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RNA-sequencing (RNA-seq) is rapidly emerging as the technology of choice for
whole-transcriptome studies. However, RNA-seq is not a bias free technique. It
requires large amounts of RNA and library preparation can introduce multiple artifacts,
compounded by problems from later stages in the process. Nevertheless, RNA-seq
is increasingly used in multiple studies, including the characterization of tissue-specific
transcriptomes from invertebrate models of human disease. The generation of samples
in this context is complex, involving the establishment of mutant strains and the delicate
contamination prone process of dissecting the target tissue. Moreover, in order to achieve
the required amount of RNA, multiple samples need to be pooled. Such datasets pose
extra challenges due to the large variability that may occur between similar pools, mostly
due to the presence of cells from surrounding tissues. Therefore, in addition to standard
quality control of RNA-seq data, analytical procedures for control of “biological quality”
are critical for successful comparison of gene expression profiles. In this study, the
transcriptome of the central nervous system (CNS) of a Drosophila transgenic strain with
neuronal-specific RNAi of an ubiquitous gene was profiled using RNA-seq. After observing
the existence of an unusual variance in our dataset, we showed that the expression
profile of a small panel of marker genes, including GAL4 under control of a tissue specific
driver, can identify libraries with low levels of contamination from neighboring tissues,
enabling the selection of a robust dataset for differential expression analysis. We further
analyzed the potential of profiling a complex tissue to identify cell-type specific changes
in response to target gene down-regulation. Finally, we showed that trimming 5′ ends of
reads decreases nucleotide frequency biases, increasing the coverage of protein coding
genes with a potential positive impact in the incurrence of systematic technical errors.

Keywords: drosophila, RNA-seq, central nervous system, shRNA transgenic strain, brain

INTRODUCTION
Whole transcriptome profiling can provide fundamental insights
into the changes in cellular functions that occur as a consequence
of genetic mutations and therefore help unravel the molecular
pathways underlying human disease. Over the last few years, the
enormouscomplexityofhighereukaryoticgenomes,whichencode
a multitude of non-coding and tissue-specific transcripts and
isoforms has been abundantly reported (Manak et al., 2006; Gan
et al., 2010; Graveley et al., 2011). The ability to generate unbiased
transcriptome profiles is important not only to understand how
genes are organized and regulated but also to identify potential
novel, unannotated transcripts and exons, which may be additional
targets of mutation in disease states. Such goals can be achieved
by using next generation transcriptome sequencing (RNA-seq),
which allows for relatively unbiased measurements of expression
levels across the entire length of transcripts, whether known or
novel, even at low abundance. However, this technique relies upon
cDNA sequencing, for which larger amounts of total RNA are still

required in comparison with other high-throughput, microarray
based approaches (Wang et al., 2009).

The study of human diseases can be significantly enhanced
by the use of animal models, which facilitate the extension of
mechanistic studies, therapeutic discovery and development pro-
cesses. Due to the fact that many basic biological, physiological
and neurological properties are conserved between mammals and
flies, and that nearly 75% of human disease-causing genes are
believed to have functional homologs in the fly (Reiter et al.,
2001), Drosophila has been appreciated in recent years as a
powerful model to study a wide range of human disorders. In
conjunction with an extensive arsenal of available genetic tools,
invertebrate genetic models allow for efficient and genome-wide
screens to unravel genetic pathways underlying disease pheno-
types and identify modifier loci of disease causing mutations
(Fortini and Bonini, 2000).

Several human diseases are associated with genetic mutations
that cause a partial reduction of the normal levels or activity
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of endogenous proteins. For example, Spinal Muscular Atrophy
(SMA) is a devastating and early onset neurodegenerative dis-
order caused by loss-of-function (LOF) mutations of Survival of
Motor Neuron (SMN1). SMN1 encodes the Smn protein, a key
component of the SMN complex, which is essential for the assem-
bly of the splicing machinery. Smn is required for the assembly
of spliceosomal snRNP complexes and low levels of Smn were
shown to result in a strong reduction in the rate of biogene-
sis of these complexes in patient derived cell lines (Wan et al.,
2005). Contrasting with these seemingly ubiquitous functions,
SMA patients suffer from loss of mobility due to morphological
and functional abnormality of neuromuscular junctions (NMJ),
motor-neuron death and muscle degeneration, with severe forms
of the disease resulting in infant death. In spite of decades of
research into this disease, the cellular pathways underlying motor
neuron degeneration are still poorly understood. In agreement
with a central role in the gene expression pathway, Smn has
been shown to be an essential protein for cell function, with
null mutations resulting in cell death. However, unlike all other
animal genomes, humans carry two homologous, nearly iden-
tical gene copies encoding the Smn protein, SMN1 and SMN2.
In contrast with SMN1, 75% of SMN2 transcripts display skip-
ping of exon 7 due to a non-coding nucleotide substitution in
this exon, resulting in the synthesis of very low levels of full
length Smn protein. Therefore, SMA is caused by a reduction
in the levels of Smn protein due to LOF mutations of SMN1,
with the severity of the disease being modulated by the amount
of Smn protein synthesized from SMN2, which shows varying
copy numbers in the human population (Azzouz et al., 2004).
This dose dependence on Smn protein levels is a hallmark of
human disease that cannot be mimicked in animal models by null
mutants. Since all non-human animals only have one SMN gene,
null mutations are either inviable or, in the case of Drosophila,
have an extremely reduced viability thanks to maternal expres-
sion of the Smn protein. Recently, Drosophila transgenic RNAi
Smn hypomorphs have been generated that display NMJ defects
in an Smn dose-dependent manner (Chang et al., 2008; Sen et al.,
2013), mirroring the SMN2 dosage dependence observed in SMA
patients. The milder nature of these hypomorphic models makes
them similar to the human disease and thus opens the possibil-
ity to explore neuronal specific SMN-dependent transcriptome
changes.

Drosophila transgenic RNAi models have been developed using
a binary system that uses the offspring obtained from a cross of
two transgenic fly lines. One of the lines contains a ubiquitous or
tissue-specific promoter upstream of the yeast Gal4 transcription
factor coding sequence. The second line has an integrated copy
of an intron-spliced hairpin transcript that produces a double
stranded RNA for any gene of interest, fused to the yeast upstream
activator sequence (UAS) that is bound by Gal4. The resultant off-
spring will therefore only down-regulate the human disease gene
in a tissue-specific manner, depending on the GAL4 driver used
(Sik Lee, 2003).

Given its small size, obtaining tissue specific samples from
Drosophila involves delicate manipulation procedures, making
it difficult to generate samples free from cells of surrounding
tissues. Furthermore, performing RNA-seq in order to profile
tissue-specific transcriptomes in Drosophila presents another

additional challenge due to the large amount of RNA required for
the technique, which is usually attained by pooling samples from
hundreds of individuals. In order to profile the transcriptome
of the central nervous system (CNS) in Drosophila, transgenic
RNAi models of the neurodegenerative disorder SMA, we con-
ducted a pilot study comparing RNA-seq libraries generated from
pooled samples obtained from control and hypomorphic Smn
RNAi knockdown fly strains.

Here we present and discuss the possibility and limitations of
using RNA-seq for characterization of changes in the Drosophila
neuronal transcriptome from CNS samples of a transgenic fly
strain with cell-type specific down-regulation of an ubiqui-
tous gene. While conducting our investigation, we observed
the existence of an unusual variance of gene expression within
each fly strain, most likely caused by the presence of uneven
contamination from surrounding tissues. In order to circum-
vent such effects, we demonstrate that in addition to stan-
dard procedures for read quality filtering, other quality con-
trol methods must be implemented to discard libraries that
do not accurately reflect the transcriptome of the target tissue.
Furthermore, we discuss the limitations of unraveling cell type
specific changes in gene expression in the context of complex
tissue samples and evaluate the effect of trimming 5′ ends of
reads, which display nucleotide frequency biases on sampling
errors.

MATERIALS AND METHODS
FLY STRAIN, TISSUE PREPARATION, AND RNA EXTRACTION
Fly strains we used in this study: w; P{w+mC = GAL4 −
elav.L}3 (Bloomington), w; P{UAS − PWIZ}15, w; P{UAS −
SmnRNAi−C24} (Chang et al., 2008), and w; Df (3L)SmnX7,
P{UAS − SmnRNAi−C24}/TM6B, Dfd-YFP. To obtain animals with
intended genotype, w; P{w+mC = GAL4 − elav.L}3 females were
crossed to males of w; P{UAS − PWIZ}15 (in text: elavGAL4
or WT), w; P{UAS − SmnRNAi−C24} (in text: elavGAL4-C24 or
C24), or w; Df (3L)SmnX7, P{UAS − SmnRNAi−C24}/TM6B, Dfd-
YFP (in text: SmnX7/elavGAL4-C24 or X7/C24). Considering the
technical limitations associated to the isolation of neuronal cells,
i.e., the lack of well-described cell surface markers, the impact
of exogenous GFP overexpression in the maintenance of a sta-
ble differentiated phenotype (David Van Vactor, pers. commun.)
and the difficulty of maintaining the physical integrity and phe-
notype of these cells upon tissue disruption, an approach based
on manual dissection of CNS tissue was considered to be the
most appropriate for profiling RNAi-dependent changes in neu-
ronal gene expression. Approximately 200 late third instar larvae
were dissected in order to generate one CNS biological replicate
of the corresponding genotype in ice cold PBS. Dissected CNS
samples were quickly frozen in TriPure Isolation Reagent (Roche
Diagnostics GmbH, Mannheim, Germany). After, each ∼200
CNS samples were pooled and crude total RNA for each sample
was extracted using TriPure Isolation Reagent. The crude RNA
extract was treated with rDNase set (Macherey-Nagel GmbH
& Co KG, Duren, Germany) to digest contaminated DNA and
was, subsequently, cleaned-up with NucleoSpinRNA Clean-up
XS kit (Macherey-Nagel GmbH & Co KG, Duren, Germany) to
remove impurities. The purified total RNA was quantified using
spectrophotometry (NanoDrop; Thermo Scientific, DE, USA)
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and microfluidic analyzer, Agilent RNA 6000 Nano kit (Agilent
Technologies, Waldbronn, Germany). In total we generated, six
biological replicates for WT, seven biological replicates for C24
and 4 biological replicates for X7/C24.

mRNA-seq LIBRARIES AND SEQUENCING
On average mRNA-libraries were generated from 10 µg of total
RNA and prepared using the TruSeq RNA Sample preparation
protocol (Illumina, USA). Information regarding all the used
kits for library construction, cluster formation and sequenc-
ing is listed in Supplementary Table 1. In summary, after two
cycles of poly-A selection, RNA was fragmented to an average
length of 300 bp and then converted into cDNA by random prim-
ing. The cDNA was then converted into a molecular library in
order to generate unstranded paired-end mRNA-seq libraries of
100 bp using the HiSeq2000 (Illumina, USA). Data acquisition
and processing was performed using CASAVA v1.8.1 or v1.8.2
(Supplemental Table 1). The GEO accession number for the
mRNA-seq datasets is GSE54724.

READ QUALITY FILTERING AND ALIGNMENT TO REFERENCE GENOME
Raw reads were processed using in house developed PERL scripts
in order to filter out reads with unknown nucleotides, reads
with homopolymers with length larger of equal than 50 nt and
reads with an average of the Phred quality scores lower than 30.
Remaining reads were aligned to D. melanogaster genome assem-
bly build BDGP5 (Flicek et al., 2013) using BWA v0.6.1 (Li and
Durbin, 2009) in paired-end mode and allowing 1 mismatch and
a single matching position. SAM output was further processed
using SAMTools v0.1.16 (Li et al., 2009) in order to remove dupli-
cated reads. Command lines shown in Supplementary File 1. In
order to identify Gal4 transcripts, all reads were also mapped
to the GAL4 gene (Gene ID 855828; accession NC_001148.4)
using BWA v0.6.1 (Li and Durbin, 2009) and the same align-
ment parameters as previously described. Nucleotide frequencies
were evaluated using FastQC v0.1 (Andrews, 2010). Taking into
account that D. melanogaster’s genome architecture has shorter
intergenic regions and smaller introns than H. sapiens, BWA was
selected to map reads as it allows for gapped alignments and
shows higher sensitivity without sacrificing quality when com-
pared to Bowtie [used by TopHat, (Trapnell et al., 2012) the
most used tool for RNA-seq read mapping], especially in the
case of paired-end reads (Bao et al., 2011; Medina-Medina et al.,
2012). Considering the widespread use of TopHat for mapping
reads, we nevertheless compared the performance of this tool
with BWA for our mRNA-seq libraries that displayed the expected
profile in marker gene expression. In comparison with BWA,
TopHat mapped an additional 5% of quality approved reads, but
the proportion of pairs that were accurately mapped was 20%
lower, therefore supporting our choice of aligner (Supplementary
Table 2).

QUANTIFICATION OF GENE EXPRESSION BY mRNA-seq AND
STATISTICAL ANALYSIS
SAM outputs filtered for duplicated reads were used in order
to perform gene counts using the htseq-count function from
HTseq framework v 0.5.3p3 (Anders, 2010) in union mode and

discarding low quality score alignments (–a 10), using Flybase
annotation of gene models release 5.46 as available in Ensembl
for genome assembly build BDGP5 (Flicek et al., 2013) (com-
mand line shown in Supplementary File1). For assessment of
marker genes within library, reads were normalized using the
FPKM method (Trapnell et al., 2012) in order to compare our
results with tissue specific RNA-seq expression values available
from FlyBase (Marygold et al., 2013). In order to perform analysis
of differential expression (DE) between phenotypes, read counts
were normalized and tested for DE using an error model that
uses the negative binomial distribution, with mean linked by local
regression to model the null distribution of the count data imple-
mented in DESeq v1.12.0 (Anders and Huber, 2010) package of
Bioconductor v2.10 (Gentleman et al., 2004). Clustering analysis
was performed using the heatmap function from ggplot package
(default parameters) and correlation plots were generated using
lattice package in R environment (R Development Core Team,
2011). Significance of overlap between genes lists was tested using
the Hypergeometric test (Apostolico et al., 2007) implemented
in R v2.15 (R Development Core Team, 2011). Significance of
proportions of genes belonging to tissue-specific or ubiquituous
expression groups was tested using the two-proportion z-test in R
(R Development Core Team, 2011).

QUANTIFICATION OF Smn EXPRESSION BY RT-qPCR
Total RNA was extracted from CNS samples using the TriPure
RNA extraction reagent. RNA samples were treated with rDNase
set followed by purification with NucleoSpin RNA Clean-up
XS kit. 1 µg of total RNA was reverse transcribed using the
PrimeScript® RT reagent Kit (TaKaRa Bio Inc., Shiga, Japan)
by following the protocol for TaqMan Probe Assays. qPCR
was performed using Premix Ex Taq™ (TaKaRa Bio Inc.) with
100 ng of cDNA in a ABI7500 Real time PCR system (Applied
Biosystems). TBP primers and Zen™ double quenched probe
sets were designed using the PrimerQuest primer design tool
provided by Integrated DNA Technologies, Inc. (Coralville, IA,
USA) and synthesized by the same company. Primers for Smn
quantification were designed and synthesized by TaKaRa Bio
Inc. (Shiga, Japan). Primer and probe sequences are presented
in Supplementary Table 3. The fold change of the gene expres-
sion was determined by relative quantification using compara-
tive Ct.

RESULTS
DETAILED QUALITY ASSESSMENT OF mRNA-seq LIBRARIES
IDENTIFIES BIASES INTRODUCED AT THE SAMPLE ISOLATION AND
LIBRARY PREPARATION STEPS
A Drosophila transgenic strain for neuronal specific down-
regulation of Smn expression by double-stranded RNAi
(Smnwt/elavGAL4-C24) was engineered by integrating a GAL4
inducible anti-Smn shRNA construct into an Smnwt/elavGAL4
background (Chang et al., 2008). The elav promotor is a
post-mitotic neuron-specific driver, allowing for a tissue spe-
cific down-regulation of Smn, with the aim of characterizing
Smn-dependent changes in neuronal gene expression. The
CNS of late third instar larvae, consisting of optic lobe, central
brain and nerve cord, was dissected from 200 animals from
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Smnwt/elavGAL4 (WT) and Smnwt/elavGAL4-C24 (C24) back-
grounds and total RNA was isolated and pooled to generate a
pilot RNA-seq dataset for WT and C24 strains (composed of
three and four replicate pools for each, respectively). Following
poly-A RNA enrichment, paired-end RNA-seq (mRNA-seq)
libraries with ∼100 million reads were generated from the
pooled samples (Table 1). In order to remove reads with poor
sequencing quality (see Materials and Methods), quality filters
were applied. As shown in Table 1, about 80% of reads passed
these filters and proceeded for alignment to the reference genome
and approximately 90% of these aligned to the D. melanogaster
genome. However, after removing duplicate reads with potential
origin in PCR errors, only between 27 and 60% of the aligned
reads remained for further analysis. Excluding the C24_4 library,
we found a very strong correlation between the number of
duplicates and the amount of cDNA used for library generation
(Supplementary Figure 1). After removal of duplicates, the
remaining reads that were uniquely mapped to the reference
genome were annotated by comparing genomic coordinates
with the flybase annotation 5.46 (Marygold et al., 2013). Results
shown that on average 75% of reads mapped to protein coding
genes, corresponding approximately to 12,000 different genes
with a normalized read depth of 1800 reads/gene, from a total
of 13,937 annotated protein coding genes. A small proportion
of transcripts (1%) was mapped to non-coding RNAs (data not
shown). This dataset was estimated to correspond to 90% of

the length of the predicted Drosophila transcriptome and to a
sequencing depth of ∼500-fold coverage per strain.

In order to investigate the assignment of each library to its
known biological origin, we estimated their degree of correla-
tion (Figure 1A). We observed that WT libraries displayed low
correlation with each other, while showing unexpectedly high cor-
relations with specific C24 libraries. The same effect was observed
after performing a hierarchical clustering of the stabilized vari-
ances (Figure 1B). The clustering analysis grouped libraries into
two separate branches, one of which contained the C24_1 and
WT_2 libraries, presenting a totally distinct expression profile.
Given the technical complexity underlying the collection of these
biological samples, we hypothesized that a variable degree of con-
tamination from neighboring tissue might be the main cause of
the observed discrepancies.

USE OF MARKER GENES TO VALIDATE TISSUE-SPECIFICITY OF
mRNA-seq LIBRARIES
We have hypothesized that the poor clustering of samples accord-
ing to biological origin resulted from the presence of contamina-
tion from close neighboring tissues, such as fragments of imaginal
discs (ID), which could have been inadvertently introduced dur-
ing the delicate step of dissecting hundreds of larvae. In order
to test this hypothesis, we defined a panel of five marker genes
to which we could confidently assign an expected CNS expres-
sion pattern in our fly strains. These included the GAL4 transgene

Table 1 | Quantification of cDNA input, read quality filtering, mapping and protein coding annotation statistics of paired-end mRNA-seq

libraries.

Genotype Sample cDNA Total raw Uniquely Uniquely Reads mapped Number of Normalized

amount reads aligned aligned reads to genes gene average

(ng) (millions) reads without (millions/%) species read

(millions) duplicates depth/gene

(millions/%)

PILOT SEQUENCING ROUND

WT 1 5 104.46 85.35 38.04/44.57 29.42/77 11, 985 1188

2 2 106.03 87.69 23.52/26.82 18.04/76.7 10, 758 2186

3 4 112.71 87.02 45.95/52.80 33.83/74 11, 712 1273

C24 1 2 95.62 78.47 21.68/27.63 15.77/72.73 10, 725 2461

2 6 112.11 87.95 53.45/60.77 40.19/75 11, 632 1353

3 4 97.43 80.90 31.26/38.64 21.85/70 10, 975 1449

4 3 111.77 85.32 51.07/59.86 38.14/75 12, 092 1322

SECOND SEQUENCING ROUND

WT 4 11 126.82 95.5 70.45/73.77 53.95/77 11, 964 1442

5 10 84.38 66.12 47.21/71.40 36.52/77 11, 691 1426

6 12 113.96 87.50 67.27/76.88 53.40/79 11, 984 1457

C24 5 13 86.25 65.83 48.39/73.51 36.87/76 11, 667 1506

6 7 100.34 77.9 53.20/68.29 40.47/76 11, 669 1311

7 12 98.35 77.40 53.17/68.70 39.95/75 11, 970 1471

THIRD SEQUENCING ROUND

X7/C24 1 4 75.45 60.86 44.83/73.66 33.60/75 11, 665 1523

2 7 95.06 73.81 58.75/79.60 43.81/75 11, 935 1473

3 6 116.27 96.55 73.98/76.62 56.70/77 12, 096 1430

4 3 116.12 88.27 44.06/49.92 33.03/75 11, 386 1346
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FIGURE 1 | Transcriptome profiling of Smnwt/elavGAL4 (WT) and

Smnwt/elavGAL4-C24 (C24) Drosophila strains. (A) Correlation between
samples estimated from normalized counts of gene expression of ∼12,000
genes in WT (N = 3) and C24 (N = 4) paired-end mRNA-seq libraries. Font
size is varying according to the value of correlation. (B) Overview of
hierarchical clustering of mRNA-seq datasets. Hierarchically clustered gene

expression profiles were performed using the estimation of stabilized
variance of normalized counts of gene expression as in (A). Genes are
ordered on the vertical axis. Values are displayed as a Z-score (mean = 0 and
SD = 1) across samples. The magnitude of deviation from the median is
represented by the color saturation. We observed that samples do not cluster
according to the known biological origin.

and the neuronal specific gene elav, both displaying neuronal spe-
cific expression, the CNS glial cell specific marker repo (Xiong
et al., 1994), and the Pen and Usp7 genes, which according to
published records (Marygold et al., 2013), are not expected to be
enriched in the CNS. Pen is most highly expressed in ID, whereas
Usp is a ubiquitously expressed gene. The normalized expres-
sion values for gene length (FPKM) for each of these genes were
determined for each mRNA-seq library (Figure 2). The results
obtained were in agreement with our hypothesis of tissue con-
tamination, with four libraries displaying expected profiles for
CNS derived samples, whereas libraries WT_1, WT_2, and C24_1
had high levels of Pen expression and low or absent expression of
the CNS marker genes. This marker gene approach corroborated
the results obtained by the hierarchical clustering analysis and
allowed us to identify which expression profile corresponds to the
target tissue, thereby providing a biological basis for the exclusion
of specific samples from downstream analysis. Although display-
ing most of the hallmarks of neuronal expression, samples C24_3
and WT_3 presented a lower expression value of the GAL4 trans-
gene, which suggested that they should not be considered for
further analysis. We therefore established a basic profile for CNS
expression in our transgenic fly strains, exemplified by the C24_2
and C24_4 samples, which can be used to evaluate the “tissue
specificity” of CNS mRNA-seq libraries.

After this pilot sequencing experiment, six additional
paired-end mRNA-seq libraries, corresponding to three bio-
logical replicates of WT and C24 pooled CNS samples were

generated using higher amounts of input cDNA. This reduced
the PCR incurred bias during library preparation and conse-
quently resulted in a higher coverage of protein coding genes,
increasing the robustness of the dataset to study the CNS tran-
scriptome (Table 1). We next tested the tissue specificity of the
libraries using our gene marker’s set. All the novel libraries dis-
played the expected gene signature for CNS samples of elavGAL4
transgenic flies (Supplementary Figure 2). To evaluate the effi-
ciency of our marker gene panel in detecting non-tissue-specific
datasets, we performed a principal component analysis (PCA)
including all the sequenced libraries (Figure 3A) or including
only the benchmarked libraries (Figure 3B). After removing the
potential non-CNS libraries, the PCA analysis displayed a dis-
crete separation between the WT and C24 strains, which was not
observed before.

SENSITIVITY OF DETECTION OF CELL TYPE SPECIFIC CHANGES IN THE
EXPRESSION OF UBIQUITOUS GENES IS LIMITED IN COMPLEX TISSUE
SAMPLES
Following the selection of mRNA-seq libraries to identify datasets
displaying low levels of non-CNS tissue contamination, we used
libraries from the second sequencing round to perform a com-
parative analysis between the WT and C24 strains. The results
of quantification of gene expression that are presented are based
in the BWA alignments that produced a higher accuracy in the
mapping of pairs of reads resulting in a higher proportion of
reads mapped to protein coding regions. Although the elav-C24
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FIGURE 2 | Assessment of tissue specificity of mRNA-seq libraries

using markers genes. Expression levels of selected marker genes in pilot
mRNA-seq libraries using normalized expression counts for gene length
(FPKM) (see Materials and Methods). Plot legend presents mRNA-seq
FPKM estimates for endogenous genes in L3 stage larvae central nervous
system (CNS) and Imaginal Discs (ID) reported by Marygold et al. (2013).

flies exhibit a Smn-dependent NMJ phenotype (Chang et al.,
2008), the DE analysis identified only a small number of genes
(80) when performing a 3 vs. 3 replicate between WT and
C24 comparison, of which approximately half were either up
or down-regulated. When excluding samples WT_5 and C24_6
and therefore comparing only 2 replicates of each condition,
we observed an decrease of the dispersion of measurements of
gene expression (Figure 3B), and the number of differentially
expressed genes identified increased to 209, of which 141 were up-
regulated and 68 were down-regulated in C24 samples. The origin
of the elevated dispersion caused by these libraries within their
corresponding dataset seems to stem from an unusual presence of
transcripts derived from non-CNS tissues, although of a relatively
small magnitude (Supplementary Figure 3). Unexpectedly, the list
of differentially expressed genes did not include the shRNA target
Smn as significantly down-regulated (Figure 4A).

The transgenic shRNA knockdown of Smn in C24 flies is medi-
ated by the expression of a double stranded RNA corresponding
to the 3′ half of the Smn transcript (see Figure 4B). Considering
the lack of strand specificity of the standard mRNA-seq approach
used in this study, it is possible that detection of sequencing
reads from the shRNA transgene could bias the overall quan-
tification of the endogenous target gene. To our knowledge, this
issue has not been previously addressed in RNA-seq datasets. To

FIGURE 3 | Marker genes allow identification of mRNA-seq libraries

displaying significant contamination from neighboring tissues. (A)

PCA of global expression trends when including all WT and C24 libraries.
(B) Spatial distribution of global expression trends in WT and C24 excluding
libraries flagged by the marker gene panel as displaying significant
contamination from neighboring tissues. PCA was applied to the stabilized
variances estimated from normalized reads counts of ∼12,000 genes
expressed in WT and C24 samples.

evaluate if this transcript was being detected, we mapped the
reads that are assigned to Smn along its genomic coordinates
(Figure 4B). In case of detection of the transgenic shRNA tran-
script, a marked difference in the number of reads mapping to the
targeted region should be observed. Our results indicate that this
is not the case. As an alternative approach, we performed a DE
analysis of Smn levels considering only reads aligning to the non-
targeted 5′ region, as the only possible origin for these sequences
is the endogenous gene. Therefore these sequence tags will reflect
Smn expression without the possible confounding effect emerg-
ing from the detection of reads from the shRNA transgene. The
resulting quantification of Smn expression levels was similar to
the one obtained using sequencing tags mapping to the full tran-
script (data not shown), supporting the initial conclusion that
Smn is not differentially expressed between WT and C24 CNS
mRNA-seq libraries. These results suggest that the expression of
a transgenic shRNA transcript does not interfere with target gene
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FIGURE 4 | Quantification of the expression levels of the RNAi target

Smn in WT and C24 datasets is not affected by detection of reads from

the shRNA construct. (A) Normalized read counts of the Smn gene using
size factor normalization (see Materials and Methods). Testing for
differential expression shows that Smn is not significantly down-regulated
in the C24 strain (adjp − value > 0.05). (B) Number of raw sequencing
reads aligned along the Smn gene in WT and C24 libraries. Gray box marks
the Smn region targeted by the shRNA transcript. No significant difference
between the two strains is observed, suggesting that endogenous gene
quantification is not biased by the detection of shRNA derived transcripts.

quantification using non-strand specific, polyA plus paired-end
mRNA-seq.

In order to obtain an independent estimate of Smn expres-
sion levels in WT and C24 CNS, RT-qPCR quantification in total
RNA samples was performed (Figure 5). The results obtained
show a slight, yet non-significant downregulation of Smn, in good
agreement with the quantification derived from the mRNA-seq
analysis. Considering that the C24 shRNA transgene has been pre-
viously shown to efficiently down-regulate Smn expression when
under the control of a ubiquitous driver, and that Smn-dependent
phenotypic changes have been demonstrated for the elavGAL4-
C24 flies (Chang et al., 2008), the inability to detect differential
Smn expression may stem from a lack of sensitivity to neuronal

FIGURE 5 | RT-qPCR quantification of Smn expression levels in CNS

samples from WT, C24, and X7/C24 fly strains. Average fold change and
standard deviation (N = 3). Relative expression levels determined with the
2∧ddCt method using the TATA-Binding protein as reference gene. Smn is
only significantly down regulated in SmnX7/elavGAL4-C24 (X7/C24) flies
(t-test p-value < 0.0001).

specific changes of an ubiquitously expressed gene in the con-
text of CNS samples. Indeed, in addition to neuronal cells where
the anti-Smn shRNA transgene is active, these samples also con-
tain significant amounts of glial cells, which express high levels of
Smn and other ubiquitous genes. To obtain a deeper insight into
these issues, mRNA-seq libraries were prepared and sequenced
from samples obtained from elavGAL4_C24 transgenic flies in a
heterozygous Smn deficiency (SmnX7) background (Chang et al.,
2008). The X7/C24 flies present a genomic deletion of Smn,
thereby affecting Smn expression across all tissues. In agree-
ment with this, RT-qPCR analysis of Smn levels in the X7/C24
strain showed a reduction of mRNA abundance of approximately
80% (Figure 5). These libraries were processed for quality filter-
ing (Table 1) and its tissue-specificity was assessed as previously
described (Supplementary Figure 2). From all X7/C24 libraries,
only one was removed due to high level of duplicates, and all
passed the benchmark controls for low non-CNS tissue contam-
ination. As shown in Figure 6A, the six selected WT and X7/C24
libraries are spatially separated by phenotype by PCA, confirming
a robust assignment of sample origin. Importantly, the increased
dispersion previously observed within the WT libraries was found
to have a small impact on this dataset, as performing PCA
without library WT_5 did not affect the degree of spatial separa-
tion between WT and X7/C24 (data not shown). Therefore, this
library was included in the following step of DE analysis, which
identified a total of 2846 differentially expressed genes, includ-
ing a significant down-regulation of Smn in the X7/C24 strain of
approximately 70% (Figure 6B). This is in good agreement with
the qPCR quantification data (Figure 5). These genes included
90% of the 181 DE genes in the C24 vs. WT comparison, repre-
senting a statistically significant overlap (p-value < 0.05) between
both datasets. This implies that the elav-C24 strain displays Smn-
dependent changes in neuronal gene expression. We reasoned
that DE of Smn-dependent ubiquitous genes might be difficult to
detect in the elav-C24 background due to signal dilution in a com-
plex sample. On the other hand, it is predicted that the sensitivity
to detect changes in the expression of neuronal specific genes
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FIGURE 6 | Comparative analysis of global and Smn expression profiles

in SmnX7/elavGAL4-C24 (X7/C24) and elavGAL4 (WT) flies. (A) Spatial
distribution of global expression trends in WT and X7/C24. PCA was applied
to the stabilized variances estimated from normalized reads counts of

∼12,000 genes expressed in WT and X7/C24 samples. (B) Normalized reads
counts of Smn gene in WT and X7/C24 phenotypes. The transgenic X7/C24
presents a transcriptome profile that clearly distinguishes it from the WT and
displays a significant down-regulation of the siRNA target gene Smn.

Table 2 | Differentially expressed genes in C24 or X7/C24 flies that are

classified as having neuronal, glial or ubiquitous expression in

Flybase.

Neuronal

(442 genes)

Glial

(74 genes)

Ubiquitous

(2649 genes)

C24
(209 DE genes)

20 genes†

(9.5%)
1 gene
(0.5%)

39 genes†

(18.5%)

X7/C24
(2846 DE genes)

109 genes
(3.8%)

29 genes
(1.0%)

743 genes
(26.1%)

†Statistically significant differences in the relative proportion of identified genes

between the two sample types using the two-proportion z-test are highlighted

with (p < 0.05%).

should not be impaired or even display a relative higher efficiency
in this mutant background that in the X7/C24 flies. In order to
test this hypothesis, we retrieved from Flybase (Marygold et al.,
2013) all genes annotated as “neuron,” “glia” and “ubiquitous”
regarding their expression and used these lists to classify the DE
genes identified in the C24 and X7/C24 backgrounds. As shown
in Table 2, in agreement with our predictions, a much smaller
proportion of ubiquitous genes was identified as differentially
expressed in C24 flies than in the X7/C24, when compared to WT
flies. Conversely, the C24 background had a higher sensitivity in
the identification of neuronal specific changes in gene expression
than the X7/C24, even though the overall down-regulation of Smn
expression in these flies is expected to be higher.

We conclude that the major limitation to the detection of
neuronal-specific gene expression changes in C24 mRNA-seq
CNS-libraries most likely arises from a signal dilution effect
imposed by the presence of other cell types where Smn expression
is normal.

TRIMMING 5′ ENDS DECREASES BIAS IN NUCLEOTIDE FREQUENCIES
AND INCREASES GENE COVERAGE
Similar to what has been reported in previous RNA-seq stud-
ies (Hansen et al., 2010; Jiang et al., 2011), we observed in our

dataset a strong distinct pattern in the nucleotide frequencies in
the first 10 positions of the 5′ end of sequencing reads (while
considering all the raw, unfiltered reads) (Figure 7). This effect
reflects a bias in nucleotide content that may consequently cause a
decrease in the number reads that are significantly mapped to the
reference genome and therefore impact on the quantification of
gene expression and/or of transcript isoforms. To our knowledge,
in spite of several reports on this effect, no previous study has
investigated the impact of these nucleotide biases on the down-
stream analysis of mRNA-seq libraries. To explore the impact
of these biases on sequencing coverage, we trimmed the first 10
nucleotides off the 5′ end of all reads, followed by read qual-
ity filtering and alignment to the reference genome as previously
described. After filtering, we observed a decrease in library size
(mostly due to a decrease of reads with an average quality score
larger than 30), accompanied by a larger increase of the number
of reads that mapped to the reference genome (data not shown).
This resulted in a comparable increase of ∼8% of reads that
mapped to protein coding genes in all libraries (Figure 8A). This
increase in coverage of protein coding genes had larger impact
on genes with medium expression levels (Figure 8B), also affect-
ing the DE analysis. The analysis of DE comparing either WT vs.
X7/C24 or WT vs. C24 revealed a small decrease in the total num-
ber of DE genes and a change in significance affecting 9% of DE
genes (Figure 8C).

DISCUSSION
We have generated the first map of the transcriptome of the
CNS of Drosophila elavGAL4 transgenic strains displaying neu-
ronal specific expression of an shRNA construct targeting the
ubiquitously expressed gene Smn using paired-end mRNA-seq.
The ambitious potential of this experiment is illustrated by the
extensive nature of this dataset, with an average of 100 million
raw reads per sample, producing a total of 1753 million reads,
with potential to cover 95% of the transcriptome and detect the
expression of ∼12000 genes. However, RNA-seq is not a bias
free and 100% accurate approach to obtain a snapshot of the
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FIGURE 7 | Bias in nucleotide frequency in 5′ end of reads. Nucleotide
frequencies per position. Example of the first 200,000 reads from the first
paired-end sequencing of WT_1, as calculated by the FastQC algorithm
(Andrews, 2010). This bias was observed in all the sequenced samples
from both paired-end sequencing rounds (data not shown).

transcriptome in the target biological context (Hansen et al.,
2010; Kircher et al., 2011; Sendler et al., 2011). Before sequenc-
ing, the generation of mRNA-seq libraries involves processing the
extracted total RNA through several steps that are prone to intro-
duce a bias in the accurate measurement of gene and isoform
expression. cDNA synthesis followed by PCR amplification for
the generation of double stranded DNA is one of the most crit-
ical steps in the process and the one with larger impact on the
accuracy of transcriptome representation (Ozsolak et al., 2009).
Therefore, in order to fully capitalize on the potential of the
data generated and extract the maximum amount of biologi-
cal information during downstream analysis, quality filtering of
mRNA-seq is a crucial and important step in the process.

The results obtained in our study using the pilot sequencing
run shown that in spite of the fact that only <1% of the raw reads
were removed by filtering due to poor quality and that the rate
of uniquely aligned reads to the genome was ∼90%, the pres-
ence of PCR duplicates accounted for an average of 50% of the
dataset. This percentage was even higher in datasets in which
libraries were prepared from low cDNA inputs, which incurred
in a higher rate of PCR errors, as previously reported (Kozarewa
et al., 2009). In the libraries generated in the following sequenc-
ing rounds, there was an increase in the amount of cDNA used
and consequently, we observed the expected decrease in the pro-
portion of duplicated reads. These results clearly demonstrate
how the process of mRNA-seq libraries preparation is a criti-
cal step that can significantly impact the gene coverage that can
be achieved. After duplicate removal, ∼90% of quality approved
reads were uniquely aligned to the Drosophila genome covering at
least 90% of the known transcriptome, with a sequencing depth
of ∼ 500× per gene in each of the studied phenotypes. This
level of coverage is of similar magnitude to a previous mRNA-
seq study focused on Drosophila brain (Hughes et al., 2012) and
of similar magnitude to studies focusing on “whole-body” (Gan
et al., 2010; Daines et al., 2011), underscoring the potential of this

dataset to provide interesting insights on the CNS impact of Smn
down-regulation and to detect novel transcript isoforms. Similar
to a previous study of the transcriptome of the Drosophila brain
using mRNA-seq (Hughes et al., 2012), our dataset contains only
70% of sequenced tags mapping to protein coding genes, which
is 20% less than the reports of Graveley et al. (2011), a previous
study which profiled the Drosophila transcriptome by mRNA-
seq generated from “whole-body” samples. This suggests that the
Drosophila CNS transcriptome may potentially be enriched with
intergenic transcripts, as has been reported in primates (Xu et al.,
2010).

As part of the general workflow of bioinformatics analysis after
data filtering, the correlation and spatial relation between samples
in our dataset was investigated. We observed poor correlations
(<0.90) between libraries of the same strain and consequently
observed a spurious hierarchical clustering regarding the biologi-
cal origin of libraries in our pilot sequencing round. Considering
the strong correlations observed between some libraries of dif-
ferent biological origin (over 0.98 in some cases), we put forth
the possibility that the mRNA-seq libraries were being biased
by contaminations from non-CNS tissues originating during the
complex step of larvae dissection and tissue isolation, rather than
reflecting stochastic biases occurring during library preparation,
as reported by others (Mamanova et al., 2010). Therefore, tak-
ing into account that our libraries were generated from the CNS
of transgenic flies expressing GAL4 under the control of the pro-
moter of the neuronal specific gene elav, and that ID are the tissue
with highest potential to be unintentionally sampled due to phys-
ical proximity, we decided to compare within each sample the
levels of expression of: (a) elav; (b) the GAL4 transgene; (c) the
glia specific gene repo (Xiong et al., 1994); (d) pendulin, a gene
highly expressed in ID (Marygold et al., 2013) and (d) Usp, an
ubiquitously expressed gene (Marygold et al., 2013). This small
group of genes allowed us to establish a basic profile for CNS-
specific expression in our mRNA-seq libraries, which was used
to efficiently eliminate datasets displaying large magnitude of
contamination from surrounding tissues that compromised DE
analysis. This approach is easily adaptable to similar studies using
flies that express transgenes from a tissue specific driver, pro-
viding a simple solution for the quality control of tissue specific
datasets. Following the establishment of this filtering procedure,
we set out to evaluate the potential of mRNA-seq analysis of
CNS samples to identify differentially expressed genes in response
to the neuronal specific down-regulation of our gene of interest
Smn. The inability to detect a significant down-regulation of the
shRNA-targeted gene raised several important questions regard-
ing transcriptome profiling studies in this kind of models. First,
we were able to show that although these transgenic flies express
high levels of a double stranded RNA that is identical to half
of the sequence of the target gene, and in spite of the use of a
non-strand specific sequencing approach, we do not detect a sig-
nificant amount of sequencing reads that may be attributed to the
shRNA transgene. Therefore, we conclude that these sequences do
not accumulate to levels that may interfere with the quantification
of the target gene expression using mRNA-seq. In agreement with
this, the results from relative RT-qPCR quantification of the lev-
els of target gene expression were very similar to those determined
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FIGURE 8 | Effect of 5′ end trimming on gene coverage. (A) Total
reads mapped to protein coding features after performing trimming of
10 nucleotides from 5′ ends of all raw reads (Trimmed) and without
trimming (Full) in all libraries of WT, C24, and X7/C24 that passed QC
analysis. (B) Average gain and s.e.m of normalized reads mapped to
protein coding genes after trimming, shown according to class of

sequencing depth (estimated over normalized reads) per library (WT,
C24, X7/C24). Class of sequencing depth as follows: over 5 reads
(>5), over 100 reads (>100), over 1000 reads (>1000), or over 5000
reads (>5000). (C) Venn diagram of total number of differentially
expressed genes (adj p-value < 0.05) in Trimmed vs. Full datasets for
WT vs. C24 and WT vs. X7/C24.

by mRNA-seq. Therefore, another possible explanation was that
either the levels of neuronal-specific down-regulation achieved by
the elav driver were too low to be detected, or the quantification
of transcripts derived from neurons was strongly compromised
by the complexity of the tissue sample used to generate the
mRNA-seq libraries. The identification of a very small number
of differentially expressed genes further raised questions about
the relevance of using the elav-driven down-regulation of Smn to
characterize neuronal specific gene expression changes. In order
to obtain a deeper insight into these questions, we generated CNS
mRNA-seq libraries from progeny obtained by a cross between
the elav-C24 line and a Df(3L)SmnX7/TM6B, Dfd, YFP (X7(±))
mutant line, which contains a deletion of the Smn gene. These
flies have a somatic down-regulation of Smn, compounded by the
neuronal specific-expression of the anti-Smn shRNA and there-
fore exhibit a much more severe phenotype. In agreement with
this, Smn down-regulation was very prominent in these flies and
a much higher number of genes was found to be differentially
expressed when compared to the WT background. Moreover, this

group of differentially expressed genes showed a highly significant
overlap with the much smaller subset identified in the C24 vs. WT
comparison, suggesting that the DE analysis of C24 mRNA-seq
libraries was nevertheless able to identify Smn-specific changes in
neuronal gene expression. The occurrence of loss of sensitivity as
a consequence of the presence of non-neuronal cells in the iso-
lated tissue samples was expected to have a more significant effect
on ubiquitously expressed genes, while neuronal genes should be
more efficiently detected in a C24 background. By performing
a classification of the differentially expressed genes identified in
each comparison regarding their described tissue specificity, we
suggest that the major limitation in the transcriptome profiling of
the C24 flies is a signal dampening effect arising from the presence
of non-neuronal cells. Therefore, the use of this bulk approach in
similar contexts of cell-type specific up or down-regulation of a
target gene should be considered with caution when approaches
to isolate the target cell population are not an option. However,
our results suggest that the increased sensitivity in the identifica-
tion of cell-type specific genes afforded by these models may still
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justify the combined use of tissue specific down-regulation and
compound tissue libraries in specific cases.

While assessing the quality of our sequencing dataset, we
observed a bias in the nucleotide frequencies of the first 10
nucleotides of the 5′ ends of all reads. This bias has been
attributed to the use of random hexamer primers in the prepa-
ration of mRNA-seq libraries (Hansen et al., 2010). Therefore,
we investigated what would be the impact of filtering out these
nucleotides at the level of library size, rate of mapped reads and
percentage of reads mapped to protein coding genes. While this
manuscript was in review, Del Fabbro et al. (2013), reported that
trimming 5′ ends of RNA-seq reads resulted in a decrease of
library size and in the increase of the number of mapped reads.
These results confirm our assessment of the effect of trimming
5′ ends of all reads. Moreover, and more interestingly our results
showed the increase of reads that mapped to protein coding fea-
tures, with the more prominent effect on genes with medium
levels of expression. Given that the quality scores are estimated by
an algorithm that analyses image data, this suggests that the mea-
sure of quality scores in the trimmed portion of reads has been
overestimated and that trimming 5′ ends that suffer from a distor-
tion nucleotide frequencies may result in a decrease of the effect
of systematic technical errors, ensuring a more accurate measure-
ment of gene expression. Indeed, after testing for DE, although
we found a large overlap between both analysis, we observed a
decrease in the number of differentially expressed genes, most
likely due to a decrease in the false discovery rate.

In conclusion, we have observed that applying a small set of
key genes allowed us to eliminate mRNA-seq libraries with a
high level of contamination from non-CNS tissues, purging the
dataset from libraries that would otherwise completely impair the
identification of differentially expressed genes between the CNS
transcriptome. Moreover, we address the limitations associated
with the use of complex tissue samples to profile gene expres-
sion changes caused by a cell-type specific down-regulation of a
gene of interest. Our results suggest that although the magnitude
of detected changes—in particular for ubiquitously expressed
genes—may be significantly masked by the detection of tran-
scripts from other, non-targeted cell types, the ability to identify
changes in genes that are specifically expressed in the targeted cell
type is still maintained. Therefore, the combined use of models
displaying tissue specific and somatic down-regulation of a gene
of interest may provide complementary information. Finally, we
demonstrate that trimming the 5′ end portion of mRNA-seq reads
when significant biases in nucleotide frequencies are detected
during quality control analysis, can increase the coverage of pro-
tein coding genes, causing a change in the number of DE genes,
mostly likely to a decrease of incurred sampling bias.
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