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The goal of this review is to discuss how behavioral tests in mice relate to the pathological
and neuropsychological features seen in human Alzheimer’s disease (AD), and present
a comprehensive analysis of the temporal progression of behavioral impairments in
commonly used AD mouse models that contain mutations in amyloid precursor protein
(APP). We begin with a brief overview of the neuropathological changes seen in the
AD brain and an outline of some of the clinical neuropsychological assessments used
to measure cognitive deficits associated with the disease. This is followed by a critical
assessment of behavioral tasks that are used in AD mice to model the cognitive changes
seen in the human disease. Behavioral tests discussed include spatial memory tests
[Morris water maze (MWM), radial arm water maze (RAWM), Barnes maze], associative
learning tasks (passive avoidance, fear conditioning), alternation tasks (Y-Maze/T-Maze),
recognition memory tasks (Novel Object Recognition), attentional tasks (3 and 5 choice
serial reaction time), set-shifting tasks, and reversal learning tasks. We discuss the
strengths and weaknesses of each of these behavioral tasks, and how they may correlate
with clinical assessments in humans. Finally, the temporal progression of both cognitive
and non-cognitive deficits in 10 AD mouse models (PDAPP, TG2576, APP23, TgCRND8,
J20, APP/PS1, TG2576 + PS1 (M146L), APP/PS1 KI, 5×FAD, and 3×Tg-AD) are discussed
in detail. Mouse models of AD and the behavioral tasks used in conjunction with those
models are immensely important in contributing to our knowledge of disease progression
and are a useful tool to study AD pathophysiology and the resulting cognitive deficits.
However, investigators need to be aware of the potential weaknesses of the available
preclinical models in terms of their ability to model cognitive changes observed in human
AD. It is our hope that this review will assist investigators in selecting an appropriate
mouse model, and accompanying behavioral paradigms to investigate different aspects of
AD pathology and disease progression.
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INTRODUCTION
Alzheimer’s disease (AD) is characterized by a progressive decline
in cognitive function, usually starting with memory complaints
and eventually progressing to involve multiple cognitive, neu-
ropsychological and behavioral domains. The definitive diagnosis
of AD comes from postmortem analysis of the neuropathological
changes in the brain. Analyses of both clinical and pathological
features, i.e., clinicopathological correlation studies, have pro-
vided important insights into how the pathology correlates with
cognitive status. Complementing these studies in humans has
been the development of preclinical model systems of AD pathol-
ogy. These preclinical animal models, especially mouse models,
have been extremely useful to test mechanistic hypotheses about

AD pathophysiology and to predict outcomes from pharmaco-
logical interventions. However, no animal model recapitulates the
entirety of AD in humans, and therefore it is important to under-
stand both the utility and limitations of particular animal models.
With this in mind, we will present an overview of the neuropatho-
logical changes seen in the AD patient population as individuals
transition from normal cognitive aging to dementia, review the
clinical neuropsychological assessments used in the AD field,
review the mouse behavioral tasks commonly used in preclinical
testing and discuss how they relate to these clinical neuropsy-
chological assessments, and outline the temporal progression of
cognitive and non-cognitive deficits seen in the commonly used
mouse models of AD.
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OVERVIEW OF NEUROPATHOLOGICAL CHANGES IN AD
In 2012, new consensus guidelines for neuropathologic evalua-
tion of AD were adopted (Hyman et al., 2012; Montine et al.,
2012). The AD neuropathologic change is now ranked on three
parameters (Amyloid, Braak, CERAD) to obtain an “ABC” score:
histopathologic assessments of beta-amyloid (Aβ)-containing
amyloid plaques (A), Braak staging of neurofibrillary tangles (B),
and scoring of neuritic amyloid plaques (C). Standard approaches
for the workup of cases, preferred staining methods, reporting
of results and clinicopathological correlations are also recom-
mended. Unlike the prior AD neuropathologic criteria (Hyman
and Trojanowski, 1997) that required a history of dementia, the
current guidelines recognize that AD neuropathologic changes
can be present in the brain in the apparent absence of cognitive
impairment. The updated guidelines thus emphasize the contin-
uum of neuropathologic changes that underlie AD. For a disease
process that is known to occur over a decade or more (Blennow
and Zetterberg, 2013; Rosen and Zetterberg, 2013; Rosen et al.,
2013), and encompasses the age range where people are likely
to die of other causes, it is inevitable that many people will
die in a prodromal or “preclinical” stage of AD. This consider-
ation points to the complexity that clinicopathological studies
face when examining AD pathological contributions to cognitive
deficits (Nelson et al., 2009b).

There have been numerous clinicopathological studies
attempting to correlate amyloid plaques with the cognitive
deficits seen in AD (Blessed et al., 1968; Tomlinson et al., 1970;
Duyckaerts et al., 1990, 1998; Berg et al., 1998; Gold et al., 2000;
Mungas et al., 2001; Tiraboschi et al., 2002, 2004; Guillozet et al.,
2003; Kraybill et al., 2005; Holtzer et al., 2006; Markesbery et al.,
2006; Nelson et al., 2007a, 2009a; Beach et al., 2009; Sabbagh
et al., 2010; Robinson et al., 2011). Apparent inconsistencies in
the conclusions of these studies are due to differences in study
cohorts, methodology used to classify plaque subcategories,
plaque-counting techniques, and metrics used to assess cognitive
deficits. Nevertheless, several important concepts have emerged
pertaining to plaque pathology and cognition. First, the strongest
correlation between amyloid plaques and cognition is in the early
stages of the disease and this association weakens as NFTs and
gross neocortical neurodegeneration become more widespread
(Thal et al., 2002; Nelson et al., 2009b, 2012). As the disease
progresses into the later stages, there is little evidence to support
a continued contribution by amyloid plaques to the late-stage AD
cognitive decline (Nelson et al., 2009b, 2012). Second, it appears
that density of neuritic plaques correlates more strongly with the
cognitive deficits than do “diffuse” amyloid plaques (Mckee et al.,
1991; Crystal et al., 1993; Tiraboschi et al., 2004; Nelson et al.,
2007a; Braak et al., 2011).

In contrast to the literature concerning amyloid plaques, a
large number of studies have arrived at a common finding,
namely, there is a strong link between neocortical NFTs and cog-
nitive decline (Tomlinson et al., 1970; Duyckaerts et al., 1990,
1997, 1998; Mckee et al., 1991; Arriagada et al., 1992; Bierer
et al., 1995; Davis et al., 1995; Dickson et al., 1995; Nagy et al.,
1995, 1999; Cummings et al., 1996; Berg et al., 1998; Grober
et al., 1999; Sabbagh et al., 1999; Gold et al., 2000; Mungas et al.,
2001; Riley et al., 2002; Silver et al., 2002; Tiraboschi et al., 2002;

Guillozet et al., 2003; Bennett et al., 2004; Kraybill et al., 2005;
Holtzer et al., 2006; Markesbery et al., 2006; Koepsell et al., 2008;
Whitwell et al., 2008; Beach et al., 2009; Brayne et al., 2009;
Giannakopoulos et al., 2009; Sabbagh et al., 2010; Robinson et al.,
2011). It should be noted that outside of frontotemporal lobar
degeneration (FTLD), one does not see widespread cortical NFTs
without abundant plaque pathology. In the earliest stages of AD
(Braak stage I-II), NFTs are restricted to the entorhinal cortex
(Braak and Del Tredici, 2011; Braak et al., 2011). NFTs spread
to the limbic and medial temporal lobe (Braak stage III-IV), and
this stage correlates with early AD symptoms related to mem-
ory (Schmitt et al., 2000; Riley et al., 2011). During the late
stages (Braak stage V–VI), NFTs increase in number and mani-
fest in neocortical areas responsible for higher cognitive domains
such as executive function, visuospatial capacities, and speech in
synchrony with observed AD-related cognitive deficits in these
respective cognitive domains. Not all AD cases fall within the
standard NFT distribution described by the Braak staging (Hof
et al., 1997; Abner et al., 2011; Murray et al., 2011). Some cases
classified as “high level” of AD neuropathological changes may
show subtle or undetectable cognitive impairment, yet all cases
with quantifiably “end stage” neocortical NFT pathology show
cognitive impairment (Dickson et al., 1995; Berlau et al., 2007;
Nelson et al., 2009a, 2012; Abner et al., 2011; Santacruz et al.,
2011; Jicha et al., 2012). In sum, the correlations noted in human
material support the hypothesis that plaques and tangles corre-
late with cognitive status. The data also support the “Amyloid
Cascade Hypothesis”(Karran et al., 2011), a deceptively complex
hypothesis which posits that beta-amyloid/plaque pathology kin-
dles widespread tau/NFT pathology, with the tau/NFT pathology
constituting the more direct cause of the cell loss and synapse
elimination underlying clinical disease (Nelson et al., 2009b,
2012).

COGNITIVE NEUROPSYCHOLOGICAL ASSESSMENTS USED
IN THE AD FIELD
Neuropsychological assessment is the most reliable means to
clinically evaluate the cognitive deficits seen in humans. Many
neuropsychological tests have been developed which are highly
sensitive to the cognitive behavioral symptoms seen in AD,
and these tests are extensively used as clinical diagnostic tools
(Schmitt, 1994) as well as to track the progression of the disease
(Flicker et al., 1984; Morris et al., 1989; Storandt and Hill, 1989;
Storandt, 1991; Welsh et al., 1991, 1992; Locascio et al., 1995;
Albert, 1996; Storandt et al., 1998; Schmitt et al., 2000; Salmon
and Bondi, 2009). Current neuropsychological assessments (from
the National Institute on Aging workgroups on diagnostic guide-
lines for AD) aim to detect disruptions in cognitive domains such
as episodic memory, semantic memory, working memory, and
attention, as well as dysfunction in language, praxis, and execu-
tive functioning (Flicker et al., 1984; Baddeley et al., 1986, 1991,
2001; Huff et al., 1987; Knopman and Ryberg, 1989; Hodges et al.,
1992; Parasuraman and Nestor, 1993; Hodges and Patterson,
1995; Perry and Hodges, 1999; Salmon et al., 1999; Perry et al.,
2000; Backman et al., 2001; Lambon Ralph et al., 2003). In the
following section, we will cover several of the most common neu-
ropsychological tests used clinically to assess the mental status
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and memory disruptions in AD (for more in depth reviews see
Perry and Hodges, 1999; Budson and Price, 2005; Bondi et al.,
2008; Weintraub et al., 2012). Table 1 provides an overview of
four mental status examinations and two brief memory tests
commonly used clinically.

MENTAL STATUS EXAMS
Mental status examinations assess multiple mental functions and
cognitive abilities across multiple domains (see Table 1), and
are generally more encompassing than specific verbal and visual
memory tests (examples also seen in Table 1). Both categories of
tests are clinically useful in assessing the cognitive progression of
AD. Most mental status examinations assess mental functions and
cognitive ability across a wide range of areas such as: language
skills, arithmetic ability, visuospatial ability, attention, memory,
and orientation to time and place.

The Mini-Mental Status Examination (MMSE) is one of the
most commonly used neuropsychological screening tools for cog-
nitive impairments seen in AD (Simard and Van Reekum, 1999;
Snyderman and Rovner, 2009). The MMSE is a brief question-
naire that can both diagnose cognitive impairment and track the
severity of this cognitive impairment throughout the pathogen-
esis of the disease. The MMSE covers multiple areas such as:
attention, memory (semantic and episodic), orientation to time
and place, and working memory. The scoring system ranges from
0 to 30 points. In general, a score of 27 or greater reflects normal
cognition, a score of 19–24 represents mild impairment, a score
of 10–18 represents moderate impairment, and a score below 9
indicates severe cognitive impairment. The MMSE has excellent
reproducibility that lends itself well to longitudinal use in track-
ing the progression of the cognitive impairments associated with
AD (Jacqmin-Gadda et al., 1997; Aevarsson and Skoog, 2000;
Chatfield et al., 2007).

The Montreal Cognitive Assessment (MoCA) is a more recent
mental status examination used for cognitive dysfunction seen
in AD. This test battery takes approximately 10 min to admin-
ister and covers many similar cognitive domains to that of the
MMSE. The total possible score is 30 points, with a score of 26 or
above considered within the normal range. An example of a task
included in the MoCA is the forward and backward digit span
test. In the forward digit span test, a sequence of five numbers
is read at a rate of one number per second and the test taker is
required to repeat a set of numbers in exactly the same sequence
as they were presented. In the backward digit span task, the test
taker is required to repeat a three number sequence in the reverse
order in which it was presented. One point is awarded for each
of the digit span tests in which the test taker made no errors. The
MoCA also includes a delayed recall memory test. Relatively near
the beginning of the test, the examiner presents a short word list
for the patient to remember. At the end of the test, the patient is
again prompted to recall the word list and for each of the words
correctly remembered one point is awarded.

Another commonly used test battery is that of the Short
Blessed Test (SBT) which consists of a six-item test designed to
identify the cognitive dysfunction seen in AD (Katzman et al.,
1983). An appealing advantage of the SBT is the ease and speed
with which it can be administered (often taking only a few

minutes). In the SBT, errors are scored for incorrect answers and
the scoring range falls between 0 and 28, with a score of 0–4
representing normal cognition, a score of 5–9 representing early
impairment, and a score of 10 or more representing impaired cog-
nition. Despite the simplicity and brevity of the SBT, the results
that it produces have demonstrated excellent reliability (Fuld,
1978). Similarly, the SBT was the first mental status examina-
tion to be correlated with amyloid plaque burden at autopsy
(Carpenter et al., 2011).

The Alzheimer’s Disease Assessment Scale (ADAS) was specif-
ically developed to measure the severity of symptoms commonly
seen in AD (Rosen et al., 1984). Initially, it was developed in
two parts (sub-scales): one for cognitive symptoms and one for
non-cognitive symptoms. The cognitive sub-scale of the ADAS
is commonly referred to as the ADAS-cog, and has become one
of the most common neuropsychological tests used to assess AD
progression. The scoring for the ADAS-cog ranges from 0 to 70,
with a low score representing a cognitively intact person and
a high score representing someone with cognitive impairment.
Because the ADAS-cog has an excellent test-retest reliability and
is considered to be one of the most sensitive scales for assessing
cognitive changes related to AD (Emilien et al., 2004), this test
is extensively used in AD clinical trials as an outcome measure
of cognitive change (Schmitt and Wichems, 2006; Connor and
Sabbagh, 2008).

MEMORY TESTS
Individual memory tests are generally shorter than mental sta-
tus examinations and focus solely on assessing memory deficits.
Both verbal and visual memory tests are commonly used clinically
as stand alone tests or incorporated into a more comprehensive
mental status examination. Examples of such memory tests are
the Logical Memory Test I and II (LM-I and LM-II) and the
Benton Visual Retention Test (BVRT) (Benton, 1992; Wechsler,
1997).

The LM-I and LM-II were originally developed as subtests to
the Wechsler memory scale, but are commonly used as stand-
alone memory tests. Both are verbal based memory tests that
involve a short story read to the patient. In the LM-I, the patient
answers immediate questions related to the narrative, whereas in
the LM-II there is a delay between the presentation of the story
and the questions. Thus, these memory tests are used to assess
immediate recall (LM-I) and delayed recall (LM-II).

In the BVRT, the patient is shown 10 different visual designs,
one at a time, and is then asked to reproduce each one from
memory exactly as it appeared. While scoring the BVRT, errors of
omissions, distortions, perseverations, rotations, misplacements,
and size are all looked for and can give some insight into the pro-
gression of the disease. For example, if the patient has a high
number of perseveration errors it is likely that the AD pathol-
ogy has manifest itself in neocortical areas responsible for higher
cognitive domains such as executive function, and visuospatial
capacities (Braak Stage V–VI).

COGNITIVE NEUROPSYCHOLOGICAL ASSESSMENT SUMMARY
Each of the tests described above is aimed at assessing deficits
in different cognitive domains. Each of these domains has been
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Table 1 | Common neuropsychological assessment tasks seen clinically.

Task Description Cognitive domains References

MENTAL STATUS EXAMS

Mini-Mental State
Examination (MMSE)

Nineteen item (30 points) test of general
cognitive status

Working memory, attention, memory
(semantic), praxis, etc.

Folstein et al., 1975

Montreal Cognitive
Assessment (MoCA)

A rapid screening method to assess mild
cognitive dysfunction

Working memory, memory (semantic and
episodic), attention, visuospatial memory, etc.

Nasreddine et al., 2005

Short Blessed Test (SBT) A short six item test measuring general
cognitive status

Memory (semantic and episodic), working
memory, and attention, etc.

Blessed et al., 1968

Alzheimer’s Disease
Assessment Scale (ADAS)

An 11 part test that measures cognitive
dysfunction

Memory (semantic and episodic), and
attention, etc.

Rosen et al., 1984

MEMORY TESTS

Logical memory test I and II A short story is presented to the patient
and used to test immediate memory (test
I) and delayed memory (test II)

Memory (episodic), verbal recall, etc. Wechsler, 1997

Benton Visual Retention
Test (BRVT)

Visual based test of general memory Memory (episodic), and working memory etc. Benton, 1992

shown to be impaired at some point in the spectrum of human
AD. However, they are not uniformly affected throughout the
course of the disease. Deficits in some domains occur relatively
early, while deficits in others occur much later in the progression
of the disease. Figure 1A depicts an overview of the time course of
affected cognitive domains in human AD. It has become increas-
ingly clear that identifying and targeting the cognitive deficits that
occur early in the course of the disease is critical to producing the
maximum impact of treatment on cognitive function and quality
of life (Salmon et al., 2002). Thus, great efforts have been made to
better understand the profile of cognitive deficits associated with
early AD, and have resulted in earlier and more reliable clinical
diagnosis (Bondi et al., 1995, 1999; Jacobson et al., 2002; Lange
et al., 2002; Mickes et al., 2007).

Some of the earliest neuropathological changes in AD are in
the hippocampus and entorhinal cortex, followed by changes in
the medial temporal lobe. Consistent with this progression of
pathology, the earliest detectable deficits in cognition are seen
in medial temporal lobe-dependent episodic memory (Bondi
et al., 1999; Collie and Maruff, 2000; Schmitt et al., 2000; Smith
et al., 2007). These early deficits in episodic memory are followed
closely by deficits in semantic memory, and both are developed
before other deficits in cognitive domains such as attention, visu-
ospatial memory, or executive function (Bondi et al., 2008). This
suggests that cognitive functions such as episodic and semantic
memory that depend heavily on the neural circuitry of the medial
and lateral temporal lobes may be impaired earlier than cogni-
tive abilities that depend on the circuitry of other brain regions.
Further support for this idea comes from the time course of the
frontal lobe dependent executive function deficits observed in
patients. Slight deficits in executive functioning are first detectable
near the end of the preclinical phase of AD but after the observed
deficits in episodic and semantic memory (Storandt et al., 2006;
Twamley et al., 2006). As the patient moves from the preclini-
cal phase of AD into MCI, more cognitive domains begin to be
affected. Most studies of MCI patients show consistent impair-
ments in verbal recall (Larrieu et al., 2002; Tuokko et al., 2005;
Kryscio et al., 2006) and a decline in general memory functioning

(Tuokko et al., 2005; Bondi et al., 2008). Once the AD patient
progresses past MCI and into dementia, general cognition con-
tinues to decline with deficits appearing in all respective cognitive
domains (Huff et al., 1987; Locascio et al., 1995; Lambon Ralph
et al., 2003; Mckhann et al., 2011).

The importance of neuropsychological testing cannot be over-
stated, as it is the only measure that provides information about a
patient’s current cognitive status and remains the most reliable
means to clinically diagnose probable AD. Neuropsychological
testing provides information on both general cognitive status and
specific information on different cognitive domains affected in
AD. Composite scores encompassing multiple neuropsychologi-
cal tests are often used and can provide some of the most reliable
assessments of global cognitive status relating to AD as well as
serving as efficacy outcome measures in clinical trials (Bernick
et al., 2012).

HOW COMMONLY USED PRECLINICAL MOUSE BEHAVIORAL
TASKS RELATE TO THE CLINICAL NEUROPSYCHOLOGICAL
ASSESSMENT TESTS IN HUMAN AD?
Ideally, preclinical rodent cognitive testing would assess identical
cognitive domains to those examined through neuropsychologi-
cal testing in human AD. Indeed, many rodent behavioral tasks
have been specifically designed with this in mind, and while each
task varies with respect to face, construct, and predictive valid-
ity, they all attempt to model different aspects of the cognition
disrupted in AD and targeted by the human neuropsycholog-
ical assessments listed in the previous section. Some cognitive
domains disrupted in AD have been extensively modeled (refer-
ence memory, working memory and executive function), some
less so (attention), and some nearly not at all (episodic mem-
ory). Reference memory, while not used clinically to describe
human cognition, refers to learned knowledge for an aspect of
a task that remains constant throughout the behavioral task and
most closely correlates to human semantic memory. Working
memory refers to a mental processing system used to hold tran-
sitory information for a limited time where it can be manipu-
lated and operated on and used to guide behavior. Recognition
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FIGURE 1 | Overview of the progression of cognitive deficits in human

AD and in mouse models of AD. (A) In the human disease, the earliest
AD-related cognitive deficits present themselves as episodic memory
impairment during the late preclinical phase of the disease (Backman et al.,
2005; Twamley et al., 2006; Bondi et al., 2008). Semantic memory deficits
are the next to develop (Tuokko et al., 2005; Storandt et al., 2006), followed
by impairments in executive functioning (Bondi et al., 2008), attention
(Bondi et al., 2008), and visuospatial memory (Twamley et al., 2006) near
the beginning of the MCI phase of the disease. As MCI progresses, deficits
in verbal recall (Kryscio et al., 2006; Bondi et al., 2008) develop and
impairments in general cognition (Bondi et al., 2008) become apparent. As
the patient transitions into AD, all cognitive domains become affected. (B)

The development of cognitive deficits in APP mouse models of AD shows
similar patterns of progression. Consistently, the earliest observable
impairments are in spatial working memory (Webster et al., 2013), as
assessed through the use of water maze based tasks. These impairments
are generally followed temporally by impairments in associative learning
and reference memory, as assessed by maze alternation (Lalonde et al.,
2012) and fear conditioning tasks (Kobayashi and Chen, 2005). Deficits in
recognition memory usually present later in the spectrum of cognitive
impairment than deficits in other domains (Eriksen and Janus, 2007; Hall
and Roberson, 2012; Webster et al., 2013).

memory refers to the ability to recognize previously encountered
events, objects, or individuals and is classified as part of long-
term declarative memory. Other cognitive domains impaired in
human AD such as those involving language (i.e., verbal acu-
ity tasks and verbal recall tasks) simply cannot be modeled in
rodent models. Table 2 provides a short description of various
behavioral tasks used to assess AD-like cognitive deficits in mice,
and summarizes the respective cognitive domains measured by
each task.

MODELING WORKING MEMORY
Working memory is perhaps one of the most well modeled aspects
of the memory deficits in AD. Clinically, many of the neuropsy-
chological tests that assess working memory rely heavily on the
use of verbal tasks (Kaplan et al., 1978; Benedict et al., 1998;
Spreen and Strauss, 1998; Delis et al., 2000), employing language
as a core construct and thus are not feasible to model using
mice. Instead, spatial based working memory tasks are heavily
employed in murine working memory testing and likely are more

depictive of the visuospatial working memory tasks used clinically
(Benton, 1992; Benedict and Groninger, 1994).

The most widely used paradigms for working memory in mice
are maze type tasks which require spatial working memory to
solve. The earliest variants of these are the T-maze and Y-maze
alternation tasks, which are relatively simple tests consisting of
three arms with a single intersection. These tasks rely on the
natural exploratory behavior (tendency to choose an alternative
arm over an arm which has been previously explored) of rodents
and are considered the most rudimentary tasks to assess spa-
tial working memory (Dudchenko, 2004). A more complex maze
type task used to test murine spatial working memory is that of
the Radial Arm Maze (RAM), consisting of several arms (usu-
ally 6–8) radiating outwards from a central platform (Olton and
Samuelson, 1976; Olton et al., 1979). In the RAM, the animal is
started in the center area and then some of the arms or all of the
arms can be baited with a food reward. Depending on the bait-
ing paradigm, unimpaired rats and mice will quickly learn where
the food reward is and which arms have previously been visited,
and will avoid re-entering a previously entered arm. Perhaps the
most widely employed spatial working memory task is that of the
Morris Water Maze (MWM) (Morris et al., 1982). The MWM
consists of a large open pool with a hidden (submerged) escape
platform located somewhere within the pool. Animals must learn
where the platform is, remember the platform’s location, and then
use spatial cues on subsequent trials to navigate back to the hid-
den platform. Large numbers of AD mouse models have been
tested in the MWM and most show AD related cognitive deficits
(Webster et al., 2013). Other common tasks of murine spatial
working memory are the Radial Arm Water Maze (RAWM) and
the Barnes Maze (Barnes, 1979; Diamond et al., 1999; Alamed
et al., 2006).

It is important to note that while many of the previously
described behavioral tasks are considered tasks of working mem-
ory they can also be modified to test reference memory depending
on the testing protocol used. Similarly, not all models of murine
working memory are spatial working memory tasks. For example,
there exist versions of both the RAM and RAWM that are con-
sidered non-spatial working memory tasks (Olton and Feustle,
1981; Crusio et al., 1993; Hyde et al., 2000). Other examples
of non-spatial working memory tasks are operant tasks such as
the Delayed Match to Sample (DMTS), Delayed Non-Match to
Sample (DNMTS), and Delayed Stimulus Discrimination Task
(DSDT) (Dudchenko, 2004; Buccafusco et al., 2008). In these
non-spatial working memory tasks the animal is required to
remember a stimulus (over a delay period) that is paired with a
particular type of response (generally a lever press or a nose poke)
and a correct response is rewarded. In many of the non-spatial
operant working memory tasks each animal can perform many
trials per day and thus can serve as its own control. This lends
itself nicely to pharmacological based studies assessing potential
therapeutic compounds for the treatment of the cognitive deficits
seen in AD (Buccafusco et al., 2008).

MODELING EXECUTIVE FUNCTION
Executive function refers to a broad range of higher cogni-
tive processes such as: reasoning, planning, cognitive flexibility,
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Table 2 | Commonly used mouse behavioral tasks.

Task Description Cognitive domains References

Morris Water Maze (MWM) Widely used behavioral task where mice are
placed in a circular pool and must find a hidden
escape platform

Reference memory and working
memory

Morris et al., 1982

Radial Arm Maze (RAM) The maze usually consists of 6–8 arms
radiating from a round central space. Various
arms are baited with a food reward.

Reference memory and working
memory

Olton and Samuelson,
1976

Radial Arm Water Maze (RAWM) A submerged version of the RAM where the
food reward is replaced by an escape platform.

Reference memory and working
memory

Diamond et al., 1999

Barnes maze Consists of a circular platform with holes
around the circumference and an escape box

Reference memory and working
memory

Barnes, 1979

T-Maze/Y-Maze alternation A three arm maze which forces the animal to
choose between two arms

Reference memory and working
memory

Blodgett and Mccutchan,
1947; Glickman and
Jensen, 1961

Novel Object Recognition (NOR) A two trial memory task which uses the
animal’s innate exploratory behavior to assess
memory

Recognition memory Ennaceur and Delacour,
1988

Contextual and cued fear
conditioning

The animal learns to predict an aversive
stimulus based on an associated context/cue

Reference memory (associative
learning/memory)

Fanselow, 1980; Curzon
et al., 2009

Passive avoidance An avoidance task where the animal must
refrain from entering a chamber where an
aversive stimulus was previously administered

Reference memory (associative
learning/memory)

Van Der Poel, 1967

Active avoidance A fear-motivated associative avoidance test
where an animal must actively avoid an
aversive stimulus

Reference memory and working
memory (associative
learning/memory)

Vanderwolf, 1964

Delayed Matching (non-matching)
to Position/Sample (DMTP/DMTS)

The animal receives a sample stimulus and
then after a short delay is required to choose
the correct corresponding response

Working memory Dunnett, 1993; Robinson
and Crawley, 1993

Multiple-Choice Serial Reaction
Time Task (CSRTT)

The animal must attend to several spatial
locations (usually 3–5), observe a
corresponding stimulus, and then correctly
respond

Attention, impulsivity, and executive
function

Carli et al., 1983

Attentional set-shifting tasks The animal must shift back and forth between
changing rules to successfully obtain a reward

Executive function and cognitive
flexibility

Birrell and Brown, 2000

Reversal learning Adjustment to changes in reward contingency Executive function and working
memory

Butter, 1969; Bussey
et al., 1997

What-Where-Which Task
(WWWhich)

The animal must associate an object (What)
with its location (Where) in a specific
visuospatial context (Which) to form an
integrated memory

Recognition memory and episodic-like
memory

Davis et al., 2013a,b

sequencing, response inhibition, and abstract concept formation.
The current mouse models of executive function most closely
replicate the human aspects of cognitive flexibility and response
inhibition in executive function. Attentional set-shifting tasks are
one of the main behavioral tasks used to assess executive function
in the mouse. In many ways, set-shifting tasks are similar to the
Wisconsin Card Sorting Task in that they form the gold standard
for assessing executive function (Drewe, 1974; Robinson et al.,
1980; Arnett et al., 1994). In both the Wisconsin Card Sorting
Task in humans and set-shifting tasks in mice, the dorsolateral
and orbital prefrontal cortex is critical for successful performance
(Weinberger et al., 1986; Berman et al., 1995; Brigman et al.,
2005; Bissonette et al., 2008). In the most common version of
the murine set-shifting task, mice are required to select a bowl
in which to dig for a food reward. Bowls can be discriminated

from each other according to different stimulus dimensions such
as texture and odor. Successful completion of the task requires
the animal to shift between stimuli dimensions to successfully
retrieve the food reward. The ability to extract knowledge from
different stimuli dimensions suggests that the mouse is capable
of using at least some aspects of higher-order cognitive func-
tions seen in human executive functioning (Chudasama, 2011).
Numerous different transgenic mouse models of AD have shown
deficits in set-shifting tasks (Zhuo et al., 2007, 2008; Marchese
et al., 2013).

Reversal learning is another way that aspects of executive
function are modeled in the mouse. While less complex than
attentional set shifting, reversal learning does require both cogni-
tive flexibility and impulse control, thus tapping into components
of human executive function (Chudasama, 2011; Stopford et al.,
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2012). There are many different variations of reversal learning
tasks in mouse behavior, but they all work on the same principle.
The animal first learns that a particular response to a stimulus
will be rewarded, while a response to a different stimulus will
be unrewarded. Then the stimulus-reward is switched so that
the previously unrewarded stimulus becomes the rewarded stim-
ulus. The animal must learn to reverse responses in order to
receive the reward. Wild type control mice are able to quickly
adjust their response in order to obtain the reward. However,
animals with prefrontal cortex lesions display profound deficits
in reversal learning (Chudasama, 2011; Izquierdo and Jentsch,
2012). Similarly, many different AD mouse models have shown
impairment in reversal learning (Angelo et al., 2003; Dong et al.,
2005; Filali et al., 2012; Cheng et al., 2013; Musilli et al., 2013;
Papadopoulos et al., 2013).

Another aspect of executive function that is modeled in
mice is response inhibition. Response inhibition is required for
the appropriate control of an individual’s behavioral actions in
response to a stimulus (Robbins, 1996; Humby et al., 1999; Perry
and Hodges, 1999; Romberg et al., 2013a). The five choice serial
reaction time task (5-CSRTT) is a behavioral task that mea-
sures the response inhibition component of executive function
(5-CSRTT is also used to model aspects of attention, see below
section) in mice (Robbins, 2002; Bari et al., 2008; Chudasama,
2011; Romberg et al., 2013a). The 5-CSRTT can test two different
aspects of response inhibition: (1) a failure to withhold the impul-
sive urge to respond while anticipating correct response (prema-
ture responses) and (2) a failure to disengage from repeating past
correct responses (perseveration responses) (Chudasama, 2011).
Several mouse models of AD have shown deficits in response
inhibition using the 5-CSRTT (Romberg et al., 2011, 2013b).

MODELING ATTENTION
Several behavioral tasks have been developed for modeling atten-
tion in mice that provide reliable measures comparable to the
neuropsychological assessments used in AD. The most widely
used of these tasks is the 5-CSRTT (Muir, 1996; Humby et al.,
1999; Robbins, 2002; De Bruin et al., 2006; Gibson et al., 2006;
Lambourne et al., 2007; Pattij et al., 2007). This task employs
an operant box with nose poke holes on the front wall of the
chamber. Animals are trained to respond to brief flashes of light
corresponding to five different spatial locations on this front
side of the chamber and correct responses are rewarded with
a food pellet released to a feeder box at the rear of the cham-
ber. Touchscreen versions of this task are also available in which
the nose poke holes and stimulus lights are replaced with an
LCD screen (Romberg et al., 2011; Bussey et al., 2012). For
both standard and touchscreen versions of the task, multiple
trials are run each day and both the duration of the stimulus
itself or the interval between the stimulus and response can be
manipulated to increase the attention demands placed on the ani-
mal. Sustained attention is measured by examining when the
animal responds to a different (incorrect) hole than where the
stimulus light appeared (called errors of commission), fails to
respond within the allotted time to the stimulus (errors of omis-
sion), and the speed with which the animal responds (reaction
time). Aspects of selective attention can also be modeled with

the 5-CSRTT by introducing brief bursts of white noise that
the animal must ignore while still detecting the visual stimu-
lus as it is presented (Robbins, 2002; Bari et al., 2008). The
rodent 5-CSRTT is analogous to Leonard’s 5-CSRTT used in
humans (Wilkinson, 1963). Both tasks require subjects (mouse
and human respectively) to utilize sustained attention divided
among multiple spatial locations across which a large number
of trials and errors of commission, omission, and reaction time
are scored. Another task that can be considered somewhat anal-
ogous to the 5-CSRTT is the human Continuous Performance
Tests (CPT) of sustained attention (Beck et al., 1956). In this task,
the subjects are asked to respond to signal and non-signal events
across numerous trials, and scores of hits, misses, rejections, and
false alarms are recorded. Errors of commission in the 5-CSRTT
are thought to be analogous to CPT false alarms rates. Similarly,
errors of omission in the 5-CSRTT are thought to be analogous
to CPT misses. AD mice such as the 3×Tg-AD mice have been
shown to have deficits in sustained attention using the 5-CSRTT
(Romberg et al., 2011). However, the homology between mouse
and human versions of these tasks is far from perfect, and cau-
tion should be used when drawing conclusions from the rodent
5-CSRTT and applying them to human attention (Young et al.,
2009).

MODELING EPISODIC MEMORY
Episodic memory refers to the ability to encode and recall per-
sonal past events and experiences. Episodic memory has also
been referred to as the “what, when, and where” aspect of a
particular experience. Modeling AD-related deficits in episodic
memory in mice is a less well-explored area than that of other
aspects of working memory, executive function, or attention.
Historically, episodic memory was thought to be unique to
humans (Tulving and Markowitsch, 1998). However, work over
the past few decades on episodic-like memory across a number of
animal species has suggested otherwise, and several mouse behav-
ioral tasks designed at assessing episodic-like memory have been
developed (Clayton and Dickinson, 1998; Clayton et al., 2001;
Griffiths and Clayton, 2001; Morris, 2001; Davis et al., 2013a,b).
One such task is the What-Where-Which Task (WWWhich). This
task is an adaptation of the NOR task. While the NOR task itself
is too simplistic a task to be considered a true episodic memory
task (rather it is considered a task of recognition memory), the
WWWhich task is able to model episodic-like memory. In the
WWWhich task, the animal must integrate the location of a par-
ticular object with specific contextual cues to form an episodic-
like memory (Davis et al., 2013a,b). Several studies employing the
WWWhich task have observed performance deficits related to the
aging process and to AD disease state in several transgenic mouse
lines (Davis et al., 2013a,b). While the WWWhich task models
episodic memory in the mouse, it is not very comparable to any
of the episodic memory tasks commonly used in neuropsycholog-
ical testing for AD. This is largely because the human tasks rely on
language as a foundational construct for assessment. Obviously,
there exists no such component in the WWWhich task for mice.
Therefore, caution should be used when attempting to correlate
any preclinical finding concerning episodic memory in mice to
that of human cognition.
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SUMMARY OF MOUSE BEHAVIORAL TESTS
All of the rodent behavioral tasks discussed in this section have
been specifically developed to assess deficits in cognitive domains
related to what is seen in human AD. Just as multiple neuropsy-
chological tests assessing different cognitive domains are often
used clinically to provide a global cognitive profile, so multi-
ple behavioral tasks assessing different cognitive domains should
ideally be used when characterizing the profile of AD-related
cognitive impairment in a particular mouse model of AD.

TEMPORAL PROGRESSION OF THE COGNITIVE DEFICITS
SEEN IN THE COMMONLY USED AD MOUSE MODELS
Cognitive decline is a defining feature of AD, and many mouse
models have been developed that recapitulate aspects of the cog-
nitive impairments seen in AD (Elder et al., 2010; Hochgrafe
et al., 2013; Platt et al., 2013). Although no one animal model
fully replicates the progression of cognitive impairments seen in
the human disease, AD mouse models have been invaluable in
advancing our knowledge of the disease. It should be noted that
most of the AD mouse models are representative of the familial
form of AD (FAD) which accounts for only a small percent-
age of the total AD cases each year (Campion et al., 1999). In
addition, the contributions of both background strain and likely
overexpression of mutant human APP genes on brain develop-
ment and function must always be considered with regard to
observed cognitive deficits in the various AD mouse models. Each
transgenic mouse model of AD provides different insights into
aspects of AD pathogenesis and the cognitive deficits associated
with the disease. A generalized time course of the development
of cognitive deficits across the various mouse models is depicted
in Figure 1B. For each specific mouse model the temporal time
course and progression of cognitive deficits in each cognitive
domain can be different. In addition, in some models, cogni-
tive deficits can be detected prior to the appearance of significant
neuropathology. Careful forethought is therefore required in the
selection of an optimal model displaying the AD related cog-
nitive deficits desired based on the specific research interests of
the investigator. An overview of the progressive cognitive deficits
and the time of appearance of amyloid pathology is presented
in Table 3 for five mouse models that contain amyloid precursor
protein (APP) mutations and in Table 4 for five other common
mouse models that contain APP and presenilin (PS1) mutations,
or APP/PS1/Tau mutations. These tables are by no means an all-
encompassing list of mouse models; rather they are simply meant
to be examples of some of the commonly used mouse models of
AD that are characterized by APP mutations. For recent reviews
of additional AD mouse strains not included here, see (Ashe and
Zahs, 2010; Elder et al., 2010; Epis et al., 2010; Hall and Roberson,
2012; Platt et al., 2013).

PDAPP
(Promoter: Platelet-Derived (PDGF) Promoter, Symbol: Tg
(APPV717F) 109Ili, MGI ID: 2151935)
The PDAPP mouse was first described by Games in 1995
and is considered one of the earliest mouse models of AD
(Chartier-Harlin et al., 1991; Games et al., 1995). In this model,
the cognitive deficits first present themselves in spatial working
memory at 4 months of age when assessed by MWM testing

(Hartman et al., 2005). These deficits in working memory in
the MWM are present throughout the rest of the life span for
this model (Chen et al., 2000; Daumas et al., 2008). Deficits
in recognition memory appear to develop after the working
memory deficits in this model, as the first reported deficits
in the NOR task are at 6 months old (Dodart et al., 1999).
The cognitive deficits in recognition memory do not appear as
robust as those in working memory in this model as there are
inconsistent reports in the literature (Dodart et al., 1999, 2002;
Chen et al., 2000). The cognitive defects in this model appear to
present themselves before the appearance of plaque deposition
(first appear at approximately 6 months) or other gross amyloid
pathologies (Games et al., 1995; Hsiao et al., 1996; Schenk et al.,
1999; Chen et al., 2000; Morgan, 2003).

TG2576
(Promoter: Hamster PrP Promoter, Symbol: Tg (APPSWE)
2576Kha, MGI ID: 2385631)
In the Tg2576 mouse (Hsiao et al., 1996), the first presentation
of cognitive deficits is seen at 5 months of age in spatial working
memory (Arendash et al., 2004). These spatial working memory
deficits are generally accepted to be present across the rest of the
life span for this model (Hsiao et al., 1996; Westerman et al., 2002;
Arendash et al., 2004). However, methodology used to assess spa-
tial memory appears to be very important, as several different
reports have failed to observe these same deficits at various ages
(Hsiao et al., 1996; Arendash et al., 2001a; King and Arendash,
2002). Non-spatial working memory tasks show a similar time
course progression, first appearing at 3–5 months of age and per-
sisting across the lifespan (Hsiao et al., 1996; Chapman et al.,
1999; King and Arendash, 2002; Lalonde et al., 2003; Ohno et al.,
2004). Deficits in recognition memory do not appear until much
later, first appearing at 12 months of age in the NOR task (Oules
et al., 2012; Yassine et al., 2013).

APP23
(Promoter: Thy-1, Symbol: Tg (Thy1-APP) 3Somm, MGI ID:
2447146)
The APP23 mouse model was reported in 1997 (Sturchler-Pierrat
et al., 1997). In this model, the cognitive deficits begin to first
appear in both recognition memory and spatial working mem-
ory at 3 months of age. The deficits appear to be progressive with
age, and at 12 months old the animals also show cognitive deficits
in a reference memory version of the Barnes maze (Prut et al.,
2007). This model develops non-spatial working memory deficits
very late in the progression of the disease (only after 19 months
of age) (Lalonde et al., 2002; Dumont et al., 2004). Interestingly,
cognitive performance in passive avoidance memory tasks follows
the same progression as non-spatial working memory deficits in
this model, unimpaired at 15 months of age and then developing
deficits between 19 and 20 months of age (Kelly et al., 2003).

TgCRND8
(Promoter: PrP, Symbol: Tg (PRNP-APPSweInd) 8Dwst, MGI ID:
3589475)
The TgCRND8 model, described by Chishti et al. (2001), exhibits
early cognitive impairment that spans across multiple cognitive
domains (Chishti et al., 2001). TgCRND8 are impaired on spatial

Frontiers in Genetics | Genetics of Aging April 2014 | Volume 5 | Article 88 | 8

http://www.frontiersin.org/Genetics_of_Aging
http://www.frontiersin.org/Genetics_of_Aging
http://www.frontiersin.org/Genetics_of_Aging/archive


Webster et al. Modeling AD cognitive changes

Table 3 | Progression of cognitive deficits in APP mouse models of AD.

Strain
Passive 

avoidance

Fear 

Conditioning

Y/T -Maze 

Alternation
NOR RAWM MWM

Barnes

Maze

Age in 

Months

PDAPP: [1]

[2] [2] 1-2m

[3] [4] 3-5m

[3] [5] [6] 6-8m*

[3] [4] 9-11m

[6] [6] 12-14m

[2] [4] 15-18m

[6] [6] 19m

Tg2576: [7]

[8] [9] 1-2m

[10] [8] [10] [7] [11] [12]! 3-5m

[13] [11] [14] [12] [11] [15] [11]! [14]! 6-8m

[10] [8] [7, 9] [7]! [10] 9-11m*

[10] [16] [17]! [15]! [10] 12-14m

[18] [16] [11] [17] [14] [19]! [15]! [14]! 15-18m

[10] [10] [15] [10] 19m

APP23: [20]

[21] [21] 1-2m

[21] [22] [21] 3-5m

[21] [23] [21] 6-8m*

9-11m

[24] 12-14m

[25] [26] [26] 15-18m

[25] [27] [25] 19m

TgCRND8: [28]

[29] 1-2m

[30] [31-33] [28] [32] 3-5m*

[30] [29] [34] [35] 6 8m

[29] [36] 9-11m

[30] [36] 12-14m

15-18m

19m

J20: [37]

[38] 1-2m

[39] [38] [40] [41] [42] 3-5m

[39] [43] [44] [45] 6-8m*

[46] [47] [48] [46] 9-11m

[49] [49] [49] [44] [50] 12-14m

15-18m

[44]! 19m

Data not found Same as control Decreased from control

[2] [2]

[3] [4]

[3] [5] [6]

[3] [4]

[6] [6]

[2] [4]

[6] [6]

[8] [9]

[10] [8] [10] [7] [11] [12]

[13] [11] [14] [12] [11] [15] [11] [14]

[10] [8] [7, 9] [7] [10]

[10] [16] [17] [15] [10]

[18] [16] [11] [17] [14] [19] [15] [14]

[10] [10] [15] [10]

[21] [21]

[21] [22] [21]

[21] [23] [21] *

[24]

[25] [26] [26]

[25] [27] [25]

[29]

[30] [31-33] [28] [32]

[30] [29] [34] [35] -

[29] [36]

[30] [36]

[38]

[39] [38] [40] [41] [42]

[39] [43] [44] [45] -

[46] [47] [48] [46]

[49] [49] [49] [44] [50]

[44]

Same as control Increased from control Decreased from control

≥

≥

≥

≥

≥

The strain is presented in the left column and age is presented in the right column. Black cells represent impairment, light gray cells represent no impairment

compared to controls, dark gray cells represent increases from control (very few such cases), and white cells represent time points where no data are available

for the respective behavior. The asterisk appearing in the age column represents when diffuse amyloid plaques are first observable in the brain for that particular

mouse model of AD. The numbers within each cell correspond to the following references: 1: (Games et al., 1995), 2: (Nilsson et al., 2004), 3: (Dodart et al., 1999),

4: (Hartman et al., 2005), 5: (Dodart et al., 2002), 6: (Chen et al., 2000), 7: (Hsiao et al., 1996), 8: (Dineley et al., 2002), 9: (Chapman et al., 1999), 10: (King et al.,

1999), 11: (Arendash et al., 2001a), 12: (Arendash et al., 2004), 13: (Ohno et al., 2004), 14: (Yassine et al., 2013), 15: (Westerman et al., 2002), 16: (Corcoran et al.,

2002), 17: (Oules et al., 2012), 18: (Lassalle et al., 2008), 19: (Morgan et al., 2000), 20: (Sturchler-Pierrat et al., 1997), 21: (Van Dam et al., 2003), 22: (Huang et al.,

2006), 23: (Heneka et al., 2006), 24: (Prut et al., 2007), 25: (Kelly et al., 2003), 26: (Lalonde et al., 2002), 27: (Dumont et al., 2004), 28: (Chishti et al., 2001), 29:

(Hyde et al., 2005), 30: (Hanna et al., 2012), 31:(Ambree et al., 2009), 32: (Gortz et al., 2008), 33:(Richter et al., 2008), 34: (Lovasic et al., 2005), 35: (Janus, 2004),

36: (Hanna et al., 2009), 37: (Mucke et al., 2000), 38: (Harris et al., 2010), 39: (Saura et al., 2005), 40: (Simon et al., 2009), 41: (Lustbader et al., 2004), 42: (Cheng

et al., 2007), 43: (Cisse et al., 2011), 44: (Du et al., 2011), 45: (Palop et al., 2003), 46: (Murakami et al., 2011), 47: (Escribano et al., 2009), 48: (Fang et al., 2012), 49:

(Karl et al., 2012), 50: (Galvan et al., 2006).
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Table 4 | Progression of memory deficits in other mouse models of AD (APP + PS1/Tau).

Strain
Passive 

avoidance

Fear 

Conditioning

Y/T -Maze 

Alternation

Novel Object 

Recognition
RAWM MWM

Barn es

Maze

Age in

Months

APP/PS1: [1]

1-2m

[2] 3-5m*

[3] [4] [5, 6] [7] [6] [4] 6-8m

[3] [8] [3] 9-11m

[9] [10] [2] [11] 12-14m

[11] [12] 15-18m

APP + PS1: [13]

[14] [15] 1-2m

[14] [13, 16] [17] [16] 3-5m

[15] [16] [15] [13] 6-8m*

[14] [13] 9-11m

[18] 12-14m

[16, 17] [19] [17] 15-18m

[20] [21]

APP/PS1KI: [22] 

1-2m

3-5m

[23] [23] 6-8m*

[23] [23] 9-11m

12-14m

[23] [23] 15-18m

[23] [23]

5xFAD: [24]

[24] 1-2m*

[25] [24] [26] [26] [25] 3-5m

[27] [26, 28] [18] [25] 6-8m

[27] [26] [29] 9-11m

[27] [26, 28] 12-14m

15-18m

3xTg- AD: [30]

[31] [31] 1-2m

[31] [32] [31] [33] 3-5m*

[34] [35] [31] [34] 6-8m

[35] [32] [31] [36] 9-11m

[37] [32] [37, 38] [33] [39] 12-14m

[40] [36] 15-18m

ê19m

ê19m

ê19m

ê19m

ê19m

Data not found Same as control Increased from control Decreased from control

The strain is presented in the left column and age is presented in the right column. Black cells represent impairment, light gray cells represent no impairment

compared to controls, dark gray cells represent increases from control (very few such cases), and white cells represent time points where no data are available for

the respective behavior. The asterisk appearing in the age column represents when diffuse amyloid plaques are first observable in the brain for that particular mouse

model of AD. The numbers within each cell correspond to the following references: 1: (Jankowsky et al., 2001), 2: (Park et al., 2006), 3: (Cramer et al., 2012), 4:

(Reiserer et al., 2007), 5:(Cao et al., 2007) 6:(Lalonde et al., 2004), 7: (Volianskis et al., 2010), 8: (Sood et al., 2007), 9: (Zhang et al., 2011), 10: (Knafo et al., 2009), 11:

(Lalonde et al., 2005), 12: (O’leary and Brown, 2009), 13: (Holcomb et al., 1999), 14: (Dineley et al., 2002), 15: (Trinchese et al., 2004), 16: (Arendash et al., 2001a),

17: (Arendash et al., 2001b), 18: (Tohda et al., 2012), 19: (Morgan et al., 2000), 20: (Wilcock et al., 2004), 21: (Sadowski et al., 2004), 22: (Flood et al., 2002), 23:

(Webster et al., 2013), 24: (Oakley et al., 2006), 25: (Ohno et al., 2006), 26: (Shukla et al., 2013), 27: (Devi and Ohno, 2010), 28:(Devi and Ohno, 2012), 29: (Urano and

Tohda, 2010), 30: (Oddo et al., 2003), 31: (Clinton et al., 2007), 32: (Carroll et al., 2007), 33: (Gimenez-Llort et al., 2007), 34: (Billings et al., 2005), 35: (Nelson et al.,

2007b), 36: (Pietropaolo et al., 2008), 37: (Filali et al., 2012), 38: (Arsenault et al., 2011), 39: (Stewart et al., 2011), 40: (Halagappa et al., 2007).
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working memory tasks starting at 3 months of age. These deficits
are seen in the MWM and progress with age of the animal (Janus
et al., 2000; Chishti et al., 2001; Gortz et al., 2008; Richter et al.,
2008; Ambree et al., 2009). Reference memory deficits via Barnes
maze testing are also present at 3 months of age (Gortz et al., 2008;
Richter et al., 2008; Ambree et al., 2009). Similar to this observed
temporal time course of spatial working memory and reference
memory deficits are the development of deficits in both recogni-
tion memory and fear conditioning (Gortz et al., 2008; Richter
et al., 2008; Ambree et al., 2009; Hanna et al., 2012). Deficits
in alternation tasks develop by 6 and 9 months in Y-maze and
T-maze alternation tasks, respectively (Hyde et al., 2005).

J20
(Promoter: Platelet-Derived (PDGF), Symbol: Tg (PDGFB-
APPSwInd) 20Lms, MGI ID: 3057148)
The J20 mouse model was developed by (Mucke et al., 2000).This
model is unique in that the first presented cognitive deficits are
observed very early (at 1–2 months of age) in recognition mem-
ory (Harris et al., 2010). These deficits in recognition memory
are present when assessed at several other time points (Escribano
et al., 2009; Simon et al., 2009; Cisse et al., 2011). However, they
do not appear to progress with the age of the animal and there
has even been a report of no recognition memory deficits in old
animals in advanced stages of the disease (Karl et al., 2012). Early
memory deficits can also be observed in spatial working memory
at 3 months of age when assessed by the MWM and the RAWM
tasks (Lustbader et al., 2004; Cheng et al., 2007; Meilandt et al.,
2008). These spatial working memory deficits are present across
the rest of this model’s lifespan (Palop et al., 2003; Galvan et al.,
2006; Cisse et al., 2011; Du et al., 2011; Murakami et al., 2011;
Fang et al., 2012). Fear conditioning deficits appear consistent
with the presentation of spatial working memory and recognition
memory deficits in this model (Saura et al., 2005). Interestingly,
this model does not appear to display working memory deficits
on tasks of alternation such as the Y-maze (Murakami et al., 2011;
Karl et al., 2012).

APP/PS1
(Promoter: PrP, Symbol: Tg (APPswe, PSEN1de9) 85Dbo, MGI
ID: 3524957)
The cognitive deficits in the APP/PS1 mouse model, first
described by Jankowsky et al. (2001), have been well character-
ized. Cognitive deficits are first seen at 3 months of age in the
RAWM spatial working memory task and are also reported by 6
months of age in the MWM (Cao et al., 2007; Ding et al., 2008).
Further, these deficits have been well characterized across the
lifespan of this mouse model in water based spatial working mem-
ory tasks (Lalonde et al., 2005; Park et al., 2006; Cao et al., 2007;
Sood et al., 2007; Ding et al., 2008; Volianskis et al., 2010; Zhang
et al., 2011; Cramer et al., 2012; Ma et al., 2012). Impairments in
reference memory develop by 6 months and persist through the
rest of the life of this model (Reiserer et al., 2007; Bernardo et al.,
2009; O’leary and Brown, 2009). Deficits in associative learning
have also been described in fear conditioning tasks starting at 6–8
months of age (Knafo et al., 2009; Cramer et al., 2012). Similarly,
passive avoidance deficits have also been described at 12 months
of age (Zhang et al., 2011). No deficits were seen in alternation

tasks of working memory for this model (Lalonde et al., 2004;
Cao et al., 2007).

APP + PS1
(Promoter: Hamster PrP Promoter, Symbol: Tg (APPSWE)
2576kha, MGI ID: 2385631) × (Platelet-Derived (PDGF),
Symbol: Tg (PDGFB-PSEN1M146L) 2Jhd, MGI ID: 2447326)
Holcomb described a mouse model in 1998 that has been widely
used to study cognitive deficits related to AD (Holcomb et al.,
1998). The first observable deficits in this model are shown in
associative learning and present themselves between 4 and 5
months of age (Dineley et al., 2002). The progression of the spa-
tial working memory impairment in this model is relatively slow
compared to most other models. The first reported impairment
in spatial working memory was observed using 6-month-old ani-
mals (Trinchese et al., 2004). However, these cognitive deficits are
not robust at this age, as others have observed no such deficit
(Holcomb et al., 1999; Arendash et al., 2001a). By 15 months of
age the spatial working memory is consistently impaired through-
out the rest of the life span (Morgan et al., 2000; Arendash et al.,
2001b; Gordon et al., 2001; Sadowski et al., 2004; Wilcock et al.,
2004). Similarly, deficits in recognition memory occur later in this
model, first observed at 12 months of age (Mori et al., 2013). No
deficits were observed in alternation tasks of working memory
(Holcomb et al., 1998; Arendash et al., 2001a).

APP/PS1 KI
(Promoter: Endogenous, Symbol: Apptm1.1Cep, MGI ID:
2652346) × (Promoter: Endogenous, Symbol: Psen1tm1Dgf,
MGI ID: 3608968)
The APP/PS1 knock-in mouse model (first described in Flood
et al., 2002) uses endogenous promoters to drive the expression
of humanized amyloid beta sequence, and AD-like pathology and
cognitive deficits develop in the absence of APP or PS1 overex-
pression (Flood et al., 2002). The earliest reports of cognitive
deficits are reported at 7 months in this model (Bruce-Keller et al.,
2011). However, the majority of cognitive deficits appear later. We
have shown previously that the cognitive deficits in spatial work-
ing memory (assessed by RAWM testing) first appear at 9 months
of age (Webster et al., 2013). These deficits are followed by impair-
ments in associative memory (appearing by 14 months of age
Thibault et al., 2012) and in recognition memory (not developing
until 15 months of age Webster et al., 2013).

5×FAD
(Promoter: Thy-1, Symbol: Tg (APPSwFlLon, PSEN1∗M146L∗
L286V) 6799Vas, MGI ID: 3693208)
The 5×FAD model, first described by Oakley et al. (2006), devel-
ops progressive cognitive deficits with age. This model develops
cognitive deficits by 3 months of age in spatial working mem-
ory (Ohno et al., 2006; Urano and Tohda, 2010). These working
memory deficits are followed temporally with the development
of associative learning impairment in fear conditioning (Ohno
et al., 2006; Devi and Ohno, 2010) as well as the development
of deficits in a working memory version of the Y-maze (Oakley
et al., 2006; Devi and Ohno, 2012; Shukla et al., 2013). As
with several of the other models (PDAPP, Tg2576, APP/PS1, and
APP/PS1 KI) this model develops deficits in recognition memory
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later than the observed deficits in spatial working memory
(Tohda et al., 2012).

3×Tg-AD
(Promoter: Thy-1, Symbol: Tg (APPSwe,tauP301L) 1Lfa,
MGI ID: 2672831) × (Promoter: Endogenous, Symbol:
Psen1tm1Mpm, MGI ID: 1930937)
The 3×Tg-AD mouse model, developed by Oddo et al. (2003),
shows progressive cognitive impairments starting at a young age.
The first deficits observed in this model are those of associative
learning deficits, which begin between 3 and 5 months of age.
These are then followed by deficits in spatial working memory at
6 months of age in the MWM task. Both Y-maze alternation and
contextual fear conditioning impairment follow a similar tem-
poral time course. Then deficits in recognition memory present
themselves between 9 and 11 months of age. Finally, reference
memory impairment in the Barnes maze task is observed at 12
months of age.

TEMPORAL PROGRESSION OF AD-LIKE NON-COGNITIVE
BEHAVIORAL ABNORMALITIES SEEN IN THE COMMONLY
USED MOUSE MODELS
While most AD research has focused on the neurobiological
mechanisms underlying the cognitive deficits seen in AD patho-
genesis, there is a wide range of non-cognitive neuropsychiatric
symptoms also associated with the disease. Indeed, these non-
cognitive symptoms are seen as a very important concern among
the family members of the patients and caregivers alike (Tan et al.,
2005). These non-cognitive symptoms are often more difficult
to deal with, as they compose important sources of distress and
psychological burden on the family members/caregivers and can
drastically affect the quality of life of patients by leading to institu-
tionalization (Hope et al., 1998; Shin et al., 2005). Non-cognitive
neuropsychological symptoms associated with AD include activ-
ity disturbances, affective disturbances, aggression, stereotypic
behavior, circadian rhythm disturbances, and anxiety (Ancoli-
Israel et al., 1989; Okawa et al., 1991; Vitiello et al., 1992; Bliwise,
1994; Satlin et al., 1995; Van Someren et al., 1996; Hope et al.,
1998; Harper et al., 2004; Shin et al., 2005; Tan et al., 2005). While
there has been less emphasis placed on the modeling of these non-
cognitive neuropsychological disturbances in murine models of
AD, several of the commonly used mouse models of AD do show a
number of these disruptions. Non-cognitive symptoms associated
with AD shown in the mouse include increased locomotor activ-
ity (Dodart et al., 1999; King et al., 1999; Arendash et al., 2001b;
Dumont et al., 2004; Hyde et al., 2005; Cheng et al., 2007; Gil-Bea
et al., 2007; Pietropaolo et al., 2008; Sanchez-Mejia et al., 2008;
Ambree et al., 2009; Cisse et al., 2011; Mori et al., 2013), anxiety
(Moechars et al., 1996, 1999; Lalonde et al., 2003, 2004; Gil-Bea
et al., 2007; Reiserer et al., 2007; Lassalle et al., 2008; Espana
et al., 2010; Bedrosian et al., 2011; Cisse et al., 2011; Murakami
et al., 2011; Filali et al., 2012), circadian disturbances (Huitron-
Resendiz et al., 2002; Vloeberghs et al., 2004; Wisor et al., 2005;
Ambree et al., 2006; Sterniczuk et al., 2010; Bedrosian et al., 2011),
and increased aggression (Moechars et al., 1996, 1998; Van Dorpe
et al., 2000; Ambree et al., 2006; Vloeberghs et al., 2006; Pugh
et al., 2007; Alexander et al., 2011).

LOCOMOTOR ACTIVITY
Most of the commonly used AD mouse models exhibit increased
locomotor activity (Dodart et al., 1999; King et al., 1999;
Arendash et al., 2001b; Dumont et al., 2004; Hyde et al., 2005;
Cheng et al., 2007; Gil-Bea et al., 2007; Pietropaolo et al., 2008;
Sanchez-Mejia et al., 2008; Ambree et al., 2009; Cisse et al.,
2011; Mori et al., 2013). These disturbances include hyperactiv-
ity, stereotypic behaviors, and home cage activity disturbances
(Dodart et al., 1999; Janus and Westaway, 2001; Auld et al.,
2002; Dumont et al., 2004; Hyde et al., 2005; Cheng et al.,
2007; Gil-Bea et al., 2007; Gimenez-Llort et al., 2007; Pietropaolo
et al., 2008; Cisse et al., 2011) and have been linked to altered
APP metabolism, amyloid levels, and disease progression (Van
Someren et al., 1996; Harper et al., 2004). These activity distur-
bances do not seem to be constant, but rather present themselves
with more severity at different times of the day. For example, in
the TgCRND8 mice, the deficits seem most severe near the end of
their wake cycle and less severe at other times of the day (Ambree
et al., 2006). Further, these disturbances increase with the age of
the animals and with the severity of the disease. Likewise, in the
APP23 mice there have been reports of increased activity in the
second half of the nocturnal phase (end of the active phase of
the wake cycle) (Vloeberghs et al., 2004). These increased activity
disturbances at the end of the activity cycle have been suggested
to be similar to the exacerbation of activity behavioral symp-
toms observed in human AD patients late in the afternoon and
evening time termed sundowning syndrome (Vitiello et al., 1992;
Bliwise, 1994). Other AD mouse models that show activity dis-
turbances are the PDAPP, TG2576, J20, APP + PS1 [Tg2576 +
PS1 (M146L)], and 3×Tg-AD mouse models of AD. The onset of
the disturbances is different for each model, with the J20 and the
TgCRND8 mice developing disruptions earliest (approximately 1
month of age), followed by PDAPP and TG2576 (approximately 3
months of age), and the PS1 [Tg2576 + PS1 (M146L)], 3×TgAD,
and APP23 mice developing last (approximately 6–9 months of
age) (Dodart et al., 1999; King et al., 1999; Arendash et al., 2001b;
Dumont et al., 2004; Hyde et al., 2005; Cheng et al., 2007; Gil-Bea
et al., 2007; Gimenez-Llort et al., 2007; Pietropaolo et al., 2008;
Sanchez-Mejia et al., 2008; Ambree et al., 2009; Harris et al., 2010;
Cisse et al., 2011; Mori et al., 2013).

CIRCADIAN RHYTHM AND SLEEP DISRUPTIONS
Similar to the reported activity disturbances, circadian rhythm
disruptions are also observed in many of the AD mouse mod-
els (Huitron-Resendiz et al., 2002; Vloeberghs et al., 2004; Wisor
et al., 2005; Ambree et al., 2006; Sterniczuk et al., 2010; Bedrosian
et al., 2011). Circadian rhythm disturbances have also been
well described in human AD patients (Ancoli-Israel et al., 1989;
Okawa et al., 1991; Vitiello et al., 1992; Van Someren et al., 1996;
Auld et al., 2002; Harper et al., 2004). These disturbances are
characterized by the AD patient’s propensity to frequently awaken
during the nighttime and to increase the amount of time slept
during the day (Ancoli-Israel et al., 1989; Okawa et al., 1991).
While this behavior is in itself a non-cognitive behavior, it has
been reported to possibly have important effects on patient cog-
nition (Smith, 1985; Graves et al., 2001). Several mouse models of
AD also display sleep disruption. Other similarities between the
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sleep disturbances seen clinically and those seen in the AD mouse
models are: (1) as the severity of the disease progresses, the worse
the sleep disturbances become (Smith, 1985; Graves et al., 2001;
Huitron-Resendiz et al., 2002, 2005) and (2) the greater the sleep
disruptions are, the more severe the cognitive decline seems to be
(Huitron-Resendiz et al., 2002, 2005).

ANXIETY DISTURBANCES
Anxiety disturbances have been reported in many of the AD
mouse models (Moechars et al., 1996, 1999; Lalonde et al., 2003,
2004; Gil-Bea et al., 2007; Reiserer et al., 2007; Lassalle et al.,
2008; Espana et al., 2010; Bedrosian et al., 2011; Cisse et al., 2011;
Murakami et al., 2011; Filali et al., 2012). The prevailing thought
is that these anxiolytic-like behaviors stem from disinhibitory ten-
dencies resulting from the underlying AD pathology (Lalonde
et al., 2003; Ognibene et al., 2005). Both APP function (as these
anxiolytic behaviors are more common in APP transgenic mice)
(Moechars et al., 1996, 1999; Lalonde et al., 2003, 2004; Lassalle
et al., 2008; Murakami et al., 2011; Filali et al., 2012) and dis-
ruption of the cholinergic system (Apelt et al., 2002; Klingner
et al., 2003; Luth et al., 2003) because of its well-known role in
behavioral inhibition (and disruption in several of the AD mouse
lines) have been proposed as underlying causes of this behav-
ioral abnormality. The temporal time course of these anxiety-like
disturbances can vary depending on the mouse model. For exam-
ple, in some models the behavioral disturbances start early at 1–2
months of age or 3–6 months of age for the J20 and the APP/PS1
models, respectively (Lalonde et al., 2004; Reiserer et al., 2007;
Harris et al., 2010). Other models such as the TG2576 develop
the anxiety-like disturbances later at the age of 9–11 months of
age (Gil-Bea et al., 2007). It is also important to note that not
all murine AD models exhibit anxiety disturbances (Arendash
et al., 2001b; Lalonde et al., 2002; Webster et al., 2013). Still, the
majority of models do display these disturbances and the pre-
vailing thought is that this behavioral phenotype of disinhibition
may be akin to the disinhibition seen in AD patients (exemplified
by unacceptable behavior and inappropriate euphoria) (Daffner
et al., 1992; Chung and Cummings, 2000).

AGGRESSIVE BEHAVIORS
Increased aggressive behaviors are another common behavioral
symptom of AD and present themselves in as much as 65% of AD
patients (Burns et al., 1990b). As with other non-cognitive behav-
ioral symptoms of AD, increased aggression can be emotionally
stressful to both the patient and caregivers (Murman et al.,
2002a,b). The exact mechanism that underlies these increased
aggressive behaviors is not known but proposed mechanisms deal
with dysregulation of different neurotransmitter systems such
as serotonin, norepinephrine, dopamine, and GABA (Arsland,
1995; Meltzer et al., 1998). Many AD mouse models also dis-
play increased aggressive behavior (Moechars et al., 1996, 1998;
Van Dorpe et al., 2000; Ambree et al., 2006; Vloeberghs et al.,
2006; Pugh et al., 2007; Alexander et al., 2011). For example, in
the TG2576 mouse increased aggressive behaviors display them-
selves in both the frequency of attacks on other home cage mice
as well as on the latency to first attack when interacting with a
novel mouse (Alexander et al., 2011). The APP23 mouse model of

AD also shows increased aggressive behaviors (Vloeberghs et al.,
2006). These aggressive disruptions appear to develop later than
the onset of cognitive deficits in this model (Kelly et al., 2003;
Van Dam et al., 2003; Vloeberghs et al., 2006). The aggression
alterations in the APP23 model appear by 6 months of age (after
amyloid pathology and behavioral deficits) and seem to remain
relatively constant throughout the rest of the course of disease
(Vloeberghs et al., 2006). This suggests that perhaps aggressive
deficits correlate best with moderate to severe stages of the dis-
ease, which is also what is observed clinically in human AD
(Senanarong et al., 2004).

DEPRESSIVE SYMPTOMS
Depressive symptoms/behaviors are a very common comorbidity
with AD. The exact prevalence of this comorbidity is not known
but is believed to range from as low as 2% to as high as 85%
(variability likely due to methods of assessment, diagnostic crite-
ria, stage of AD participants, and other factors) (Mendez et al.,
1990; Burns et al., 1990a; Migliorelli et al., 1995a,b; Devanand
et al., 1996; Cummings, 2000; Apostolova and Cummings, 2008).
Numerous meta-analysis studies have linked depression and AD
(Chen et al., 1999; Charlson and Peterson, 2002; Ownby et al.,
2006; Lenoir et al., 2011; Diniz et al., 2013), and several even
consider late-life depression a significant risk factor for future
development of AD (Butters et al., 2000, 2008; Diniz et al.,
2013). Generally, depressive symptoms precede the onset of AD
(Devanand et al., 1996) and usually worsen with the progression
of the disease (Mega et al., 1996). Similarly, patients with a history
of depression prior to a diagnosis of AD are much more likely
to experience depressive episodes in the course of AD (Pearlson
et al., 1990; Strauss and Ogrocki, 1996). Despite this well doc-
umented connection between depression and AD and having a
wide range of potentially applicable tools to study depression
in animal models (Seligman et al., 1975; Jolly et al., 1999; Song
and Leonard, 2005; Flint and Shifman, 2008; Nestler and Hyman,
2010), very little work has been devoted to determining the range
of depressive behavioral symptoms in the commonly used mouse
models of AD. Depressive-like behaviors have been reported in at
least one mouse model of AD (Filali et al., 2009), and likely exist
in many of the other commonly used models.

CONCLUSIONS
No one animal model fully replicates the pathogenesis of AD, but
rather only model different aspects of the disease. Consequently,
no one model recapitulates all of the cognitive deficits observed
in human AD. Further, the anatomical makeup and cognitive
ability of mice make it difficult to model all of the intricacies
of higher-order cognitive function exclusive to humans. Instead,
each mouse model allows us insight into different aspects of cog-
nition related to AD. Several important points should be taken
away from the preceding discussion of the temporal development
of cognitive deficits in the various mouse models of AD. First,
the temporal time course and progression of cognitive deficits
in a specific cognitive domain/behavioral task can be quite dif-
ferent among the different mouse models. Investigators should
use careful forethought in selection of an optimal model and
planning experiments based on the progression of that model’s
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specific deficits. Secondly, most models display deficits in spa-
tial working memory earlier than the deficits in other cognitive
domains. Similarly, most of the studies using mouse models
of AD have focused on understanding/correcting the cognitive
deficits associated with the disease. However, AD is not just a
memory disorder, rather it is a complex disease with many dif-
ferent non-cognitive neuropsychiatric symptoms which are an
important source of distress and a psychological burden on fam-
ily members and caregivers alike. These non-cognitive symptoms
are present across many of the different mouse models of AD and
more emphasis should be placed on understanding/correcting
these deficits, as well as the cognitive aspects of the disease. It
is our hope that this comprehensive review of the spectrum of
behavioral deficits present in commonly used AD mouse mod-
els and how well they model human cognitive and non-cognitive
symptoms will assist investigators in selecting an appropriate
mouse model to investigate different aspects of AD pathology and
disease progression.
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