65 (0.35) 0.64 (0.34)

P—Stratum 2 0.5 0.20 (0.14) 0.36 (0.19) 0.41 (0.20) 0.86 (0.17) 0.81 (0.17) 0.80 (0.17)

P—Stratum 2 1.5 0.13 (0.11) 0.23 (0.18) 0.25 (0.20) 0.69 (0.37) 0.65 (0.35) 0.64 (0.34)

S—Stratum 2 0.5 0.30 (0.14) 0.43 (0.14) 0.48 (0.14) 0.81 (0.10) 0.75 (0.10) 0.72 (0.09)

S—Stratum 2 1.5 0.10 (0.10) 0.15 (0.12) 0.17 (0.13) 0.61 (0.35) 0.56 (0.33) 0.53 (0.31)

Mean (standard deviation) across 100 simulations. The proportion of windows where the null is falsely rejected is the “true” FDR value.

FIGURE 3 | Sensitivity (tSENS) at different significance thresholds

(p-values) and for various analytic strategies. The horizontal axis is
−log10 (p), and the vertical axis is the true sensitivity for detecting windows
containing at least one associated causal variant, when σ = 0.5. N-All: All
tests, standard weighting; N-St2: Stratum 2, standard weighting; P-All: All
tests, PolyPhen-2 weights; P-St2: Stratum 2, PolyPhen-2 weights; S-All:
All tests; subset of damaging variants; S-St2: Stratum 2, subset of
damaging variants.

Focusing on only windows that truly contain causal variants
(H1), Table 5 indicates that over 90% of the rejected tests are actu-
ally null across a variety of analytic strategies, in stark contrast to
the estimated FDR values of 0.05. All three methods give very sim-
ilar results. In fact, the three methods identify the same windows
as significant: the true null proportions are very similar across the
methods.

By expanding the definition of a “true” association to include
windows that are correlated with causal windows, there is some
improvement. The proportion of null rejections drops from well
over 90% to as low as 40–50% when using the BUM method,
and in the Stratum 2 subset analyses, but these values are
still far higher than the estimated FDR of 0.05. When using a
slightly more liberal definition of a true association (r ≥ 0.75;
Tables S4A–I) the proportion of null rejection falls further. When
examining other FDR thresholds (Tables S2/4B, S2/4E, S2/4H
show FDR = 0.25; Tables S2/4C, S2/4F, S2/4I show FDR = 0.50)
the estimated FDR values are even closer to 1.0.

STRATIFIED FDR
A stratified analysis strategy allows for different p-value thresh-
olds to be applied in different strata. This reflects variability in
the estimated proportions of truly null hypotheses across strata.
The results of stratified FDR analysis are also shown in Table 5
and in the Supplementary Tables. For a chosen FDR threshold
(here FDR = 0.05), different p-value thresholds are applied in the
two strata. However, we see no benefit in terms of the number
of falsely-associated windows or sensitivities associated with the
stratified analysis.

DISCUSSION
In this paper, we have explored the potential of using FDRs
together with genomic annotation to improve the ability to detect
associations with rare genetic variants using window-based tests.
Returning to our Objectives, we found that, as expected, using
annotation information improved power, since this was built into
our simulation design. However, power remained low. Also, we
did not find that FDR estimation was a particularly useful tool
in this context. The proportion of significant yet not-associated
windows was very large, and the estimates of FDR were extremely
biased. We discuss this bias below.

We based our exploration on an interim release of sequenc-
ing data from the UK10K project, including approximately 2.5
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FIGURE 4 | Additional results for sensitivities (tSENS) and the p-value

threshold. The horizontal axis is −log10(p), and the vertical axis is the true
sensitivity for detecting windows containing at least one associated causal
variant. Solid lines: Analytic strategy “N”. Dashed lines: Analytic strategy “P”.

Dotted lines: Analytic strategy “S.” Three different colors represent All-tests
(black), Stratum 1 (blue), and Stratum 2 (red), respectively. The three rows
show results for σ = 0.5, 1.0, and 1.5, respectively. The three columns contain
results for H1, H1-Corr0.90, and H1-Corr0.75, respectively.

million sequence-identified variants on chromosome 3 among
2432 individuals, and implemented a fairly complex simula-
tion design. We assumed that there were as many as 40 genes
on this chromosome with influence on a continuous trait. We
randomly selected 40 genes from those on the chromosome,
and then we randomly selected causal genetic variants from all
genetic variants in or near these genes with probabilities that
depended on the real PolyPhen-2 scores for the genetic vari-
ation. As an alternate strategy, we could have fixed the genes

and variants selected to be causal, and simply varied their
effect on phenotype across the simulations. However, our cho-
sen approach incorporates additional variability in the pattern
of associated variants and their correlations, since we wanted
to examine the performance of FDR estimation under a vari-
ety of conditions. Also, for reasons of feasibility, we used pilot
data on only one chromosome. Patterns of gene density and
correlations may vary across chromosomes, but our simula-
tion design hopefully includes enough randomness that results,
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Table 5 | The performance of estimated FDR methods for window-based rare variant tests, using three different methods for estimation.

Analytic Identification of windows containing causal Identification of windows either containing causal

strategy variants variants, or correlated with such windows at r ≥ 0.90

Benjamini– Beta-uniform FDRtool Benjamini– Beta-uniform FDRtool

Hochberg (BH) mixture (BUM) Hochberg (BH) mixture (BUM)

N—All 0.981 (0.033) 0.982 (0.030) 0.982 (0.030) 0.935 (0.080) 0.925 (0.088) 0.936 (0.079)

N—Strat 0.980 (0.036) 0.980 (0.042) 0.980 (0.036) 0.952 (0.049) 0.944 (0.056) 0.953 (0.049)

P—All 0.974 (0.064) 0.970 (0.107) 0.975 (0.060) 0.925 (0.096) 0.911 (0.130) 0.927 (0.091)

P—Strat 0.971 (0.075) 0.970 (0.073) 0.972 (0.075) 0.943 (0.078) 0.932 (0.087) 0.943 (0.078)

S—All 0.927 (0.038) 0.927 (0.037) 0.920 (0.040) 0.874 (0.046) 0.858 (0.046) 0.862 (0.045)

S—Strat 0.927 (0.037) 0.926 (0.038) 0.920 (0.040) 0.882 (0.045) 0.868 (0.045) 0.872 (0.046)

Results show the proportion of windows containing no causal variants (tFDR) for an estimated FDR of 0.05. Results are shown for the simulation with σ = 0.5.

Results are the mean across 100 simulations (standard deviation).

in general, would be applicable to larger regions or different
chromosomes.

The choice of as many as 40 causal genes located on the same
chromosome was made for two reasons. Firstly, for many com-
plex traits, it may be extremely likely that there are large numbers
of genes each with a small influence on the trait; this has been
suggested for height (Yang et al., 2010), for example, as well as
several other continuous phenotypes. Secondly, in order to esti-
mate FDRs using many of the existing methods, it is necessary to
estimate the proportion of associated (non-null) tests. However,
if this proportion is too close to zero, then estimation becomes
extremely difficult. In fact, despite the choice of 40 causal genes,
the number of windows containing a causal variant is still small
(Table 3).

Although the number of causal variants is small, the number
of windows potentially showing association could be much larger
due to patterns of linkage disequilibrium leading to extensive cor-
relations. We therefore implemented a more relaxed definition
of successfully identifying a true signal: if a window showing a
significant result contained at least one genetic variant strongly
correlated with a causal variant (using either r ≥ 0.90 or r ≥
0.75), then we counted this as a true identification. Sensitivity
increased quite substantially with the relaxed definition, and in
some models reached 50–60%. If we had used a lower level of
correlation when defining a “true positive” region identification,
we would undoubtedly have been able to improve our sensitiv-
ity further. In fact, the correlation, r, is not ideal as a measure
of the strength of linkage disequilibrium between variants, espe-
cially for rare genetic variants. A more nuanced consideration
of haplotypic structure could provide an interesting perspective
and may lead to improved sensitivities. Our relaxed definition
of success also raises questions about how to perform fine map-
ping, since “true positive” windows could be quite genetically
distant from any causal variants, if there was long-range dis-
equilibrium. Of course, many studies of real phenotypes have
identified associations that are located far from any likely gene.

One of our most striking findings was the discrepancy between
estimated FDR values (e.g., FDR = 0.05) and the true FDR based
on the proportion of windows with small p-values that either
contain a causal variant or are strongly associated with causal

Table 6 | Setup for calculation of sensitivity, power, and false positive

rates.

Region-based test

result

Truth

True HA True H0 Total

p-value < Threshold:
reject null hypothesis

A C A + C

p-value ≥ Threshold: do
not reject null hypothesis

B D B + D

Total A + B C + D

A, B, C, D represent the numbers of tests that fall into the four cells defined by

the p-value (whether or not the null hypothesis is rejected) and whether (HA) or

not (H0) the region is a causal region.

variants. Three factors play into this, power, the proportion of
all tests that are null (π), and the correlations between windows.
Table 6 shows a standard 2 × 2 table setup for calculating sen-
sitivity, specificity and false positive rates, where FDR = C

A + C .
Poor power leads to values of A that are too small. Furthermore,
if C + D is a very large number (π is large) then it becomes easy
for C to be much larger than A. Finally, the linkage disequilib-
rium structure leads to complex patterns of dependence; signals
resulting from causal genetic variants may be detected in win-
dows some distance away. Hence, the choice of definition for a
“causal” window influences the number of tests placed into the
two columns.

The lack of power for detection of many of the causally-
associated regions may have been due to very small MAFs, to the
presence of only a very small number of causal variants in each
window, or even to the fact that with 41 causal variants on average
(Table 3), that the separate signals would be difficult to distin-
guish. Better power may be obtainable by iteratively correcting
the phenotype for each consecutively-identified variant or sig-
nal, and re-running analyses on the residuals, although it would
be tricky to decide exactly how to implement such a strategy for
window-based testing.
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If window-based tests perform poorly when there are only a
few causal variants, perhaps single-SNP tests have more power.
Therefore, in a few selected cases, we compared window-based
results to SNP results (Figure 1), and in fact we concluded that
there is not necessarily one strategy that will be more powerful.
The relative performance will depend on the density of causal
variants in small genomic regions, and whether several causal
variants occur within the same window. This comparison is not
the primary focus of this paper, but could be an interesting
question for future research.

We compared three methods for estimation of FDRs. The BH
method (Benjamini and Hochberg, 1995) implements a step-
up strategy adjusting each p-value in turn, and provides an
upper bound for the FDR under certain patterns of depen-
dency (Benjamini and Yekutieli, 2001). This method does not
require an estimate of the proportion of the tests that are truly
null. In contrast, we implemented two methods that do estimate
this proportion, one parametric (Pounds and Morris, 2003) and
one semi-parametric (Strimmer, 2008). Despite the very differ-
ent model assumptions, in fact the resulting estimates of FDR
were very comparable across the three methods. However, none
of the estimates were at all close to the true FDR values. All
methods were probably being misled by associations seen at cor-
related variants, located in nearby windows. Performance for the
model-based methods may also have been adversely affected by
the observed spike in the number of p-values of 1.0 (Figure 2).
The presence of this spike violates the assumption of a uniform
distribution of p-values under the null hypothesis. Finally, it is
plausible that the differences between the approaches would be
more visible for smaller FDR estimates.

Annotation of the genome, including regulatory regions as
well as genomic conservation, is improving daily (Maher, 2012).
It seems intuitive that such information should aid in identify-
ing associations between genetic variability and phenotypes. We
simulated data where PolyPhen-2 scores influenced not only the
probability that a variant was causal, but also the magnitude
of the effect of the variant on the phenotype. It was therefore
not surprising to find that use of weighted test statistics, where
weights were derived from the PolyPhen-2 scores, improved the
sensitivity and power. Similarly, analyses of only the subset of
possibly- or probably-damaging annotated variants performed
better than analysis of all variants, as expected. The differences
in power, however, were quite small and smaller than we had
previously anticipated. Although we could have prepared a more
complex set of relationships between genomic annotation infor-
mation and our simulated phenotypes, perhaps using multiple
different annotation measures, we do not feel that our primary
conclusions here would be altered, given the same analysis strate-
gies. Power of the tests will still be largely driven by the MAFs and
density of the causal variants within the windows, as well as the
magnitude of their effects. An interesting point to consider here is
that when small p-values are seen in correlated windows—that do
not contain any causal variants but are in linkage disequilibrium
with causal variants—the windows with the smallest p-values
may be less likely to contain annotated variants due to MAF
variation. Annotation information may therefore be useful for
fine-mapping.

Another option for coping with multiple testing would be to
develop a Bayesian model for the strength of each test statistic’s
association, where informative prior distributions are assumed
for the parameters measuring the strength of association between
genomic regions and phenotype. This approach could be con-
sidered conceptually as an extension of stratified FDR to the
case where each test statistic has its own stratum, defined by the
genomic annotation information for all variants in each region.
The result of such an analysis would be a (posterior) probabil-
ity that the genetic variation in a chosen region is associated
with the phenotype. Regions with annotations likely to contain
causal genetic variation would have higher prior probabilities
of association with phenotype, and hence also higher posterior
probabilities of association. This avenue may be worth further
consideration and exploration.

Prior to undertaking this simulation study, our hypothesis was
that use of stratified FDR methods, using genomic annotation
information, could lead to improved power to detect associations
with rare genetic variation. We did not find any improved per-
formance using stratified FDR methods in this context. However
in another context where the strata may more clearly delineate
the probability of a true association, or if informative prior infor-
mation could be constructed effectively, then perhaps a return to
consideration of these issues would be warranted.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fgene.2014.

00011/abstract
Table S1 (A–D) | True sensitivity (tSENS) and true FDR (tFDR) for different

analytic strategies. Each table shows the tSENS and tFDR values for

different p-value thresholds, ranging from 1e-08 (Table S1A) to 1e-03

(Table S1D). “m” is the mean over the 10 simulations, and “sd” is the

standard deviation. Nomenclature follows Table 2.

Table S2 (A–I) | Sensitivities and proportion of truly null window tests

(tFDR) for different estimated values of FDR. Each table shows the

sensitivity and tFDR values associated with a different estimated FDR

threshold between 0.05 (S2A) and 0.50 (S2I). Nomenclature follows

Table 2.

Table S3 (A–D) | True sensitivity (tSENS) and true FDR (tFDR) for different

analytic strategies examining correlated windows with variants correlated

at r ≥ 0.75. Each table shows the tSENS and tFDR values for different

p-value thresholds, ranging from 1e-08 (Table S1A) to 1e-03 (Table S1D).

“m” is the mean over the 10 simulations, and “sd” is the standard

deviation. Nomenclature follows Table 2.

Table S4 (A–I) | Sensitivities and proportion of truly null window tests

(tFDR) for different estimated values of FDR examining correlated

windows with variants correlated at r ≥ 0.75. Each table shows the

sensitivity and tFDR values associated with a different estimated FDR

threshold between 0.05 (S2A) and 0.50 (S2I). Nomenclature follows

Table 2.
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