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The major challenges of aging research include absence of the comprehensive set of
aging biomarkers, the time it takes to evaluate the effects of various interventions on
longevity in humans and the difficulty extrapolating the results from model organisms to
humans. To address these challenges we propose the in silico method for screening and
ranking the possible geroprotectors followed by the high-throughput in vivo and in vitro
validation. The proposed method evaluates the changes in the collection of activated or
suppressed signaling pathways involved in aging and longevity, termed signaling pathway
cloud, constructed using the gene expression data and epigenetic profiles of young and
old patients’ tissues. The possible interventions are selected and rated according to their
ability to regulate age-related changes and minimize differences in the signaling pathway
cloud. While many algorithmic solutions to simulating the induction of the old into young
metabolic profiles in silico are possible, this flexible and scalable approach may potentially
be used to predict the efficacy of the many drugs that may extend human longevity before
conducting pre-clinical work and expensive clinical trials.
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The increasing burden of the aging on the economies of the
developed countries is turning the quest to increase healthy life
spans from an altruistic cause into a pressing economic priority
required to maintain the current standards of living and facil-
itate economic growth (Zhavoronkov and Litovchenko, 2013).
There is an urgent need to develop and validate interventions
with geroprotective properties to increase the productive health
spans of the working population and maintaining performance
and avoiding loss of function (Kennedy, 2012).

While no doubt exists that aging is a complex multifacto-
rial process with no single cause or treatment (Zhavoronkov and
Cantor, 2011; Trindade et al., 2013), the issue whether aging
can be classified as the disease is widely debated (Rattan, 2013).
However, many strategies for extending organismal life spans
have been proposed including replacing cells (Rodgerson and
Harris, 2011) and organs, comprehensive strategies for repairing
the accumulated damage, using hormetins to activate endogenous
repair processes (Gems and Partridge, 2008; Gaman et al., 2011),
modulating the aging processes through specific mutations, gene
therapy (Bernardes De Jesus et al., 2012) and small molecule
drugs (Kennedy and Pennypacker, 2013). An animal’s survival
strongly depends on its ability to maintain homeostasis and

achieved through intracellular and intercellular communication
within and among different tissues (Alcedo et al., 2013). Many
strategies for the development and validation of drugs with gero-
protective properties have been proposed to help maintain the
homeostasis including drugs that act on specific targets or com-
binations of molecular pathways (Moskalev and Shaposhnikov,
2010, 2011; Zhavoronkov et al., 2012; Danilov et al., 2013) and
epigenetic drugs (Vaiserman and Pasyukova, 2012). However,
none of the proposed strategies for aging-suppressive drug devel-
opment provide a roadmap for rapid screening, validation, and
clinical deployment. No methods currently exist to predict the
effects of currently available drugs on human longevity and health
span in a timely manner. This is partly due to the absence of the
clear panel of human processes involved in aging to effectively run
clinical trials.

Many processes are involved in the aging of cells and organ-
isms including telomere length (Lehmann et al., 2013), intra-
cellular and extracellular aggregates, racemization of the amino
acids and genetic instability. Both gene expression (Wolters and
Schumacher, 2013) and DNA methylation profiles (Horvath et al.,
2012; Horvath, 2013; Mendelsohn and Larrick, 2013) change dur-
ing aging and may be used as biomarkers of aging. Many studies
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analyzing transcriptomes of biopsies in a variety of diseases
indicated that age and sex of the patient had significant effects on
gene expression (Chowers et al., 2003) and that there are notice-
able changes in gene expression with age in mice (Weindruch
et al., 2002; Park et al., 2009) resulting in development of mouse
aging gene expression databases (Zahn et al., 2007) and in
humans (Blalock et al., 2003; Welle et al., 2003; Park and Prolla,
2005; Hong et al., 2008; De Magalhaes et al., 2009).

Combination of protein-protein interaction and gene expres-
sion in both flies and humans demonstrated that aging is mainly
associated with a small number of biological processes, might
preferentially attack key regulatory nodes that are important for
network stability (Xue et al., 2007).

Our prior work with gene expression and epigenetics of
various solid tumors (Kuzmin et al., 2010; Mityaev et al.,
2010; Zabolotneva et al., 2012a,b) using the OncoFinder system
(www.oncofinder.com), provided clues that transcription profiles
of cancer cells mapped onto the signaling pathways may be used
to screen for and rate the targeted drugs that regulate pathways
directly and indirectly related to aging and longevity. Instead of
focusing on individual network elements, this approach involves
creating the signaling pathway cloud, a collection of signaling
pathways involved in aging and longevity each comprised of
multiple network elements and evaluating the individual path-
way activation strength. Despite significant advances in aging
research, the knowledge of the aging processes is still poor, and
combining all available factors involved in cellular aging, aging of
the organisms, age-related diseases, stress-resistance, and stress-
response along the many other factors into a comprehensive
signaling pathway cloud may be more beneficial than focusing on
the narrow collection of elements. The creation of the pathway
cloud may allow for the annotated databases of molecules and
other factors to be screened for effectiveness of individual com-
pounds in replicating the “young” signaling activation profiles
in silico.

Several new methods evaluating the robustness and response
ability of the gene regulatory network have been developed and
applied to gene expression data sets from young and old patients
(Tu and Chen, 2013). Prior studies suggested that a combination
of pathways, termed pathway cloud, instead of one element of the
pathway or the whole pathway might be responsible for patholog-
ical changes in the cell (Voronkov and Krauss, 2013). Long-lived
species like the sea urchin (Strongylocentrotus franciscanus) and
naked mole rat (Heterocephalus glaber) that senesce at a slower
rate than members of the same order show less transcriptome
changes with age (Kim et al., 2011; Loram and Bodnar, 2012).
Gene network analysis using gene expression data was effective in
identifying the possible drug targets (Imoto et al., 2003; Savoie
et al., 2003). In silico drug discovery algorithms that attempt to
transform the metabolism to the healthy state have been pro-
posed and validated (Yizhak et al., 2013). We theorize that in
order to be effective, the geroprotector or a combination of aging-
suppressive drugs must regulate the pathway cloud in a way that
minimizes the difference in the net differences in pathway cloud
activation or downregulation between samples of young and old
patients. Small molecules and other factors that may influence
gene expression may be ranked by their ability to minimize the

net difference between the pathway activation profiles of young
and old cells. The algorithms for calculating the ability of the
potential geroprotector to minimize signaling disturbance may be
parametric and account for the effects on specific targets within
signaling pathways or machine learned.

Despite the differences in life span and aging phenotypes,
many molecular mechanisms of aging are common in all eukary-
otes. Pathway analysis revealed that there are many common
age-related transcriptomic changes between different species,
including yeasts, worms, flies, rodents, and human (Murphy
et al., 2006). Hypothetically, the human orthologs of aging-related
genes of model organisms are also involved in aging process.
To select longevity-associated pathways for future analysis we
perform the following procedure. Using (Tacutu et al., 2013)
database we selected genes, where knockout, loss-of-function
mutation, deletion or RNA interference significantly extended
lifespan in several model organisms (yeasts Schizosaccharomyces
pombe and Saccharomyces cerevisiae, nematode Caenorhabditis
elegans, fruitfly Drosophila melanogaster and mouse Mus muscu-
lus) from 10 to 200%. We converted the obtained gene lists from
different models to the general list of human orthologs where
it is possible. 226 genes of 315 from our set were subjected to
over-representation pathway analysis in (Kamburov et al., 2011).
P-value and corrected by FDR P-value are calculated according to
the hypergeometric test based on the number of physical entities
present in both the predefined set of genes to each (Kanehisa et al.,
2004) pathway and our list of aging-associated genes (Table 1).
We established limits of 2 genes of minimum overlap with input
list and 0.01 p-value cut off threshold.

As a result we revealed overrepresented cell signaling path-
ways (mTOR, insulin/IGF-1, PI3K-Akt, PPAR, HIF-1, TGF-
beta, chemokines, adipocytokine, prolactin, estrogen), general
metabolism (TCA cycle, ribosome, oxidative phosphorylation),
RNA transport, cell cycle and meiosis, gap junction, peroxisome,
cyrcadian rhythm, different synapse types (dopaminergic, glu-
tamatergic, cholinergic, serotonergic, GABAergic), gastric acid
secretion as well as age-related diseases pathways (Parkinson’s dis-
ease, type II diabetes mellitus, Huntington’s disease, long-term
depression, amyotrophic lateral sclerosis, Alzheimer’s disease),
Hepatitis B, HTLV-I infection and cancer pathways (prostate can-
cer, colorectal cancer, glioma, pancreatic cancer, chronic myeloid
leukemia, proteoglycans in cancer). We considered obtained such
a way pathways as probably associated with the human longevity.
Human genes known as key activators/repressors of these path-
ways may be used in provided further mathematical model.

The methods that may be applied for the possible analysis of
geroprotector efficiency by pathways regulation have been arisen
from our research experience of cell signaling pathways. As far as
we have seen before (Kiyatkin et al., 2006; Borisov et al., 2009;
Kuzmina and Borisov, 2011), most signal transduction proteins
are essentially far from saturation even at the peak concentra-
tions of the activated form in comparison with the total protein
abundances. Thus, we can consider that all activator/repressor
genes/proteins have equal importance for the pathway activa-
tion/downregulation, and then arrive at the following assessment
function for the overall signal pathway cloud disturbance out-
come (SPCD) is proportional to the following estimator function,
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Table 1 | KEGG pathways and list of aging-associated genes.

KEGG pathway name Background quantity of Overlap with % p-Value FDR

genes in the pathway candidates list

Citrate cycle (TCA cycle) 30 5 16.7 0.000401 0.0037
Ribosome 136 21 15.7 7.52E-13 6.21E-11
Parkinson‘s disease 131 20 15.4 3.87E-12 2.02E-10
Aldosterone-regulated sodium reabsorption 39 6 15.4 0.000165 0.00199
Type II diabetes mellitus 48 7 14.6 6.66E-05 0.00105
Oxidative phosphorylation 133 19 14.4 4.55E-11 1.78E-09
mTOR signaling pathway 60 8 13.3 3.89E-05 0.000764
Huntington‘s disease 183 24 13.2 7.92E-13 6.21E-11
Progesterone-mediated oocyte maturation 86 11 12.8 2.08E-06 4.66E-05
Insulin signaling pathway 142 17 12.1 8.01E-09 2.10E-07
Ovarian steroidogenesis 51 6 11.8 0.000735 0.00525
Long-term depression 60 7 11.7 0.000281 0.00294
Amyotrophic lateral sclerosis (ALS) 53 6 11.3 0.000905 0.00592
Alzheimer‘s disease 170 19 11.2 3.36E-09 1.05E-07
Cardiac muscle contraction 77 8 10.5 0.000214 0.0024
Gap junction 89 9 10.1 0.000118 0.00155
Prostate cancer 89 9 10.1 0.000118 0.00155
Estrogen signaling pathway 100 10 10.0 5.44E-05 0.00095
Colorectal cancer 62 6 9.7 0.00206 0.0101
Glioma 65 6 9.2 0.00263 0.012
Pancreatic cancer 66 6 9.1 0.00284 0.0124
GABAergic synapse 90 8 9.0 0.000631 0.00524
Adipocytokine signaling pathway 71 6 8.6 0.00382 0.0154
PPAR signaling pathway 71 6 8.5 0.0041 0.0157
Circadian entrainment 97 8 8.3 0.00104 0.00629
Prolactin signaling pathway 72 6 8.3 0.0044 0.0157
Chronic myeloid leukemia 73 6 8.2 0.0047 0.0164
Cholinergic synapse 113 9 8.0 0.000667 0.00524
Oocyte meiosis 112 9 8.0 0.000667 0.00524
Serotonergic synapse 114 9 8.0 0.000711 0.00525
Insulin secretion 87 7 8.0 0.00261 0.012
Gastric acid secretion 75 6 8.0 0.00537 0.0183
HIF-1 signaling pathway 106 8 7.5 0.00198 0.01
Peroxisome 81 6 7.5 0.00734 0.0226
TGF-beta signaling pathway 80 6 7.5 0.00734 0.0226
Cell cycle 124 9 7.3 0.00138 0.00803
Dopaminergic synapse 131 9 6.9 0.00192 0.01
Glutamatergic synapse 118 8 6.8 0.00366 0.0151
Proteoglycans in cancer 225 14 6.2 0.000348 0.00342
RNA transport 165 10 6.1 0.00268 0.012
Hepatitis B 147 9 6.1 0.00439 0.0157
HTLV-I infection 267 14 5.3 0.00161 0.00869
Chemokine signaling pathway 192 10 5.3 0.00732 0.0226
PI3K-Akt signaling pathway 347 16 4.6 0.00312 0.0133

SPCD =

N∏

i = 1
[AGEL]i

M∏

j = 1
[RGEL]j

Here the multiplication is done over all possible activator and
repressor proteins in the pathway, and [AGEL]i and [RGEL]j

are gene expression levels of an activator i and repressor j,

respectively. To obtain an additive rather than multiplicative
value, it is enough just turn from the absolute values of the expres-
sion levels to their logarithms, arriving at the pathway activation
strength (PAS) value for each pathway (see Figure 1). To obtain
the values of Old (case)-to-Young ratio, YORn, one just has to
divide the expression levels for a gene n in the sample taken for
the senescent person by the same average value for the normal-
ized young group. The discrete value of ARR (activator/repressor
role) equals to the following numbers:

www.frontiersin.org March 2014 | Volume 5 | Article 49 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Genetics_of_Aging/archive


Zhavoronkov et al. In silico method for geroprotector drug discovery

FIGURE 1 | Gene expression-based approach to in silico screening

for drugs with geroprotective properties and estimating the

predicted efficacy. (A) Using signaling pathway cloud regulation for
theoretical in silico aging-suppressive drug identification and ranking. The
proposed method for identifying and ranking of geroprotective drugs by
evaluating the net effect on the many elements of signaling pathway

cloud that brings the “old” metabolic state closer to the “young.” (B)

An example of how multiple pathways are activated and down-regulated
during aging. (C) Pathway Activation Strength (PAS) is the logarithmic
additive value that characterizes the up-/downregulation of signaling
pathways. (D) Function for the overall signal pathway cloud disturbance
outcome (SPCD).

−1, when the gene/protein n is a repressor of pathway
excitation;

1, if the gene/protein n is an activator of pathway excitation;
0, when the gene/protein n can be both an activator and a

repressor of signal transduction;
0.5 and −0.5, respectively, if the gene/protein n is more an

activator or repressor of the signaling pathway p.
The information about the activator/repressor role of a par-

ticular gene/protein may be obtained from the analysis of open-
access or customized pathway databases and from the literature.

The Boolean flag of BTIF (beyond tolerance interval flag) equals
to zero when the OYR value lies within the tolerance limit, and to
one when otherwise. During the current study, we have admitted
that the OYR lies beyond the tolerance limit if it satisfies simulta-
neously the two criteria. First, it either higher than 3/2 or lower
than 2/3, and, second, the expression level for a corresponding
gene from an old patient of an individual patient differs by more
than two standard deviations from the average expression level
for the same gene from a set of analogous young tissue/organ
samples.

We propose a new computational approach for identifying and
rating the variety of factors including small molecules, peptides,
stress factors and conditions with the known effects on the tran-
scriptomes at different ages of one or more cell or tissue types or
known targets (Figure 1A). The approach may be used for general
geroprotector screening, but after the validation of the algorithms
in vivo and in vitro may be expanded to identify and predict the
efficacy of personalized aging-suppressive intervention regimens
for individual patients based on the transcriptome information
from various tissue biopsies and blood samples.

The generic geroprotector rating approach involves collecting
the transcriptome data sets from young and old patients and nor-
malizing the data for each cell and tissue type, evaluating the
pathway activation strength (PAS) for each individual pathway
(Figure 1B) and constructing the pathway cloud (PC, Figure 1C)
and screen for drugs or combinations that minimize the signal-
ing pathway cloud disturbance (SPCD, Figure 1D) by acting on
one or multiple elements of the pathway cloud. Drugs and com-
binations may be rated by their ability to compensate the changes
in signaling pathway activation patterns that are related to aging,
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thus bringing all the PAS values for the general set of the path-
ways as close to zero as possible. Since many of the drugs approved
for use in humans have known molecular targets and some have
been screened for the impact on longevity in model organisms
(Ye et al., 2013), the predictions may be then tested both in vitro
and in vivo on human cells and on model organisms such as
rodents, nematodes and flies to validate the screening and rating
algorithms.

CONCLUSION
Longevity studies of aging-suppressive drug efficiency in higher
mammals take several years and decades and may cost mil-
lions of dollars. An intelligent process for predicting the activity
and ranking the geroprotective activity of various factors and
strengthening the prediction in rapid and cost-effective studies on
cell cultures and model organisms may help increase the longevity
dividend of these studies. In this paper we propose a method for
in silico screening and ranking of drugs and other factors that act
on many signaling pathways implicated in aging processes by cal-
culating their ability to minimize the difference between signaling
pathway activation patterns in cells of young and old patients and
confirming the results using in vivo and in vitro studies.
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