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Sickle cell disease (SCD) is a congenital blood disease, affecting predominantly children
from sub-Saharan Africa, but also populations world-wide. Although the causal mutation
of SCD is known, the sources of clinical variability of SCD remain poorly understood,
with only a few highly heritable traits associated with SCD having been identified.
Phenotypic heterogeneity in the clinical expression of SCD is problematic for follow-up
(FU), management, and treatment of patients. Here we used the joint analysis of gene
expression and whole genome genotyping data to identify the genetic regulatory effects
contributing to gene expression variation among groups of patients exhibiting clinical
variability, as well as unaffected siblings, in Benin, West Africa. We characterized and
replicated patterns of whole blood gene expression variation within and between SCD
patients at entry to clinic, as well as in follow-up programs. We present a global map of
genes involved in the disease through analysis of whole blood sampled from the cohort.
Genome-wide association mapping of gene expression revealed 390 peak genome-wide
significant expression SNPs (eSNPs) and 6 significant eSNP-by-clinical status interaction
effects. The strong modulation of the transcriptome implicates pathways affecting core
circulating cell functions and shows how genotypic regulatory variation likely contributes
to the clinical variation observed in SCD.

Keywords: sickle cell disease, genomics, transcriptome, eSNP mapping, gene-by-environment interactions

INTRODUCTION
Sickle cell disease (SCD) is an autosomal recessive genetic dis-
order particularly common among individuals of Sub-Saharan
African ancestry, affecting 1 in 100 West African individuals and
1 in 500 African-Americans (World Health Organization, 2006).
Genetic mutations that cause SCD result in structural changes
to wild-type hemoglobin (HbAA), the oxygen carrying protein
inside red blood cells (RBCs). The most common form of SCD
in West Africa is caused by a single point mutation in codon 6
of the β-globin gene which leads to an amino acid substitution
of glutamic acid to valine (HbSS). The second most common
abnormal Hb mutation in West Africa, HbC, results in an amino
acid change at the same position in the beta globin gene, but
with lysine replacing glutamic acid. These hemoglobin muta-
tions compromise the delivery of oxygen and result in tissue
and organ damage. Despite the monogenic origin of the disease,
SCD patients exhibit a broad spectrum of clinical variation (Driss
et al., 2009) ranging from patients with mild forms of the disease

that rarely require medical interventions to patients with severe
complications warranting frequent hospitalization and aggressive
clinical follow-up. Homozygous HbSS and compound heterozy-
gous HbSC individuals suffer from SCD with overlapping yet
distinctive clinical and biochemical features (Hannemann et al.,
2011). Inter-individual clinical variation is also pervasive within
each of these SCD groups, but its basis is poorly understood and
likely reflects a combination of the effects of several factors includ-
ing haplotypic variation in the β-globin locus region, the action
of genetic modifiers elsewhere in the genome, and a wide range of
environmental factors (Weatherall, 2001; Sankaran et al., 2010).

Mapping genetic variants associated with SCD clinical phe-
notypes have largely been limited to candidate gene approaches
and genome-wide association studies (Adams et al., 2003; Menzel
et al., 2007; Lettre et al., 2008; Sebastiani et al., 2010; Solovieff
et al., 2010; Thein, 2011; Steinberg and Sebastiani, 2012). One
of the most characterized modulators of clinical expression of
SCD is fetal hemoglobin (HbF). Higher HbF levels have been
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associated with reduced rates of acute pain episodes, leg ulcers,
less frequent acute chest syndromes, and reduced disease severity
(Akinsheye et al., 2011). Heritability for HbF is high (h2 approx-
imately 0.60–0.89) and genetic factors that control its expression
have been mapped (Sankaran et al., 2010). However, HbF levels
have no clear association with other SCD clinical manifestations
such as stroke and silent cerebral infarction, priapism, urine albu-
min excretion, and systemic blood pressure (Akinsheye et al.,
2011). Several other genetic modifiers contributing to the vari-
ation in clinical expression of SCD have also been identified
(Thein, 2011; Steinberg and Sebastiani, 2012), nonetheless most
of the variation remains unexplained. Since disease in general
involves differential expression (Emilsson et al., 2008; Cookson
et al., 2009; Berry et al., 2010; Idaghdour et al., 2012), a systems
genetics approach to map genetic variation associated with gene
expression traits correlated with clinical phenotypes (Idaghdour
and Awadalla, 2012) is likely to reveal regulatory variation modu-
lating SCD.

We recruited HbSS and HbSC patients from a West African
SCD cohort, using a two-phase sampling design, and generated a
global map of gene expression variation and its genetic regulatory
variation. Patients in the cohort were part of an established
comprehensive clinical care program which includes an intensive
socio-medical intervention program to impact the disease course
(Rahimy et al., 2003). The vast majority of the children in the
cohort show a severe clinical phenotype at some stage of the
follow-up program. We set out to establish the extent of the
effects of SCD relating to the Hb genotype and clinical follow-up
on whole blood gene expression profiles, and also to identify
genetic regulatory variation associated with gene expression
traits. Furthermore, we test the hypothesis that gene expression
variation associated with the disease or in response to clinical
follow-up can be dependent on patient’s regulatory genotypes,
which in turn may explain inter-individual differences in disease
severity. In so doing, we captured new genes associated with SCD
clinical variation and identified genetic regulatory effects that
explain a substantial percentage of transcriptional variation in
SCD patients.

MATERIALS AND METHODS
STUDY POPULATION
Ethics approval for the study was granted by the Sainte-Justine
Research Center Ethics Committee and by the Faculté des Sciences
de la Santé of the University of Abomey-Calavi in Benin, West
Africa. Informed consent was obtained for all participants in
the study. Patients were part of a large cohort of SCD chil-
dren longitudinally followed-up at the Centre de Prise en charge
Médicale Intégrée du Nourrisson et de la Femme Enceinte atteints
de Drépanocytose (CPMI-NFED), the National Institute of SCD
Infants and Pregnant Women in Cotonou, The Republic of Benin.
In total, 250 SCD patients aged between 6 months and 9 years old
(mean age 4 years) and 61 healthy control siblings (not HbSS or
HbSC and have at least one normal hemoglobin allele) were sam-
pled under informed consent. A two-phase sampling design was
used from February-December 2010 (Figure S1). The initial dis-
covery phase included patients recruited mostly before the end of
April, 2010, and the replication phase included patients that were
recruited mostly between April 2010 and December 2010 (Figure

S2). The distribution of SCD patients newly enrolled (E) and fol-
lowed (FU), Hb genotypes, and sex were proportionate in both
phases. The 61 healthy siblings were of roughly equal age (mean
age 3 years) and sex proportions as the SCD patients, and were
also recruited at the CPMI-NFED (Figure S2).

SCD CLINICAL STATUS AND SEVERITY SCORE
The CPMI-NFED has an established comprehensive clinical care
program that includes an intensive socio-medical intervention
program to impact the disease course (Rahimy et al., 2003). The
vast majority of children in the cohort show a severe clinical
phenotype. SCD patients experiencing an acute event are labeled
acute (A). For the purpose of the present study, two (2) sampling
clinical categories were assigned to patients: patients sampled at
enrolment into the program and in steady-state are labeled as
entry (E), and patients already being followed at the SCD Center
were labeled as FU. At the Center, most patients that are followed
obtain a steady-state condition with general clinical improvement
that involves increased velocity of linear physical growth and
marked reduction in the frequency and severity of SCD-related
acute events; however, some followed patients experience no such
improvement.

Age-matched healthy siblings were recruited as controls (Ctls).
Three quarters of our Ctls are heterozygous HbAS and 1/4 are
homozygous HbAA. Only 14 probes were differentially expressed
between HbAA and HbAS individuals at FDR 1%. Furthermore,
none of the variance in the Ctls was explained by this effect as
evidenced by variance component analysis and by the lack of clus-
tering based on Hb genotype in PCA analysis (Figure S2). For
these reasons, we grouped HbAA and HbAS individuals and used
them as a control sample.

A quantitative SCD severity score (SV) was calculated using
an online SCD severity calculator (http://www.bu.edu/sicklecell/
projects/) (Sebastiani et al., 2007) where each patient was assigned
a score based on their sex, Hb genotype, mean corpuscular vol-
ume (MCV), and white blood cell (WBC) counts. Ctls were
assigned a score of 0.

SAMPLE PREPARATION
The same collection procedure was followed for all samples in
order to reduce technical heterogeneity. A total of 10 ml of periph-
eral whole blood was collected for each patient between 9:00
am and 2:00 pm and stored at −30◦C. Shipment to Montreal
was done at −20◦C. Approximately 3 ml of this blood was
collected for RNA work in TEMPUS blood RNA Tubes (Life
Technologies); and approximately 5 ml of this blood was col-
lected in EDTA tubes for DNA work; the remainder of the blood
was used for complete blood counts using an automated KX-21
blood analyzer (Sysmex Corporation, Japan), identification of the
hemoglobin phenotype by high-performance liquid chromatog-
raphy (HPLC) and Capillary Electrophoresis, and thick smear
analysis for parasetemia quantification. Total RNA was isolated
using the TEMPUS RNA extraction kit (Life Technolgies) fol-
lowing the manufacturer’s recommendations. A globin mRNA
reduction step was performed using GLOBINclear-Human kit
(Life Technologies). Total RNA extractions were quantified and
quality was checked using the RNA 6000 Nano LabChip kit
and 2100 Bioanalyzer (Agilent Technologies). Only samples of
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high RNA quality (Agilent’s RNA Integrity Number >7.5) were
retained for expression profiling. DNA samples were extracted
using QIAamp DNA Kit (Qiagen). Quantity and quality was
checked using Agilent’s DNA 6000 Nano LabChip kit and the
2100 Bioanalyzer (Agilent Technologies).

GENOTYPING THE β-GLOBIN LOCUS
Identification of the rs334 genotype and characterization of hap-
lotype structure in the Hb locus was performed using Sequenom
MassARRAY technology for 237 patients using 600 ng of genomic
DNA and following the manufacturer’s recommended protocols.
Individuals with less than 75% call rate were excluded (Figure S2).

DATA SETS
Four datasets were used for gene expression analyses: the dis-
covery phase (126 SCD patients and 31 Ctls), the replication
phase (124 SCD patients and 30 Ctls), combined dataset I (250
SCD patients and 61 Ctls), and combined data set II (160 SCD
patients and 56 Ctls). Combined data set II includes only HbSS
SCD patients excluding those sampled during acute crises. For
the joint genotypic and gene expression data analyses, the com-
bined dataset II (n = 173) included 120 SCD patients and 53 Ctls
(Figure S1, Supplementary File 3).

GENE EXPRESSION PROFILING
Illumina’s HumanHT-12 v4 BeadArrays were used to generate
expression profiles of more than 48,000 probes using 500 ng
of labeled cRNA for each sample following the manufacturer’s
recommended protocols. All expression data are available at
NCBI Gene Expression Omnibus (GEO) under the series num-
ber GSE35007. The individual expression arrays are listed as
GSM860207 through GSM860517. To minimize chip and batch
effects, a randomized design was used. Hybridization was per-
formed on two different dates and 4 samples from the first
hybridization batch were re-hybridized with the second batch.
These technical replicates clustered adjacent to one another in
hierarchical analysis, indicating a negligible batch effect on the
data. This was confirmed by testing for batch effect in the
probe-by-probe analysis of variance. The expression intensities
were averaged for each probe in the statistical analysis. The raw
intensities were extracted using the Gene Expression Module in
Illumina’s BeadStudio software. Expression intensities were log2
transformed and quantile normalized using JMP Genomics v5.0
(SAS) after an outlier filtering procedure was applied. In total,
28,595 probes with expression at or above background levels
averaged across all the arrays were retained for further analy-
ses. These represent probes remaining after removal of 18,404
probe measurements that were considered to lay below back-
ground detection levels indicated by the inflection point in a plot
of rank-ordered normalized intensities. Also, 427 probes overlay-
ing SNPs included in the Illumina’s OmniExpress BeadChip were
removed from the analysis. Pathway and gene ontology analy-
sis was performed using Gene Set Enrichment Analysis (GSEA)
(Subramanian et al., 2005).

GENOME WIDE GENOTYPING
Genome-wide genotyping data was generated for over 733,200
SNPs using Illumina’s HumanOmni Express BeadChip arrays

following manufacturer’s protocols and extracted using the
Genotyping Module in Illumina’s BeadStudio software. Marker
properties were calculated using PLINK (Purcell et al., 2007).
Only SNPs with minor allelic frequency >5%, a call rate >99%
and SNPs that are in Hardy-Weinberg Equilibrium (HWE) were
included (p-value > 0.001). This resulted in a final set of
568,921 SNPs for further analysis. Global genotypic variation and
ancestry was inferred using Eigenstrat (Price et al., 2006) and
STRUCTURE (Pritchard et al., 2000); we detected limited pop-
ulation structure in our sample (Figures S2, S3). Insignificant
population structure and limited genetic differentiation were also
observed when 541 genotypes from a subset of genes known
to influence hemoglobin levels (alpha-globin, G6PD, BCL11A,
MYB, and HBS1L) were used in PCA and gene-wise Fst analysis
to estimate the magnitude of genetic differentiation among the
clinical statuses investigated and between them and the Ctls.

GENE EXPRESSION DATA ANALYSIS
All statistical analyses of the gene expression data were performed
using JMP Genomics v5.0 (SAS), and SAS 9.3 (SAS). Principal
Component analysis (PCA) and Variance Component analysis
(VCA) of the gene expression data were performed such that the
first three expression PCs (ePCs) were modeled either simultane-
ously or individually as a function of various effects in the data:
Hemoglobin genotype, clinical status (E vs. FU vs. Ctls), sex, and
pair-wise combination of fixed effects. SAS GLM was used to eval-
uate the magnitude and significance of differentially expressed
probes. Probe-level differential expression analysis was performed
using analysis of covariance. Variance was partitioned among the
Hemoglobin genotype (Hb), clinical status effect, sex, and total
blood cell counts (RBCs and WBCs) as covariates. The effects
of date of sampling, phase (discovery vs. replication), age (in
years), and gPCs were tested and found to be marginal. Pairwise
contrasts (Hb genotype × Sex, Hb genotype × ClinStatus, and
ClinStatus × Sex) also were evaluated and found to be insignifi-
cant. Results from the following full ANCOVA model are detailed
in Figure 2: Expression = μ + Hb genotype + ClinStatus + Sex +
WBC + RBC + ε.

The error ε was assumed to be normally distributed with mean
equal to zero. The 3-way clinical status effect (E vs. FU vs. Ctls)
was evaluated. A statistical significance threshold of 1% FDR was
applied separately to each term in the analysis of covariance.

eSNP MAPPING
Multiple linear regression analyses were performed using PLINK
to test for significant associations between gene expression levels
for each probe and SNP genotype. Only well-annotated, auto-
somal probes with validated chromosomal location and gene
function based on the most recent annotation in NCBI and UCSC
as of October 2011 were included for the association tests. In the
process we aligned all probes to the reference genome (hg19),
excluded ambiguous and all non-RefSeq probes, and removed 427
probes overlaying known SNPs from the analysis. This resulted
in a total of 19,431 expressed probes that were tested for asso-
ciation with 560,675 SNPs. SNPs with a minor allelic frequency
<5%, an exact HWE P-value < 0.001, or >1% missing data were
excluded. We distinguished between local and distal associations
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based on the chromosomal location of the probe-SNP pair; a local
association implicates a probe and a SNP located on the same
chromosome while a distal association implicates a probe and a
SNP located on different chromosomes. We applied Bonferroni
correction for all eSNP associations in this study by account-
ing for both the number of SNPs and loci tested. Since 560,675
SNPs were tested for association with 19,431 probes, a genome-
wide Bonferroni threshold for distal-associations corresponds
to 0.05/(19,431 probes × 560,675 SNP) = 4.59 × 10−12 and
for local associations to a Bonferroni threshold of 0.05/(19,431
probes × 200 SNPs) = 1.28 × 10−08 considering an average
number of 200 SNPs tested against each probe.

In the multiple linear regression eSNP analysis, we tested
for association between probe expression levels and SNP geno-
type while accounting for clinical status effect (ClinStatus), sex
and blood cell counts (white and RBC counts, WBC and RBC),
assuming that the error ε is normally distributed with a mean of
zero, where:

Model 1 : Expression = μ + SNP + ClinStatus + WBC

+ RBC + Sex + ε

The significant associations were compared to the associations
reported in 12 published eQTL studies of peripheral blood or its
derivatives at nominal P-values < 10−7. These published associa-
tions were accessed using the eQTL Browser (http://eqtl.uchicago.

edu/cgi-bin/gbrowser/eqtl/) and compared to our results.

INTERACTION EFFECTS
We tested for SNP-by-clinical status interaction effects using 7002
probes differentially expressed for the 3-way clinical status effect
(E vs. FU vs. Ctls, FDR 1%) using combined data set II. For
this analysis and to reduce the effect of outlier expression val-
ues, we further filtered the set of genotypes and included only
SNPs with a minor allelic frequency <5 %, an exact HWE test
P-value < 0.001 and >1% missing data calculated in each of the
sub-groups of patients separately (455,750 SNPs). This resulted
in a final set of 455,750 SNPs tested against 7002 probes while
accounting for clinical status effect (ClinStatus), sex, cell counts
(white and RBCs, WBC and RBC) and including a term for SNP
× ClinStatus in the model:

Model 2 : Expression = μ + SNP + ClinStatus + WBC + RBC

+ Sex + SNP × ClinStatus + ε

where ε is assumed to be normally distributed with a mean of
zero.

A genome-wide Bonferroni correction was applied by
accounting for both the number of SNPs and loci considered
in this analysis. Since 455,750 SNPs were tested for associa-
tion with 7002 probes, a genome-wide Bonferroni threshold for
distal-associations corresponds to 0.05/(7002 probes × 455,750
SNP) = 1.57 × 10−11 and for local associations to a Bonferroni
threshold of 0.05/(7002 probes × 200 SNPs) = 3.57 × 10−08

considering an average number of 200 SNPs tested against each
probe.

To account for relatedness in our samples, we generated a
matrix of pairwise relatedness estimates (IBD) for all possible
pairs of individuals in our cohort. Only autosomal SNPs with
a MAF >0.1, missingness of 0%, and that were not in linkage
disequilibrium (r2 < 0.3) were included in estimating related-
ness (final number of SNPs = 1992 SNPs). We used this matrix
to estimate the random effects of relatedness in a Q-K mixed
model framework using the GLIMMIX procedure in SAS (Yu
et al., 2006). This procedure is computationally intensive and
was applied only to the associations deemed initially statisti-
cally significant for the interaction effect prior to accounting for
relatedness.

RESULTS
STUDY DESIGN AND CASE DESCRIPTION
A total of 311 children from Cotonou, Benin, West Africa, were
recruited for this study (Table 1, Figure S1). Here, we distin-
guish between two groups of SCD patients: those who were newly
admitted into the program and were labeled as entry (E) and
those sampled after being followed and were labeled as FU (see
Materials and Methods for details). The initial discovery phase
included 126 SCD patients recruited in early 2010, and the repli-
cation phase included 124 SCD patients recruited in late 2010.
The distribution of clinical categories, Hb genotypes, and sex
were proportionate in both phases (Figure S2). In addition, 61
healthy siblings with at least one normal hemoglobin allele and of
similar age and proportions of sex were recruited at the CPMI-
NFED (Table 1, Figure S2). SCD patients were also assigned a
SV (Sebastiani et al., 2007) based on sex, Hb genotype, and cell
counts. For all 311 participants, whole blood samples were col-
lected, and complete blood cell counts (CBCs), genome-wide
gene expression profiling and genome-wide genotyping were gen-
erated. Variabilities in RBC and WBC counts were treated as
covariates in the analyses of variance.

DIFFERENTIAL GENE EXPRESSION ANALYSIS—DISCOVERY PHASE
Analysis of gene expression shows that SCD has substantial influ-
ence on the whole blood transcriptome. In the discovery phase
(n = 157), unsupervised hierarchical clustering analysis of the
genome-wide gene expression correlation matrix revealed that
individual gene expression profiles cluster largely according to
Hb genotype, SCD SV, and clinical status (E vs. FU vs. Ctls;
Figures 1A,B). PCA revealed the presence of strong correlation
structure in the data such that the first three expression prin-
cipal components (ePC1-3) explain over a third of the total
variance (Figure S4). VCA of the first three ePCs further con-
firms the substantial effect of Hb genotype (explaining 45.6% of
the variance) followed by clinical status (explaining 7% of the
variance) (Figure 1C). Variance of ePC1 was explained primar-
ily by Hb genotype (>70%) while ePC2 and 3 were dominated
by the effect of clinical status, explaining 20% of the variance
of each PC; sex and interaction effects had negligible effects on
the variance (Figure S4). Repeating this analysis with only SCD
patients (n = 126) revealed that a third of the variance (31%)
was captured by the first three ePCs, with Hb genotype and the
FU effect explaining 19.5 and 8.6% of the variance, respectively
(Figure 1C).
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Table 1 | Characteristics of study participants.

Dataset Analysis n Sex Hb genotype ClinStatus

%F HbSS HbSC Ctls E FU A

Discovery

Gene expression 157 0.49 99 27 31 70 38 18

Genotyping 142 0.49 89 23 30 62 33 17

Replication

Gene expression 154 0.48 91 33 30 64 42 18

Genotyping 129 0.49 68 32 29 53 31 16

Combined I

Gene expression 311 0.49 190 60 61 134 80 36

Genotyping 263 0.48 151 54 58 110 64 31

Combined II

Gene expression 216 0.52 160 n/a 56 102 58 n/a

Genotyping 173 0.55 120 n/a 53 79 41 n/a

Patient characteristics in the discovery phase, replication phase, and combined datasets I and II. Combined data set II includes only HbSS SCD patients excluding

those sampled during acute crises. Approximately, equal numbers of girls and boys were sampled and approximately 2/3 of the SCD patients have the HbSS

genotype. Controls have either the HbAS or HbAA genotype. Mean age of the patients and controls was 4 and 3 years, respectively. Sampling was done between

February 2010 and December 2010. The numbers of individuals gene expression profiled (Illumina HumanHT-12) or genotyped (Illumina OmniExpress) in each phase

are shown. Each main variable Clinical status: (Entry, E; Follow-up, FU; Acutes, A; and Controls, Ctls; Sex (% F, % Female); and Hb Genotype: (HbSS; HbSC; Ctls, C)

was sampled in equal proportions in the discovery phase, replication phase, and in the combined datasets. n/a, non-applicable.

Next, we evaluated the magnitude and significance of differen-
tially expressed genes between SCD clinical status and Ctls. Given
that a fraction of the variation in ePCs is likely due to differ-
ences in the proportion of cell types between SCD patients, we
performed a probe-by-probe analysis of covariance (ANCOVA)
of the discovery sample that accounts for total blood cell counts
(RBC and WBC counts), in addition to sex, and genetic ethnic-
ity using individuals’ scores at significant genotypic PC axes (see
Materials and Methods for details). This analysis revealed signifi-
cant differences between SCD patients (E and FU) and Ctls with
a quarter of the transcriptome being differentially expressed for
the 3-way clinical status effect at 1% False Discovery Rate (FDR)
(Figure S5). Thousands of genes were also significantly differen-
tially expressed between Hb genotypes (HbSS, HbSC, Ctls) while
minor differences were observed between sexes (Figure 2A) and
no effect of the genome-wide genotypic ethnicity effect (gPCs)
was detected (Figure S5). Since meaningful population struc-
ture in the sample was not observed (Figures S2, S3) and since
no probes were significant for the gPC effect (FDR 1%) (Figure
S5), genetic ancestry is unlikely to contribute significantly to the
observed gene expression differences in our sample.

REPLICATION OF DIFFERENTIAL EXPRESSION AMONG SCD PATIENT
GROUPS AND CONTROLS
To test the consistency of the patterns of gene expression dif-
ferentiation observed in the discovery phase, we performed the
analyses described above on the replication group (n = 154)
and the combined dataset (combined dataset I, n = 311, see
Table 1) and observed similar results (Figures 1, 2A, S4, S5,
Supplementary File 5). Unsupervised analysis identified simi-
lar clustering by Hb genotype, SCD SV and the clinical status
effect (Figures 1A,B), with Hb genotype and the clinical status
effect explaining 45.2 and 6.9% of the variance of the first three
ePCs in the replication phase, respectively (Figure 1C, Figure S4).

When only SCD patients were included, Hb genotype and the FU
effect explained 28.8 and 12.1% of the variance in the first three
ePCs, respectively (Figure 1C). The magnitude and significance
of differentially expressed probes for the clinical status and Hb
genotype effects were highly consistent in both replication and
discovery phases (Figures 2A, S5).

Next we focused on 160 SCD HbSS patients and 56 Ctls
(combined data set II, n = 216, see Table 1) to characterize the
transcriptional signatures associated with SCD clinical status and
follow-up. HbSC individuals were excluded from this analysis
given their small sample size relative to the HbSS group. SCD
patients undergoing an acute event were also excluded to focus
on the steady state of the disease. An ANCOVA of this dataset
accounting for sex and total cell counts revealed that over seven
thousand probes were significantly differentially expressed (1%
FDR) for the clinical status effect (Figure 2A) and 739 probes for
the FU effect (Figure 2B). The effect of clinical status is visually
shown in a heat map generated using a 2-way hierarchical cluster-
ing of per-group mean expression levels of differentially expressed
probes (Figure 2C). The supervised and unsupervised gene
expression analysis of both the discovery and replication samples
documented the relative contribution of Hb genotype and clinical
status to the transcriptional variation observed in a West African
SCD cohort and characterized the effects taking place after clin-
ical follow-up. These analyses show that SCD has a substantial
influence on whole blood transcriptome with Hb genotype and
clinical status explaining the majority of the variation.

IDENTIFICATION OF BIOLOGICALLY RELEVANT PATHWAYS THROUGH
ENRICHMENT ANALYSIS
In order to identify the biological pathways subject to the effects
of differential expression associated with SCD disease and clinical
follow-up, GSEA (Subramanian et al., 2005) was performed using
the results of differential expression analysis described above
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FIGURE 1 | Sickle cell disease impacts gene expression

genome-wide. (A) The first two expression principal components
(ePC) from PC analysis of the discovery and replication phase
samples, and in the combined dataset. Individuals are coloured
according to Hb genotype (HbSS, blue; HbSC, green; and Controls,
red), SCD severity score (SV, red to blue indicates high to low
severity) and clinical status effect (ClinStatus, yellow; E, purple, Ctls,
red). (B) One-way hierarchical clustering of the genome-wide gene
expression correlation matrix for the combined dataset (n = 311). The
heat map shows the clustering of individual expression profiles
based on similarity. The highest level of clustering is observed for

the Hb genotype effect followed by SCD severity score. (C) Variance
component analysis (VCA) of the first three expression PCs (ePC1-3)
explaining 36, 37, and 37% of the total variance in the discovery,
replication, and in the combined dataset. The two main variables
that explain this variance are Hb genotype and clinical status effect.
The proportion of the variance explained by each variable is similar
in the discovery, replication and combined datasets. VCA of SCD
patients alone shows that the proportion of the variance explained
by clinical status was similar to that when the controls were
included but the proportion of the variance explained by Hb
genotype dropped by 25–50%. See also Figure S4.

for the discovery, replication and combined datasets (I, II). We
focused on gene sets with Normalized Enrichment Scores (NES)
greater than 0.25 in either E or FU relative to the Ctls as shown
in Figure 2D. This analysis showed that the strong modulation of
the transcriptome implicates pathways affecting core circulating
cell functions. A strong activation of pathways associated with B-
lymphocytes development, stress (glucocorticoid, interferon and
oxidative phosphorylation associated pathways) and cell prolifer-
ation in E compared to the FU group was observed. We also note a
significant up-regulation of genes specific to platelet function and
erythrocyte membrane in SCD individuals relative to the control
and to a lesser extent in FU relative to the E group.

THE GENETIC ARCHITECTURE OF TRANSCRIPT ABUNDANCE IN SCD
The genetic architecture of transcript abundance in SCD was
investigated through genome-wide association analysis of gene

expression traits in SCD patients and Ctls. Given the high degrees
of correlation in the results of gene expression analyses for the
discovery and replication phases and to increase mapping power,
we performed the analysis on a subset of the combined dataset
II (n = 173: 120 HbSS SCD patients and 53 Ctls) for which both
gene expression and genotypic data were available. The expres-
sion data for the combined dataset was re-normalized in order to
minimize potential batch effects, resulting in a final set of 19,431
probes tested against 560,675 SNP genotypes using multiple
regression analyses and applying Bonferroni correction for mul-
tiple testing. For local associations, the genome-wide significance
threshold corresponds to testing on average 200 SNPs against each
probe. For distal associations, each probe was tested against each
of the 560,675 SNPs. We ran a model that accounted for par-
ticipant clinical status (E, FU, and Ctls), total blood cell counts
(RBS, WBC), and sex (Model 1, see Materials and Methods).
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FIGURE 2 | Differential gene expression between SCD disease

status. (A) Number of differentially expressed probes for the
following effects: SCD clinical status (E, Entry; FU, Follow-up; Ctls,
Controls; A, Acute), Hb genotypes (HbSS, HbSC, Ctls), and between
sexes (M, males; F, females). The 3way-ClinStatus effect is between
E vs. FU vs. Ctls. These results were obtained from an analysis of
covariance (ANCOVA, FDR 1%) of the discovery, replication and
combined datasets I and II and accounts for sex and total blood
cell counts (RBC and WBC). (B) Venn diagram of the 7002
differentially expressed probes for the 3-way clinical status effect in
the combined data set II. In red, 735 probes are shown to be
differentially expressed uniquely between E vs. FU SCD patients. (C)

Two-way hierarchical clustering of the mean expression levels for the
7002 differentially expressed probes in the combined data set II for
each group of patients (E, FU, Ctls) is shown. Mean expression
from this class of genes cluster controls from SCD entry and
follow-up patients. (D) Gene Set Enrichment Analysis (GSEA) was
performed for each contrast of the clinical status effect using the
combined dataset II. This analysis identified biological pathways and
sets of individual genes that are significantly enriched in each
contrast. Selection of the most distinctive significantly enriched
pathways between entry and follow-up groups is shown. Cells are
colored by their respective Normalized Enrichment Scores for a given
contrast. See also Figure S6.

Three hundred and ninety genome-wide significant peak SNP-
probe associations were identified corresponding to 371 local and
19 distal effects (Figure 3). These associations explain on average
a third of the variance in transcript abundance.

eSNP-BY-CLINICAL STATUS INTERACTIONS
Differential expression analysis revealed 7002 probes significantly
differentially expressed (1% FDR) for the clinical status effect.
In order to identify which of these genes are under strong
genetic regulatory effects that are dependent on clinical status we
tested for the SNP-by-ClinStatus interaction effect by including
it as term in Model 1 (See Materials and Methods for details).

Bonferroni correction for multiple testing in this analysis was
applied. The markers included in this analyses were limited to
SNPs with MAF >5% in each clinical group (See Materials and
Methods for details). This analysis revealed 11 significant inter-
action effects, six of which remained genome-wide significant
after accounting for relatedness in the entire sample using a Q-K
mixed model (Yu et al., 2006) (see Materials and Methods for
details): ZSCAN12L1 (p-value = 4.26 × 10−10), C9ORF173 (p-
value = 8.94 × 10−9), CAPZA1 (p-value = 1.33 × 10−8), SVIL
(p-value = 2.41 × 10−8), MEF2A (p-value = 1.69 × 10−8), and
C1ORF88 (p-value = 5.42 × 10−9). These interactions are visu-
alized in Figures 4, S7. Figures 4A–C shows three local eSNP
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FIGURE 3 | Genetic regulation of gene expression in SCD patients. The
Circularized Manhattan plot shows genome-wide significant SNP-probe
associations for the analysis that used the combined II dataset. Bonferroni
correction for multiple testing was applied to all of our analyses with a
genome-wide significance threshold of p < 0.05/(19,431 probes × 200 SNPs)
= 1.28 × 10−08 (NLP = 7.89) for local associations in model 1 and
p < 0.05/(19,431 probes × 560,675 SNP) = 4.59 × 10−12 (NLP = 11.34) for
distal-associations in model 1; while model 2 thresholds were p < 0.05/(7002
probes × 200 SNPs) = 3.57 × 10−08 (NLP = 7.45) for local associations and

p < 0.05/(7002 probes × 455,750 SNP) = 1.57 × 10−11 (NLP = 10.80) for
distal-associations. Distal associations are shown in the center of the plot. All
genes involved in an interaction effect are differentially expressed and shown
in red. eSNP genes from model 1 that are differentially expressed for the
clinical status effect are shown in blue. The y-axis of the Manhattan plot
indicates significance values (− log10 p-values) for the local-associations.
Genes under eSNP control that are not differentially expressed for the clinical
status effect (in the ANCOVA analysis at FDR 1%) are shown in black. See
also Table S1.

interaction effects where higher expression levels of the corre-
sponding gene in the FU group relative to both the E group and
the Ctls is driven by the minor allele of the eSNP in question.
Figures 4D,E shows two associations where the higher expression
levels in the Ctls relative to SCD patients is observed only in the
presence of the minor allele for the corresponding eSNP.

DISCUSSION
Here, we characterized the transcriptomes of SCD patients. We
first identified the extent of gene expression variation in SCD
patients that is explained by clinical phenotypes and measured
the magnitude and significance of gene expression differences for
SCD clinical status in an initial discovery phase. The unsupervised
analysis of gene expression profiles shows that SCD has substan-
tial influence on the human transcriptome, explaining over a
third of the total variance, followed by Hb genotype and SCD

clinical status. Significant differences in gene expression profiles
between SCD clinical status and Ctls were also observed, with over
a quarter of the transcriptome being differentially expressed. We
replicated these findings in a replication cohort.

Using GSEA, we identified and replicated biological path-
ways involved in the clinical course of SCD. This analysis shows
that the strong modulation of the transcriptome implicates
pathways affecting core circulating cell functions. Enrichment
analysis also showed that several biological pathways previously
reported to be associated with SCD (Jison et al., 2004) are sub-
ject to differential expression between the three clinical groups.
Furthermore, we observed strong activation of pathways associ-
ated with B-lymphocyte development, stress and cell proliferation
in the E compared to the FU group. Enrichment of genes that
were uniquely differentiated between the E and FU patients iden-
tified a significant up-regulation in B-lymphocytes expressing
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FIGURE 4 | Examples of significant SNP-by-clinical status interaction

effects. Five SNP-by-clinical status interaction effects are shown. All
are local eSNP interactions. Expression levels are shown on the
y-axis, and SNP genotype on the x-axis. The eSNP interaction
involving gene zinc finger and SCAN domain containing 12
pseudogene 1 (ZSCAN12L1) is shown in (A); chromosome 9 open

reading frame 173 (C9ORF173) is shown in (B); capping protein
(actin filament) muscle Z-line, alpha 1 (CAPZA1) is shown in (C);
supervillin (SVIL) is shown in (D); and myocyte enhancer factor 2A
(MEF2A) is shown in (E). Linear regression for each group is plotted
and colored: yellow for follow-up, FU; purple for entry, E; and red
for controls, Ctls. See also Figure S7.

phosphorylated CD5, B-cell Receptor Signaling and upstream
regulation of B-cells by PAX5. PAX5 expression has been shown
to increase the quantity and the commitment of B cells (Horcher
et al., 2001). These observations reflect perturbed cellular pro-
files in the E groups and more stable profiles after clinical FU.
Furthermore, markers of mitosis, cell cycle and DNA synthesis
were identified in the analysis on combined data set II and likely
suggest a more stable state of blood cells in the FU group in gen-
eral. The strong interferon related signature also suggests a more
perturbed and potentially more pathogenic state of blood cells
prior to clinical follow-up. The overexpression of activated B lym-
phocyte markers in the E group tends to point in that same direc-
tion. Previous studies have shown that changes in B cell function
occurs during vaso-occlusive crisis (VOC) in patients with SCD
(Venkataraman and Westerman, 1985). Thus, follow-up of SCD
patients may act on these pathways. We also note a significant up-
regulation of genes specific to platelet function and erythrocyte
membrane in SCD individuals relative to the control group and to
a lesser extent in FU relative to the E group. Activation of platelets
in SCD patients was previously associated with clinical com-
plications such as vasculopathy (Raghavachari et al., 2007) and
hemolysis-associated pulmonary hypertension (Villagra et al.,
2007). We observed a strong inflammatory response signature in
Acute patients consistent with the processes induced during SCD
crises events such as VOC (Musa et al., 2010).

We characterized the genetic architecture of transcript abun-
dance in SCD patients and Ctls and identified 390 genome-wide
significant peak SNP-probe associations. Four genes that are
associated with an eSNP were previously associated with SCD

phenotypes in reported association studies (Table S1). Almost
half of the eSNP genes (150 eSNP genes) that we identified over-
lapped with previously reported significant eQTL associations
(Table S1). Out of these, 58 were exact SNP-gene eSNP pairs.
The overlap between our distal eSNP associations and those pub-
lished in a recent paper that examined the effects of trans eQTLs
as putative drivers of disease (Westra et al., 2013) identified three
distal eSNPs (rs11171739, rs10493008, and rs6489721) in our
SCD cohort that were also associated with genes in complex traits.
Although the SNP-gene associations in our study were not exact
matches with those reported in the (Westra et al., 2013) paper, it
is possible that these 3 trans eSNPs are drivers for SCD related
phenotypes.

Differential expression analysis revealed thousands of genes
differentially expressed between clinical categories. We identi-
fied 11 eSNP interaction effects that are dependent on clinical
status for this class of genes, six of which remained genome-
wide significant after accounting for relatedness in the entire
sample using a Q-K mixed model: ZSCAN12L1, C9ORF173,
CAPZA1, SVIL, MEF2A, and C1ORF88. These genes represent
novel SCD associations, form an interacting network generated
using Ingenuity Pathway Analysis (www.ingenuity.com) (Figure
S8) and have some overlapping clinical manifestations, particu-
larly with respect to cardiovascular disease.

For example, CAPZA1, capping protein (actin filament) mus-
cle Z-line alpha 1, is a gene located on chromosome 1 that
encodes the alpha subunit of the barbed-end actin binding pro-
tein (Kuhlman and Fowler, 1997). CAPZA1 has recently been
associated with blood pressure variation in a meta-analysis of
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GWAS (Kato et al., 2011). In our study, we see an interaction
between cis-acting eSNP rs768000 and clinical status such that
SCD patients with the minor allele have higher expression of
CAPZA1 when they are followed-up. The SVIL gene encodes
isoforms of supervillin, a protein that has been associated with
KIRD2DL that regulates the inhibitory signal of natural killer cells
that recognize MHC class I molecules (Liu et al., 2011). Recently,
a study suggested an inhibitory role for SVIL in platelet adhesion
and arterial thrombosis using human GWAS and mice knockout
approaches (Edelstein et al., 2012). Edelstein et al. (2012) iden-
tified that platelets express SVIL; platelet thrombus formation is
associated with human SVIL variants and low SVIL expression.
We show a local association between SVIL gene expression and
a SNP on chromosome 10, rs11013210. In our study, Ctls have
a significant increase in SVIL gene expression when they have
the minor allele for the SNP rs11013210. Finally, the MEF2A
gene encodes a protein that is a DNA-binding transcription fac-
tor that activates many muscle-specific, growth factor-induced,
and stress-induced genes (Zhao et al., 2012). Defects in this gene
have been associated with autosomal dominant coronary artery
disease 1 with myocardial infarction (Liu et al., 2012). MEF2A
affects the proliferation, migration and phenotype of vascular
smooth muscle cells (Zhao et al., 2012; Papait et al., 2013). In
our samples, we see a local association between MEF2A gene
expression and SNP rs10400870 genotype on chromosome 15
that is dependent on clinical status. Ctls have a significant increase
in MEF2A gene expression when they have the minor allele for
rs10400870.

In an attempt to estimate the contribution of the genetically
controlled fraction of transcript abundance on the association
between expression traits and clinical FU categories, we compared
the effect of clinical status on global gene expression before and
after conditioning for the eSNP effect on transcript abundance.
To run this test we used the combined dataset II (focusing on the
SNP effect and ClinStatus within the HbSS group) and applied
it to all expressed genes. We used a full ANCOVA model with
and without the SNP effect and applied the same stringent fil-
tering criteria as described for the analyses above. We extracted
p-values for the ClinStatus effect for all the genes and contrasted
the two models. This comparison revealed overall a relatively high
degree of correlation (Figure S9) suggesting that quantitatively
most of the transcriptional signal differentiating the clinical cate-
gories is robust. However and as shown in Figure S9, we observe
a global shift in the significance values toward lower values once
genotypic effects are accounted for. To further show this trend,
we limited our comparison to genes differentially expressed at
Bonferroni level for the ClinStatus effect in at least one of the two
tested models (n = 2188 genes). After fitting the genotype effect
on each of these genes, 41% (n = 905) remain significant for the
ClinStatus effect and 58% (n = 1275) are no longer significant.
It is also worth noting that directionality of the effect between
the two models was consistent for all tested genes. Moreover and
as expected, our top interacting genes (based on p-values for the
SNP × ClinStatus interaction effect) were among the list of genes
that were subject to the highest drop in statistical significance for
association with ClinStatus after fitting the eSNP effect. Taken
together, these results suggest that transcript abundance of over

half of expressed genes associated with clinical follow-up is under
significant regulatory genetic effect.

Using eQTL approaches, transcriptional genotype-by-
environment interactions have previously been reported in
humans (Smirnov et al., 2009; Romanoski et al., 2010; Barreiro
et al., 2012; Idaghdour et al., 2012) but mostly using in vitro
systems (with the exception of Idaghdour et al., 2012). Here we
demonstrate the existence of these effects in vivo in SCD. The
genes implicated in these interactions show differential eSNP
effects depending on SCD follow-up status. These interactions
show how the genetic control of gene expression through allelic
variation is likely to impact processes implicated in the response
to SCD as well as to clinical follow-up programs.

In summary, using a two-stage sampling design, we iden-
tified and replicated a strong transcriptional signature of the
effect of follow-up in SCD patients that implicates core biologi-
cal pathways involved in the pathobiology of the disease. We have
provided a genome-wide picture of regulatory variation in vivo in
SCD patients and highlighted genotype-by-clinical status inter-
action effects that likely contribute to the clinical heterogene-
ity observed in SCD patients including those enrolled in SCD
clinical follow-up programs. These results further our under-
standing of the transcriptional events occurring in SCD patients
and their genetic regulatory control. The genetic and transcrip-
tional markers reported here can potentially guide follow-up
programs. These markers detected in whole blood, a readily and
ethically accessible source of biological material in children, will
be particularly useful in populations where the disease is most
prevalent.

ACCESSION NUMBERS
All expression data are available at NCBI GEO under the series
number GSE35007. The individual expression arrays are listed as
GSM860207 through GSM860517.

AUTHOR CONTRIBUTIONS
Philip Awadalla and Mohamed C. Rahimy conceived the study.
Mohamed C. Rahimy followed the SCD patients and oversaw
characterization of SCD patient clinical categories. All hemato-
logical analysis was performed at the NSCDC under Mohamed C.
Rahimy’s direction. Philip Awadalla, Elias Gbeha, Selma Gomez,
Jacklyn Quinlan, Mohamed C. Rahimy, Ambaliou Sanni, and
Youssef Idaghdour collected the samples. Elias Gbeha, Jacklyn
Quinlan and Youssef Idaghdour processed the samples and per-
formed the genomic experiments. Vanessa Bruat, Thibault de
Malliard and Jean-Christophe Grenier provided bioinformatics
support for statistical analysis of the data by Philip Awadalla
and Jacklyn Quinlan. Jean-Philippe Goulet performed enrich-
ment analysis. Philip Awadalla, Youssef Idaghdour and Jacklyn
Quinlan wrote the paper.

ACKNOWLEDGMENTS
We are thankful to all of the study participants and their fam-
ilies, as well as the staff of the Centre de Prise en charge
Médicale Intégrée du Nourrisson et de la Femme Enceinte atteints
de Drépanocytose (CPMI-NFED) who facilitated in collecting
the samples. We thank Julie Hussin, Alan Hodgkinson and

Frontiers in Genetics | Genetic Disorders February 2014 | Volume 5 | Article 26 | 10

http://www.frontiersin.org/Genetic_Disorders
http://www.frontiersin.org/Genetic_Disorders
http://www.frontiersin.org/Genetic_Disorders/archive


Quinlan et al. Genomics of sickle cell disease

Mélanie Capredon for helpful discussions and comments on
the manuscript. The research is funded by a Human Frontiers
in Science Program Grant RGP0054/2006-C to Philip Awadalla.
Jacklyn Quinlan is supported by doctoral Fellowships from the
Fonds de la Recherche en Santé du Québec and by the Réseau
de médecine génétique appliquée and Youssef Idaghdour is sup-
ported by a Banting Post-doctoral Fellowship.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fgene.2014.
00026/abstract

REFERENCES
Adams, G. T., Snieder, H., Mckie, V. C., Clair, B., Brambilla, D., Adams, R. J., et al.

(2003). Genetic risk factors for cerebrovascular disease in children with sickle
cell disease: design of a case-control association study and genomewide screen.
BMC Med. Genet. 4:6. doi: 10.1186/1471-2350-4-6

Akinsheye, I., Alsultan, A., Solovieff, N., Ngo, D., Baldwin, C. T., Sebastiani, P.,
et al. (2011). Fetal hemoglobin in sickle cell anemia. Blood 118, 19–27. doi:
10.1182/blood-2011-03-325258

Barreiro, L. B., Tailleux, L., Pai, A. A., Gicquel, B., Marioni, J. C., and Gilad,
Y. (2012). Deciphering the genetic architecture of variation in the immune
response to Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. U. S.
A. 109, 1204–1209. doi: 10.1073/pnas.1115761109

Berry, M. P., Graham, C. M., McNab, F. W., Xu, Z., Bloch, S. A., Oni, T., et al. (2010).
An interferon-inducible neutrophil-driven blood transcriptional signature in
human tuberculosis. Nature 466, 973–977. doi: 10.1038/nature09247

Cookson, W., Liang, L., Abecasis, G., Moffatt, M., and Lathrop, M. (2009). Mapping
complex disease traits with global gene expression. Nat. Rev. Genet. 10, 184 –194.
doi: 10.1038/nrg2537

Driss, A., Asare, K. O., Hibbert, J. M., Gee, B. E., Adamkiewicz, T. V., and Stiles, J.
K. (2009). Sickle cell disease in the post genomic era: a monogenic disease with
a polygenic phenotype. Genomics Insights 2009, 23–48.

Edelstein, L. C., Luna, E. J., Gibson, I. B., Bray, M., Jin, Y., et al. (2012). Human
genome-wide aassociation and mouse knockout approaches identify platelet
supervillin as an inhibitor of thrombus formation under shear stress. Circulation
125, 2762–2771. doi: 10.1161/CIRCULATIONAHA.112.091462

Emilsson, V., Thorleifsson, G., Zhang, B., Leonardson, A. S., Zink, F., Zhu, J.,
et al. (2008). Genetics of gene expression and its effect on disease. Nature 452,
423–428. doi: 10.1038/nature06758

Hannemann, A., Weiss, E., Rees, D. C., Dalibalta, S., Ellory, J. C., and Gibson, J. S.
(2011). The properties of red blood cells from patients heterozygous for HbS
and HbC (HbSC Genotype). Anemia 2011, 248527. doi: 10.1155/2011/248527

Horcher, M., Souabni, A., and Busslinger, M. (2001). Pax5/BSAP maintains
the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790. doi:
10.1016/S1074-7613(01)00153-4

Idaghdour, Y., and Awadalla, P. (2012). Exploiting gene expression variation to
capture gene-environment interactions for disease. Front. Genet. 3:228. doi:
10.3389/fgene.2012.00228

Idaghdour, Y., Quinlan, J., Goulet, J. P., Berghout, J., Gbeha, E., Bruat, V., et al.
(2012). Evidence for additive and interaction effects of host genotype and infec-
tion in malaria. Proc. Natl. Acad. Sci. U.S.A. 109, 16786–16793. doi: 10.1073/
pnas.1204945109

Jison, M. L., Munson, P. J., Barb, J. J., Suffredini, A. F., Talwar, S., Logun, C.,
et al. (2004). Blood mononuclear cell gene expression profiles characterize the
oxidant, hemolytic, and inflammatory stress of sickle cell disease. Blood 104,
270–280. doi: 10.1182/blood-2003-08-2760

Kato, N., Takeuchi, F., Tabara, Y., Kelly, T. N., Go, M. J., Sim, X., et al. (2011).
Meta-analysis of genome-wide association studies identifies common variants
associated with blood pressure variation in east Asians. Nat. Genet. 43, 531–538.
doi: 10.1038/ng.834

Kuhlman, P. A., and Fowler, V. M. (1997). Purification and characterization of an
alpha 1 beta 2 isoform of CapZ from human erythrocytes: cytosolic location
and inability to bind to Mg2+ ghosts suggest that erythrocyte actin filaments
are capped by adducin. Biochemistry 36, 13461–13472. doi: 10.1021/bi970601b

Lettre, G., Sankaran, V. G., Bezerra, M. A., Araujo, A. S., Uda, M., Sanna, S.,
et al. (2008). DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-
globin loci associate with fetal hemoglobin levels and pain crises in sickle cell
disease. Proc. Natl. Acad. Sci. U. S. A. 105, 11869–11874. doi: 10.1073/pnas.
0804799105

Liu, H. P., Yu, M. C., Jiang, M. H., Chen, J. X., Yan, D. P., Liu, F., et al. (2011).
Association of supervillin with KIR2DL1 regulates the inhibitory signaling of
natural killer cells. Cell. Signal 23, 487–496. doi: 10.1016/j.cellsig.2010.11.001

Liu, Y., Niu, W., Wu, Z., Su, X., Chen, Q., Lu, L., et al. (2012). Variants in exon 11 of
MEF2A gene and coronary artery disease: evidence from a case-control study,
systematic review, and meta-analysis. PLoS ONE 7:e31406. doi: 10.1371/journal.
pone.0031406

Menzel, S., Garner, C., Gut, I., Matsuda, F., Yamaguchi, M., Heath, S., et al. (2007).
A QTL influencing F cell production maps to a gene encoding a zinc-finger
protein on chromosome 2p15. Nat. Genet. 39, 1197–1199. doi: 10.1038/ng2108

Musa, B. O., Onyemelukwe, G. C., Hambolu, J. O., Mamman, A. I., and Isa, A. H.
(2010). Pattern of serum cytokine expression and T-cell subsets in sickle cell
disease patients in vaso-occlusive crisis. Clin. Vaccine Immunol. 17, 602–608.
doi: 10.1128/CVI.00145-09

Papait, R., Cattaneo, P., Kunderfranco, P., Greco, C., Carullo, P., Guffanti, A., et al.
(2013). Genome-wide analysis of histone marks identifying an epigenetic sig-
nature of promoters and enhancers underlying cardiac hypertrophy. Proc. Natl.
Acad. Sci. U.S.A. 110, 20164–20169. doi: 10.1073/pnas.1315155110

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and
Reich, D. (2006). Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38, 904–909. doi: 10.1038/ng1847

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population
structure using multilocus genotype data. Genetics 155, 945–959.

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based
linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

Raghavachari, N., Xu, X., Harris, A., Villagra, J., Logun, C., Barb, J., et al. (2007).
Amplified expression profiling of platelet transcriptome reveals changes in argi-
nine metabolic pathways in patients with sickle cell disease. Circulation 115,
1551–1562. doi: 10.1161/CIRCULATIONAHA.106.658641

Rahimy, M. C., Gangbo, A., Ahouignan, G., Adjou, R., Deguenon, C., Goussanou,
S., et al. (2003). Effect of a comprehensive clinical care program on disease
course in severely ill children with sickle cell anemia in a sub-Saharan African
setting. Blood 102, 834–838. doi: 10.1182/blood-2002-05-1453

Romanoski, C. E., Lee, S., Kim, M. J., Ingram-Drake, L., Plaisier, C. L., Yordanova,
R., et al. (2010). Systems genetics analysis of gene-by-environment interactions
in human cells. Am. J. Hum. Genet. 86, 399–410. doi: 10.1016/j.ajhg.2010.02.002

Sankaran, V. G., Lettre, G., Orkin, S. H., and Hirschhorn, J. N. (2010). Modifier
genes in Mendelian disorders: the example of hemoglobin disorders. Ann. N.Y.
Acad. Sci. 1214, 47–56. doi: 10.1111/j.1749-6632.2010.05821.x

Sebastiani, P., Nolan, V. G., Baldwin, C. T., Abad-Grau, M. M., Wang, L., Adewoye,
A. H., et al. (2007). A network model to predict the risk of death in sickle cell
disease. Blood 110, 2727–2735. doi: 10.1182/blood-2007-04-084921

Sebastiani, P., Solovieff, N., Hartley, S. W., Milton, J. N., Riva, A., Dworkis, D.
A., et al. (2010). Genetic modifiers of the severity of sickle cell anemia iden-
tified through a genome-wide association study. Am. J. Hematol. 85, 29–35. doi:
10.1002/ajh.21572

Smirnov, D. A., Morley, M., Shin, E., Spielman, R. S., and Cheung, V. G. (2009).
Genetic analysis of radiation-induced changes in human gene expression.
Nature 459, 587–591. doi: 10.1038/nature07940

Solovieff, N., Milton, J. N., Hartley, S. W., Sherva, R., Sebastiani, P., Dworkis, D. A.,
et al. (2010). Fetal hemoglobin in sickle cell anemia: genome-wide association
studies suggest a regulatory region in the 5’ olfactory receptor gene cluster. Blood
115, 1815–1822. doi: 10.1182/blood-2009-08-239517

Steinberg, M. H., and Sebastiani, P. (2012). Genetic modifiers of sickle cell disease.
Am. J. Hematol. 87, 795–803. doi: 10.1002/ajh.23232

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach
for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A.
102, 15545–15550. doi: 10.1073/pnas.0506580102

Thein, S. L. (2011). Genetic modifiers of sickle cell disease. Hemoglobin 35,
589–606. doi: 10.3109/03630269.2011.615876

Venkataraman, M., and Westerman, M. P. (1985). B-cell changes occur in patients
with sickle cellanemia. Am. J. Clin. Pathol. 84, 153–158.

www.frontiersin.org February 2014 | Volume 5 | Article 26 | 11

http://www.frontiersin.org/journal/10.3389/fgene.2014.00026/abstract
http://www.frontiersin.org/journal/10.3389/fgene.2014.00026/abstract
http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Disorders/archive


Quinlan et al. Genomics of sickle cell disease

Villagra, J., Shiva, S., Hunter, L. A., Machado, R. F., Gladwin, M. T., and Kato, G. J.
(2007). Platelet activation in patients with sickle disease, hemolysis-associated
pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin.
Blood 110, 2166–2172. doi: 10.1182/blood-2006-12-061697

Weatherall, D. J. (2001). Phenotype-genotype relationships in monogenic dis-
ease: lessons from the thalassaemias. Nat. Rev. Genet. 2, 245–255. doi:
10.1038/35066048

Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen,
J., et al. (2013). Systematic identification of trans eQTLs as putative drivers of
known disease associations. Nat. Genet. 45, 1238–1243. doi: 10.1038/ng.2756

World Health Organization, T. W. H. A. (2006). “Sickle cell anaemia”, in Report by
the Secretariat in Provisional Agenda Item 11.4. A59/9. Geneva: World Health
Organization.

Yu, J., Pressoir, G., Briggs, W. H., Vroh Bi, I., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Zhao, W., Zhao, S. P., and Peng, D. Q. (2012). The effects of myocyte enhancer fac-
tor 2A gene on the proliferation, migration and phenotype of vascular smooth
muscle cells. Cell Biochem. Funct. 30, 108–113. doi: 10.1002/cbf.1823

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 22 September 2013; accepted: 24 January 2014; published online: 14
February 2014.
Citation: Quinlan J, Idaghdour Y, Goulet J-P, Gbeha E, de Malliard T, Bruat V, Grenier
J-C, Gomez S, Sanni A, Rahimy MC and Awadalla P (2014) Genomic architecture
of sickle cell disease in West African children. Front. Genet. 5:26. doi: 10.3389/fgene.
2014.00026
This article was submitted to Genetic Disorders, a section of the journal Frontiers in
Genetics.
Copyright © 2014 Quinlan, Idaghdour, Goulet, Gbeha, de Malliard, Bruat, Grenier,
Gomez, Sanni, Rahimy and Awadalla. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribu-
tion or reproduction in other forums is permitted, provided the original author(s)
or licensor are credited and that the original publication in this journal is cited, in
accordance with accepted academic practice. No use, distribution or reproduction is
permitted which does not comply with these terms.

Frontiers in Genetics | Genetic Disorders February 2014 | Volume 5 | Article 26 | 12

http://dx.doi.org/10.3389/fgene.2014.00026
http://dx.doi.org/10.3389/fgene.2014.00026
http://dx.doi.org/10.3389/fgene.2014.00026
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Genetic_Disorders
http://www.frontiersin.org/Genetic_Disorders
http://www.frontiersin.org/Genetic_Disorders/archive

	Genomic architecture of sickle cell disease in West African children
	Introduction
	Materials and Methods
	Study Population
	SCD Clinical Status and Severity Score
	Sample Preparation
	Genotyping the β-globin locus
	Data Sets
	Gene Expression Profiling
	Genome Wide Genotyping
	Gene Expression Data Analysis
	eSNP Mapping
	Interaction Effects

	Results
	Study design and case description
	Differential Gene Expression Analysis—Discovery Phase
	Replication of Differential Expression Among SCD Patient Groups and Controls
	Identification of Biologically Relevant Pathways through Enrichment Analysis
	The Genetic Architecture of Transcript Abundance in SCD
	eSNP-by-Clinical Status Interactions

	Discussion
	Accession Numbers
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


