
OPINION ARTICLE
published: 13 March 2014

doi: 10.3389/fgene.2014.00052

Biological noise to get a sense of direction: an analogy
between chemotaxis and stress response
Vera Pancaldi*

Structural Computational Biology, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
*Correspondence: vpancaldi@cnio.es

Edited by:

Daniel Hebenstreit, University of Warwick, UK

Reviewed by:

Pawel Paszek, University of Manchester, UK

Keywords: biological noise, heterogeneity, chemotaxis, stress response, adaptation

INTRODUCTION
From the earliest studies on bacteria
(Spudich and Koshland, 1976; Elowitz
et al., 2002), it was soon understood
that biological processes are often dom-
inated by the stochasticity that pervades
the physical world. Biological noise, here
defined as the substantial cell-to-cell vari-
ation that is observed in populations of
genetically identical cells, is more and
more recognized as an important fac-
tor in biology, thanks to the improve-
ment of single cell analysis techniques.
The stochasticity of physical phenomena
that underlie cellular processes plays an
important role in the origin of noise.
Noise manifests itself at different levels.
At the smallest scales, the random motion
of molecules affects basic cellular pro-
cesses such as transcription, translation,
and signal transduction. At a higher level,
the topology and connectivity of biolog-
ical regulatory circuits is often such that
stochastic behavior is observed in the
levels of specific factors. Specifically, the
topology of regulatory networks can fea-
ture multiple types of feedback and feed-
forward loops, which create multistability
in the system and can amplify the fluc-
tuations originating from molecular noise
(Burda et al., 2011). Both of these sources
of noise can result in the existence of mul-
tiple stable states in cells, each defined by
specific gene and protein levels. In iso-
genic cellular population this produces
heterogeneity amongst cells and in time as
stochasticity forces transitions between the
different stable states (Levine et al., 2013;
Sanchez and Golding, 2013). Although
there is a clear difference between noise,
which does not have a unique definition,
and heterogeneity at the population level,

the two phenomena are closely connected
(Huang, 2009).

At first sight, the complexity of bio-
logical behavior would seem to require
the strictest control of underlying pro-
cesses, suggesting a constant evolutionary
fight against the inherent disadvantages of
noise. This is certainly the case, for exam-
ple in the evolution of accurate proof-
reading mechanisms that ensure faithful
DNA replication. However, recent results
also support the view that controlled
levels of stochasticity are important in
cells, proposing noise as a selectable trait.
Already in 2004 Raser and O’Shea identi-
fied mutations both acting in cis and trans
that affected the levels of gene expres-
sion noise, which is viewed as an evolv-
able trait (Raser and O’Shea, 2004). Ansel
and colleagues later showed that the lev-
els of expression noise in a single gene
can be a heritable trait and they identified
three Quantitative Trait Loci associated to
it (Ansel et al., 2008). The adaptive impor-
tance of noise is exemplified in the con-
cept of bet-hedging, according to which
cells maximize their chance of survival
by exploring different states in a random
fashion (Fehrmann et al., 2013; Viney and
Reece, 2013; Yvert et al., 2013).

The positive aspects of noise mani-
fest themselves at many levels at which
noise acts. At the molecular level, a con-
trol strategy based on dynamic equilib-
rium of stochastic events, similar to a
thermostat regulating temperature, offers
more robustness and tunability in pro-
cesses such as mRNA production and
translation (Shalem et al., 2008; Salari
et al., 2012; Sanchez and Golding, 2013).

At the level of regulatory networks,
topologies, and logic relations allowing

oscillations and multistability contribute
to higher adaptability of the organism to
changing environments. It was recently
shown that stress in yeast provokes a clear
change in network topology, which can
promote phenotype differentiation within
a population (Mihalik and Csermely, 2011;
Lehtinen et al., 2013). We can hypothesize
that the observed loosening of the network
could serve to diversify phenotypes in the
different cells.

Single cell monitoring of phenotypes in
tissues suggests a high degree of hetero-
geneity even in multi-cellular organisms
(Paszek et al., 2010). An important factor
in cell-cell communication, NFkB (nuclear
factor kappa-light-chain-enhancer of acti-
vated B cells), undergoes continuous cycles
of nuclear localization, such that in a pop-
ulation only a fraction of the cells at any
time will have high levels of this transcrip-
tion factor’s activity (Ashall et al., 2009). In
the overall context of a tissue, this hetero-
geneity in activation levels of NFkB con-
tributes to the maintenance of homeostasis
and to tissue responsiveness. Thus, even at
the tissue level, the presence of fluctuations
in time and across cellular populations
serves as a detection tool that ensures fast
reaction to any changes in the tissue’s con-
dition (Paszek et al., 2010; Levine et al.,
2013).

Although the connections between
noise at these different levels are still to
be elucidated, noise pervades biological
life forms across evolutionary time and
there does not seem to have been a strong
negative evolutionary pressure to elim-
inate it, with a few exceptions (Lehner,
2008).

A possible generalized interpretation of
the above observations is that fluctuations,
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and hence noise at multiple levels, are
instrumental in granting a robust control
strategy to organisms enabling them to
adapt to changing environments. We will
try to substantiate this claim through two
examples that lead us to make an analogy
between bacteria aiming to reach a source
of food and a population of yeast aiming to
reach a state of optimal growth in a varying
environment.

CHEMOTAXIS: CHARTING THE MAP
WITH BIASED RANDOM WALKS
Bacteria can identify sources of food
and repellent substances based on the
presence of just a few molecules in
a background concentration spanning
many orders of magnitude (Wadhams and
Armitage, 2004). It was discovered that
bacteria can either swim in a specific direc-
tion or tumble, that is rotate on them-
selves, and hence randomly change their
direction. These two different actions are
determined by the sense of rotation of
their flagella, which is the output of a
complex signaling network. Combining
the two types of motion, evolution has
selected a strategy that allows bacteria
to explore their environment in search
for food, performing what is effectively
a random walk biased by the concen-
tration field. When the bacterium swims
across increasing food concentration, the
tumble motion is suppressed, whereas,
when there is no clear concentration gra-
dient, tumbling is favored and a new
random direction is chosen. A closer
look at the mechanism behind this phe-
nomenon reveals that random motion,
combined with signal processing and feed-
back can explain this behavior (Sourjik
and Wingreen, 2012).

Thus, stochastic behavior is at the ori-
gin of cells’ ability to navigate their envi-
ronment. We can say that the cell is
building a model of the “world” outside
and with time it keeps re-adjusting it.
Each stochastic tumble-swim event brings
an occasion to confront the model with
the environment, through detection of
the actual chemical concentration gradi-
ent. Moreover, when an entire population
of bacteria is present, stochastic mech-
anisms ensure that each individual will
have a sufficiently different behavior from
the others to efficiently explore the entire
space (Korobkova et al., 2004; Emonet and

Cluzel, 2008). This strategy is likely to be
under selection, as the capacity to navigate
environments, find food and avoid repel-
lents is a clearly important trait for bacte-
ria and is even conserved in the immune
system (Luster, 2001).

MECHANISMS OF STRESS RESPONSE
AND ADAPTATION IN YEAST
Yeast cells perform very broad rearrange-
ments of their transcriptional program
upon stress treatment (Gasch et al., 2000;
Gasch, 2007; Berry and Gasch, 2008;
Chen et al., 2008; Lackner et al., 2012)
that allow the cell to produce the cor-
rect amount of proteins that it needs
to deal with challenges, including de-
toxifying agents and chaperones, and reg-
ulate its cell cycle. Growth and cell division
genes are down-regulated concomitantly
with the temporary arrest of the cell cycle,
while genes involved in stress protection
are up-regulated (Pancaldi et al., 2010).
It is generally observed that each cell can
either choose to grow faster, reducing its
resilience to changes in the conditions,
or grow slower, allowing it to better sur-
vive external changes (López-Maury et al.,
2008).

In recent experiments with budding
yeast, stress was seen to increment mor-
phological variability at the population
level, possibly through an effect related to
HSP90 (Hsieh et al., 2013), an important
chaperone buffering the effects of mul-
tiple genetic mutations (Rutherford and
Lindquist, 1998). Investigations on single
cell growth rates in budding yeast propose
that keeping a wide distribution of val-
ues for this parameter can be exploited as
a stress defense mechanism against severe
heat stress (Levy et al., 2012). Sequence
variants in yeast are known to affect gene
expression variability (Fehrmann et al.,
2013) but, importantly, in this case, the
presence of a distribution of growth rates
in the population is found not to depend
on the genetic make-up of the single cells,
as the character is not heritable. Instead,
it is attributed to a large number of epi-
genetic states which determine the growth
rate and hence affect the propensity to
resist stress in each cell. This was veri-
fied by following the progeny of cells that
displayed a particular low or high growth
rate and observing the cells revert to the
original distribution after a few tens of

generations (Levy et al., 2012). Particular
types of stress, like nitrogen starvation,
even prompt yeast to perform meiosis
and produce spores, more resistant cells
that can survive in a dormant state until
external conditions have improved (Su
et al., 1996; Otsubo and Yamamoto, 2012).
Meiosis involves homologous recombina-
tion, which could be interpreted as a fur-
ther attempt to maximize the variability
within the population. Once again the
presence of a wide distribution of val-
ues of a specific character, in this case of
growth rate, confers an advantage to the
whole population, which will thus avoid
extinction when its perfectly adapted fast
growing cells are killed.

STRESS RESPONSE VARIABILITY AS
MAPPING IN TIME
Thus, stress response in cells is similar
to chemotaxis, in the sense that predict-
ing in which direction to go to get to
the food corresponds to a yeast popula-
tion deciding on whether growth condi-
tions are going to get better or worse. In
this case we can imagine the gradient of
attractant or repellent to correspond to
the increasing concentration of a chemical
stress agent, for example hydrogen perox-
ide in a yeast culture. Until the cells are
kept in good growth conditions, they sim-
ply optimize their growth rate, focussing
their gene expression program and protein
composition onto this task. In our analogy,
this corresponds to a chemotacting cell,
swimming almost straight toward a source
of attractant. On the other hand, upon
stress, the clear goal of optimal growth
is substituted by the need to ensure sur-
vival. In the case of persistent insults, a
variety of genes can be regulated to pro-
mote a more resilient state through dif-
ferentiation of the single cell responses
while changes in the interaction network
topology further enhance it. In our anal-
ogy, this is the equivalent of the increased
random tumbling motion in bacteria
(Figure 1).

Just like bacteria in the absence of a
clear gradient will freely spread in space
maximizing their chance that at least
one of them finds a gradient to fol-
low, yeast populations in adverse environ-
mental conditions will maximize cell-cell
variability to more efficiently explore the
fitness landscape.
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FIGURE 1 | A schematic diagram of the proposed analogy. (A) A bacterium moving toward a
source of food through a random walk biased by the chemical concentration gradient. (B) A
bacterium tumbling most of the time and performing a non-biased random walk in the absence of a
chemical gradient. (C) A phenotypically homogeneous yeast population growing in a rich medium in
the absence of a perturbation. (D) A phenotypically heterogeneous yeast population growing under
a chemical perturbation, where presumably the heterogeneity is a strategy to ensure survival of at
least a few cells during the perturbation. (E) A fitness landscape with clear minima (valleys) and
where the homogeneous population is coordinately descending toward the global minimum. (F) A
flatter fitness landscape where, in absence of a clear gradient, the population explores various
regions through heterogeneity in the single-cell phenotype.

These phenomena could be a conse-
quence of the relaxation of control mech-
anisms that usually act to minimize the
effects of noise, or there might be an
evolved strategy to promote variability
beyond that naturally present. In the first
case, the resources the cell needs to keep
the fluctuations at bay are not available
in hostile environments or, in the second
case, resources cost in guaranteeing vari-
ability at the population level has been
evolutionarily selected as it is ultimately
beneficial.

CONCLUSION
In a sense, the diversification of gene
expression, genetic and non-genetic
features in single cells during stress
corresponds to an exploration of the

environment, which allows cells to achieve
states that are better adapted to the
external conditions. The few cells that
will randomly achieve a phenotype that is
appropriate for the environment will sur-
vive, at the expense of the ones whose
phenotype is not favorable. Thus, it seems
that the inevitable stochasticity of biologi-
cal processes, accompanied by larger scale
variability, could confer robustness to the
entire colony in the face of external chal-
lenges. The whole population is navigating
in a changing fitness landscape, similarly
to a cell navigating a chemotactic gradient.

Two very different phenomena, chemo-
taxis and stress response, share the com-
mon feature of enabling the cells to orient
themselves, in respectively spatially and
temporally varying environments. Both

mechanisms rely on the presence of two
stochastic processes, the tumbling motion
in chemotaxis and the single cell variability
of gene expression in stress response. We
thus support a very general interpretation
of the pervasive noisy nature of biological
processes, not only as a consequence of the
underlying stochastic physical processes,
but also as an important tool for cells that
need to adapt to changing conditions.
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