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Exploring heritability of complex traits is a central focus of statistical genetics. Among
various previously proposed methods to estimate heritability, variance component
methods are advantageous when estimating heritability using markers. Due to the
high-dimensional nature of data obtained from genome-wide association studies (GWAS)
in which genetic architecture is often unknown, the most appropriate heritability estimator
model is often unclear. The Haseman–Elston (HE) regression is a variance component
method that was initially only proposed for linkage studies. However, this study presents
a theoretical basis for a modified HE that models linkage disequilibrium for a quantitative
trait, and consequently can be used for GWAS. After replacing identical by descent (IBD)
scores with identity by state (IBS) scores, we applied the IBS-based HE regression to
single-marker association studies (scenario I) and estimated the variance component
using multiple markers (scenario II). In scenario II, we discuss the circumstances in
which the HE regression and the mixed linear model are equivalent; the disparity
between these two methods is observed when a covariance component exists for
the additive variance. When we extended the IBS-based HE regression to case-control
studies in a subsequent simulation study, we found that it provided a nearly unbiased
estimate of heritability, more precise than that estimated via the mixed linear model.
Thus, for the case-control scenario, the HE regression is preferable. GEnetic Analysis
Repository (GEAR; http://sourceforge.net/p/gbchen/wiki/GEAR/) software implemented
the HE regression method and is freely available.

Keywords: Haseman–Elston regression, GWAS, identity by state, variance component, missing heritability, case-

control, mixed linear model, REML

INTRODUCTION
So-called “missing heritability” can occur due to various reasons,
such as small sample size, underrepresented variant spectrum,
experimental design, and improper methodological assumptions
(Manolio et al., 2009). Because of the high-dimensional nature
of genome-wide association study (GWAS) data, in which the
number of markers (M) is far greater than the number of indi-
viduals (N), estimating heritability is difficult. For instance, if the
statistical power is insufficient, variants associated with a small
effect may not be captured under a stringent p-value threshold
(∼ 10−8). This obstacle can be partially bypassed by implement-
ing the mixed linear model, which uses the genetic relationship
between individuals estimated from single nucleotide polymor-
phism (SNP) markers in lieu of fitting hundreds of thousands
of markers together (Yang et al., 2010). Nevertheless, it has
been recently disputed how an estimator should be adjusted
under genetic architecture. Speed et al. (2012) suggested using
a weighted genetic relationship matrix under different genetic
architecture, which is often unknown. As demonstrated in large-
scale empirical data studies (Lee et al., 2013), Speed’s ad-hoc
weighing method depends on the genetic architecture and does
not often outperform plain weight methods upon comparison. As
the genetic architecture, such as the relationship between variant

frequency and variant effect, is often unknown, criteria should be
established to justify the model used to estimate heritability.

For GWAS, as many samples are collected to study diseases,
many studies eventually adopt a case-control design. Due to
ascertainment in case-control studies, scale transformation is
necessary. Without scale transformation, the heritability on the
observed scale can be greater than 1, rendering the estimated
heritability meaningless, as it is not representative of its heritabil-
ity on the liability scale, which is more interpretable (Falconer,
1966) for disease data. An equation (Lee et al., 2011) that trans-
forms heritability from the observed scale to the liability scale has
been proposed (as the equation was indexed as the 23rd equation
in Sang Hong Lee’s paper, it is henceforth denoted as Hong23)
and was investigated under the infinitesimal model, for which
the number of casual loci is infinite. However, in practice, disease
loci are reasonably limited for many diseases (Yang et al., 2011),
which raises the question of whether or not Hong23 works well
for mixed linear model estimates if the infinitesimal model does
not hold.

All of the above concerns are related to the heritability esti-
mated via variance component methods implemented thus far
in mixed linear models. The Haseman–Elston (HE) regression
is a prestigious method for estimating variance components
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(Haseman and Elston, 1972). The HE regression, a well-known
tool for linkage studies that uses identity by descent (IBD) (Lynch
and Walsh, 1998; Hill and Weir, 2011) scores, however, seems a
rusty weapon in the genomics analysis armory of the GWAS era.
This is because the HE regression relies on relatedness measured
on IBD but not identity by state (IBS). Although IBS has been
employed for linkage analysis, such as under affected-pedigree-
member design (Lange, 1986b; Weeks and Lange, 1988; Bishop
and Williamson, 1990), its performance is largely dependent on
marker polymorphisms and may cause high false positives when
ad-hoc weighting functions or incorrect frequencies are adopted.
As an underrepresented concept of the linkage era, IBS is neither
well-adapted to linkage studies nor employed in the original HE
regression framework.

Taken together, the following questions remain.

(1) Can the HE regression be applied to the IBS content such as
for GWAS? If the answer is affirmative, what is the theoretical
basis and the genetic interpretation in this new context?

(2) An equilibrium has been established between the HE regres-
sion and the variance component method (Sham et al.,
2002) for linkage studies. Does this equilibrium stand for
high-dimensional data such as GWAS data and what are its
assumptions?

(3) If the IBS-based HE regression is applied to case-control
studies, can it estimate heritability better than the mixed
linear models?

(4) Given the recent dispute regarding heritability estima-
tion of complex traits, can HE regression provide further
justification?

Recently, a new theory using like-standardized IBS has paved
another route to assess genetic relatedness (Ritland, 1996; Powell
et al., 2010; Yang et al., 2010) between unrelated individuals
(conventional sense). The IBS score resembles the conventional
IBD score (Powell et al., 2010), which raises the question of
whether this IBS score can be used in the HE regression for unre-
lated individuals. In this study, by replacing the IBD scores with
standardized IBS scores, we used the HE regression to conduct
association studies for GWAS data. Assuming random mating,
biallelic loci, and additive genetic effects only on the genetic archi-
tecture of quantitative trait loci (QTLs) underlying a complex
trait, this report establishes the theoretical basis for using the HE
regression for GWAS. Two generic scenarios were investigated,
and their regression coefficients were derived and have geneti-
cally meaningful interpretations. In scenario I, the IBS score was
assessed via a marker that was in linkage disequilibrium (LD) with
a QTL. This enabled the HE regression to be a tool for single-
marker GWAS. In scenario II, IBS score was assessed on multiple
markers, each of which could be in LD with multiple QTLs. This
allowed the HE regression to be used to estimate the variance
component tagged by markers.

The second scenario has implications for estimation of her-
itability for complex trait using whole genome-wide markers
together, similar to the mixed linear model (Yang et al., 2010;
Lee et al., 2011). Using an analytical method that establishes
the equivalence between the IBS-based HE regression and the

mixed linear model, a simple criterion is proposed to justify the
estimates in this study. A similar equivalence between the HE
regression and the variance component analysis with the mixed
linear model was determined in the context of linkage analy-
sis (Sham and Purcell, 2001). In this study, their equivalence is
established under the context of GWAS, and the conditions for
equivalence are explored analytically as well as in silico. After
extending the established HE regression into case-control scenar-
ios, we demonstrated that Hong23 fits the estimate from the HE
regression better than that from the mixed linear model.

Furthermore, as the IBS-based HE regression uses least
squares, it is advantageous in its computational efficiency and is N
(N is the sample size) times faster than the mixed linear model. In
order to facilitate the application, the HE regression algorithm for
GWAS data was implemented in Java software, GEnetic Analysis
Repository (GEAR), which is freely available online.

As the first half of this report is focused on establishing the
mathematical basis of the IBS-based HE regression, many mathe-
matical symbols are introduced (Table 1). In the text below, the
HE regression is the IBS-based HE regression unless explicitly
noted otherwise.

THEORY OF THE IBS-BASED HE REGRESSION
For an individual, the phenotype is denoted as yi, which fol-
lows the normal distribution of N(μy, σ

2
y ), and the genotype is

xi = [xi1, xi2, . . . , xiM], in which M is the number of markers.
For the ith individual, the genotype at the kth locus is xik, which
counts the reference alleles at the kth locus. The reference allele is
denoted as Ak and the alternative is ak. The frequency of Ak is pk

and the frequency of ak is qk. gk is the set of possible genotypes, say
{akak, Akak, AkAk}, at the kth locus. Consequently, akak, Akak,
and AkAk are coded as 0, 1, and 2, respectively. After standardiza-

tion, xi is expressed as si =
[

xi1−2p1√
2p1q1

,
xi2−2p2√

2p2q2
, . . . ,

xiM−2pM√
2pM qM

]
. For

xik, given a genotype of akak, Akak, and AkAk, their standardized

scores are −2pk√
2pkqk

, qk−pk√
2pkqk

, and 2qk√
2pkqk

, respectively. The additive

effect of the lth QTL is denoted as βl. Throughout the study, we
assume a polygenic model with L QTLs.

THE IBS-BASED HE REGRESSION
Haseman and Elston (1972) proposed a linear model, Yij = μ +
bπij + eij, for detecting linkage between a marker and a QTL in
a full-sib design. Yij represents the squared difference between a
pair of full sibs, and πij is the proportion of IBD at an observed
marker locus; μ is the intercept of the regression, b is the regres-
sion coefficient, and eij is the residual. The mathematical expecta-

tion of the regression coefficient is b = −2 (1 − 2c)2 σ 2
A, in which

c is the recombination fraction between the marker locus and the
QTL, and σ 2

A is the additive genetic variance of the QTL.
Now consider a sample consisting of N unrelated individuals.

If the phenotype for the ith individual is yi, we can modify the HE
original regression as below

Yij = μ + b�ij + eij (1)

in which Yij = (yi − yj
)2

represents the squared difference,
�ij is the measure of the genetic relatedness of a pair of
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Table 1 | Notation definitions.

Notation Definition

pk and qk Allele frequencies of A and a at the kth locus. A is the reference allele.

Dkl Linkage disequilibrium of a pair of loci, Dkl = fak al − qk ql , in which fak al is the frequency of haplotype akal .

rkl and Rkl rkl = p(al |ak ) and Rkl = p(Al |Ak ), the conditional probabilities of the two coupling haplotypes, ak al and Ak Al .

ρkl ρkl = Dkl√
pk qk pl ql

, the Pearson’s correlation between a pair of biallelic loci, k and l.

ρ2
M The mean of the squared correlation between any marker pair, including the marker with itself. This can be estimated from the genotype

data.

ρ2
Q The mean of the squared correlation between any a marker and a QTL.

� The ratio between ρ2
Q and ρ2

M . This indicates how markers tag causal variants.

M The number of markers.

Me The effective number of markers. See the text and Supplementary Note II for definition.

xi xi = [xi1, xi2, xi3, . . . , xiM ], genotype scores, a vector. It counts the reference allele number for each locus.

gk The genotype set for the kth locus, such as gk = {ak ak , Akak , Ak Ak ). Analogously, for a QTL, gk = {QkQk ,Qk qk , qk qk }.
si Standardized genotype scores for the i th individual, a vector. si =

[
xi1−2p1√

2p1q1
,

xi2−2p2√
2p2q2

, . . . ,
xiM−2pM√

2pM qM

]
.

L The number of QTLs.

N Sample size.

N N = N(N − 1)
2 .

N ′ N ′ = N(N − 1)
2 − (d + 1), in which d is the number of parameters in the HE regression.

yi The phenotype of the i th individual.

Yij The square of the phenotype difference between the i th and the j th individuals.

�ij The genetic relatedness between the i th and the j th individuals. See the text for definition.

βl The additive effect of the l th QTL.

σ 2
A Total additive variance.

h2 Narrow-sense heritability.

σl The square-root of the additive variance of the l th QTL, σl = √
2pl qlβl .

Hong23 Expressed as h2
l = h

2
o

K (1 − K )
z2

K (1 − K )
P(1 − P) , h2

l is the heritability on the liability scale, h2
o is the heritability on the observed scale directly estimated

based on the case-control data, K is the disease prevalence, P is the proportion of cases in the data, and z is the height of the standard
normal distribution in which the prevalence is located (Lee et al., 2011).

Subscript Subscripts i and j are used to indicate individuals, and k and l are used to indicate loci, which can be either markers or QTLs.

individuals, and eij is the residual. Given N unrelated indi-
viduals, there are N = N × (N − 1) such individual pairs. �ij

is the similarity score between a pair of individuals based on
the IBS, as recently proposed (Powell et al., 2010; Yang et al.,
2010).

For the linear model in Equation (1), the expectation of

the regression coefficient is E(b) = cov(Yij,�ij)
var(�ij)

. var(�ij) is the

variance of the genetic relatedness. cov
(
Yij, �ij

) = E
(
�ijYij

) −
E
(
�ij
)

E
(
Yij
) = E(�ijYij) because E

(
�ij
) = 0 [see the def-

inition for �ij in section The Derivation of var(�ij) and
Effective Number of Markers (Me)], and E

(
�ijYij

) =
�M

k = 1�xik∈gk�xjk∈gk siksjk
[
E
(
yi|xik

)− E
(
yj|xjk

)]2
p (xik) p(xjk) is

the mathematical expectation of the joint distribution for �ij

and Yij. In order to derive var(�ij) and cov
(
Yij, �ij

)
, we need

to introduce the haplotype distribution of a biallelic loci pair
(section Haplotypes of a Biallelic Loci Pair). When the haplotype
is constructed on a pair of markers, it leads to the derivation
of var(�ij) [section The Derivation of var(�ij) and Effective
Number of Markers (Me)]; when the haplotype is constructed
for a marker and a QTL, it leads to E

(
yi|xik

)
, the conditional

expectation of the phenotype based on a marker [section The
Derivation of E

(
yi|xik

)
].

DERIVATIONS OF var(�ij ) AND E (yi |xik )

Haplotypes of a biallelic loci pair
For a pair of biallelic loci, there are four haplotype phases, and
their conditional probabilities are as summarized in Table S1.
rkl = p(al|ak) and Rkl = p(Al|Ak) are defined as the conditional
probabilities of the haplotypes in the coupling phases, such as akal

and AkAl, respectively; 1 − rkl and 1 − Rkl represent the condi-
tional probabilities of the alleles in their repulsion phases, such
as akAl and Akal, respectively. Dkl = fAkAl − pkpl, in which fAkAl is
the frequency of the haplotype AkAl; Dkl is the covariance between
the loci, quantifying the LD between them.

The correlation of a pair of biallelic loci can be expressed as a
2 × 2 correlation

ρkl = Dkl√
pkqkplql

(2)

ρ2
kl is often used to parameterize the LD of a loci pair (Hill and

Robertson, 1968). For more LD parameterization, please refer to
Devlin and Risch (1995) and Wray (2005).

Once the conditional probabilities of the haplotypes are
defined, it is straightforward to obtain the joint probabilities
of the genotypes for a pair of loci. For example, under random
mating, the probability of the genotype AkAkAlAl
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is p (AkAkAlAl) = p (AkAk|AlAl) p (AkAk) = p (Al|Ak) p (Ak)

p (Al|Ak) p (Ak) = p2
kR2

kl. Analogously, this leads to the joint
probabilities of the other eight two-locus genotypes (See
Table 2).

The derivation of var(�ij ) and effective number of markers (Me)

For a sample consisting of unrelated individuals, their pairwise
genetic relationships, say additive genetic relationships, can be
estimated with genetic markers, such as SNP markers (Powell
et al., 2010; Yang et al., 2010). The genetic relatedness �ij between

the ith individual and the jth individual is measured by the dot
product of their standardized genotypes and then divided by the
number of markers.

�ij = si.sj

M
= 1

M
�M

k = 1
(xik − 2pk)√

2pkqk

(xjk − 2pk)√
2pkqk

(3)

The possible relatedness scores of a pair of individuals are sum-
marized in Table 3A, totaling nine products. After combining
the same score values, there are seven unique terms as in
Table 3B. It is easy to derive that E

(
�ij
) = 0 and var

(
�ij
) =

1
M2 �M

k = 1�
M
l = 1cov

(
�ijk, �ijl

)
, in which cov

(
�ijk, �ijl

) =
E
(
�ijk�ijl

)− E
(
�ijk
)

E
(
�ijk
)=E(�ijk�ijl) because E

(
�ij.
) = 0.

�ij is informative in revealing hidden relatedness. For exam-
ple, for the duplicated individual in the sample, E(�ij) = 1; for
first-degree relatives, E

(
�ij
) = 0.5; for second-degree relatives,

E
(
�ij
) = 0.25. Consequently, it can control the entry of samples

that are under the expected cutoff for relatedness.
After some additional algebra (see Supplementary Note I), we

arrived at the following equation.

cov
(
�ijk, �ijl

) = ρ2
kl (4)

When the kth locus and the lth locus are in linkage equilibrium,
cov
(
�ijk, �ijl

) = 0; when the kth locus and the lth locus are at the
same locus, cov

(
�ijk, �ijl

) = 1.

var
(
�ij
) = 1

M2
�M

k = 1�
M
l = 1ρ

2
kl = 1

M
+ 1

M2
�M

k = 1�
M
l �= kρ

2
kl (5)

The distribution of ρ2
kl varies with pk and pl (Wray, 2005). We

can also interpret var
(
�ij
)

as the mean of the squared Pearson’s
correlation between the markers along the genome, denoted
as ρ̄2

M .

For simplicity of the following derivation, the concept of an
effective number of markers, Me, is introduced here. Intuitively,
as markers are often in linkage disequilibrium, the real number
of “independent” markers is smaller than the total number of
the markers genotyped. This concept was previously introduced
under the context of risk prediction (Purcell et al., 2009), and
Me was evaluated using Monte Carlo simulation. As indicated
in Supplementary Note II, 1/var(�ij) is the mathematical expec-
tation of the effective number of markers evaluated under the
simulation method (Purcell et al., 2009). For example, for 100
equifrequent biallelic loci, if the correlation for each pair of con-
secutive markers is 0, 0.25, 0.5, and 0.75, the effective number of
markers is approximately 100, 90, 61, and 29, respectively. Real
GWAS data are often at a magnitude of 104 (Vinkhuyzen et al.,
2013).

The derivation of E (yi |xik )

The expected phenotype of yi given genotype xik depends on
the QTL genotype, say the lth locus, in LD with xik. Assuming a
biallelic QTL in LD with the marker, the conditional expectation
of the marker is E

(
yi|xik = AkAk

) = �xilgl silp(xil|xik = AkAk),
in which gl = {QlQl,Qlql, qlql}, and E

(
yi|xik = AkAk

) =
βl × R2

kl + 0 × 2Rkl (1 − Rkl) − βl × (1 − Rkl)
2 = (2Rkl − 1) βl.

Analogously, we can derive the expected values of
E
(
yi|xik = Akak

) = (Rkl − rkl) βl and E
(
yi|xik = akak

) =
(1 − 2rkl) βl (See Table 4). Once E

(
yi|xik

)
is defined, the

distribution of E(Yij|xik, xjk) can be tabulated as in Table 5.

DERIVING THE MATHEMATICAL EXPECTATION OF THE REGRESSION
COEFFICIENT
In this section, we investigated two scenarios to derive the
expected value of the regression coefficient for Equation (1). In
scenario I, genetic similarity is estimated at a single marker, which
is in LD with one or more QTLs. In scenario II, genetic similarity
is estimated based on M markers, each of which can be in LD with
L QTLs.

Scenario I: one marker and one QTL
Under the scenario of one marker, say the kth marker,
and one QTL, say the lth QTL, since var

(
�ijk
) = 1,

E (b) = E(�ijYij), which is E
(
�ijYij

) = �xik�xjk siksjk[
E
(
yi|xik

)− E
(
yj|xjk

)]2
p (xik) p(xjk). Consequently, we can

derive the regression coefficient as

Table 2 | The joint distribution of two loci.

The kth locus

ak ak Ak ak Ak Ak

The l th locus alal q2
k r2

kl 2pkqk rkl (1 − Rkl ) p2
k

(
1 − Rkl

)2
Alal 2q2

k rkl (1 − rkl ) 2pk qk
[
rklRkl + (1 − rkl )

(
1 − Rkl

)]
2p2

kRkl (1 − Rkl )

AlAl q2
k (1 − rkl )

2 2pk qk Rkl (1 − rkl ) p2
k R2

kl

Marginal probability q2
k 2pkqk p2

k

Each cell lists the joint probability of a genotype pair at the kth and the lth locus, respectively.

rkl and Rkl , as defined in Table S1, represent the conditional probabilities of the haplotypes ak al and Ak Al , respectively.
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Table 3A | The joint distribution of the genetic relatedness between individuals i and j .

Individual i Individual j Relatedness for individuals i and j

Genotype sik Frequency Genotype sjk Frequency �ijk Frequency

akak
−2pk√
2pk qk

q2
k ak ak

−2pk√
2pk qk

q2
k

4p2
k

2pk qk
q4

k

Akak
qk − pk√

2pk qk
2pk qk

−2pk (qk − pk )
2pk qk

2pk q3
k

Ak Ak
2qk√
2pk qk

p2
k

−4pk qk

2pk qk
p2

k q2
k

Ak ak
qk − pk√

2pk qk
2pk qk ak ak

−2pk√
2pk qk

q2
k

−2pk (qk − pk )
2pq

2pk q3
k

Akak
qk − pk√

2pk qk
2pk qk

(qk − pk )2

2pk qk
4p2

kq2
k

Ak Ak
2qk√
2pk qk

p2
k

2q(qk − pk )
2pk qk

2p3
k qk

Ak Ak
2qk√
2pk qk

p2
k ak ak

−2pk√
2pk qk

q2
k

−4pk qk

2pk qk
p2

k q2
k

Akak
qk − pk√

2pk qk
2pk qk

2q(qk − pk )
2pk qk

2p3
k qk

Ak Ak
2qk√
2pk qk

p2
k

4q2
k

2pk qk
p4

k

As A was set as the reference allele, with a frequency of p, aa, Aa, and AA were coded as 0, 1, and 2, respectively.

Table 3B | A reorganization of Table 3A to illustrate the relatedness joint distribution of a pair of individuals.

�ijk
4p2

k
2pk qk

−2pk (qk − pk )
2pk qk

−4pk qk

2pk qk

(qk − pk )2

2pk qk

2qk (qk − pk )
2pk qk

4q2
k

2pk qk

Frequency q4
k 4pk q3

k 2p2
k q2

k 4p2
k q2

k 4p3
k qk p4

k

�ijk represents the product of a standardized genotype pair for individual i and individual j on the kth locus.

E (b) = E
(
�ijYij

) = �xik�xjk siksjk
[
E
(
yi|xik

)
− E
(
yj|xjk

)]2
p (xik) p(xjk) = −2pk

(
qk − pk

)
2pkqk

τ 2
klβ

2
l 2pkq3

k

+ −2pk
(
qk − pk

)
2pkqk

(−τkl)
2β2

l 2pkq3
k + −4pkqk

2pkqk
4τ 2

klβ
2
l p2

kq2
k

+ −4pkqk

2pkqk
4(−τkl)

2β2
l p2

kq2
k + 2qk

(
qk − pk

)
2pkqk

τ 2
klβ

2
l 2p3

kqk

+ 2qk
(
qk − pk

)
2pkqk

(−τkl)
2β2

l 2p3
kqk

and
E(b) = −4τ 2

klpkqkβ
2
l (6)

in which τkl = 1 − rkl − Rkl.
When the QTL overlaps with the marker, or the correla-

tion between the QTL and the marker is 1, E(b) = −4pkqkβ
2
l

because rkl = Rkl = 1. When the QTL is in linkage equilibrium
with the marker, rkl = ql and Rkl = pl, 1 − rkl − Rkl = 0, and
consequently E(b) = 0.

According to Table S1, rkl + Rkl =
(

ql + Dkl
qk

)
+
(

pl + Dkl
pk

)
=

1 + Dkl
pkqk

. Consequently, the expression of Equation (6) can be

rearranged as E(b) = −4
(

Dkl
pkqk

)2
pkqkβ

2
l . The correlation of a

pair of biallelic loci ρkl = Dkl√
pkqkplql

[Equation (2)], and conse-

quently E(b) = −2ρ2
klσ

2
l , in which σl = √

2plqlβl. Alternatively,
we can write

E(b) = −2ρ2
klσ

2
l . (7)

In the GWAS context, squared LD (Pearson’s correlation) is
in lieu of the recombination fraction for linkage. The mathe-
matical expectation of the regression coefficient resembles the
one in the original HE regression. However, it should be noted
that here the interpretation of the regression coefficient is based
on linkage disequilibrium and association, whereas the origi-
nal interpretation is based on linkage between the marker and
the QTL.

When multiple QTLs are in LD with the marker, the con-
ditional expectation for yi given xik is E

(
yi|xik = AkAk

) =
�L

l (2Rkl − 1)βl, E
(
yi|xik = Akak

) = �L
l (Rkl − rkl)βl, and

E
(
yi|xik = akak

) = �L
l (1 − 2rkl)βl, respectively. The joint

distribution of �ij and Yij is as summarized in Table S2,
which resembles Table 5. Still using E

(
�ijYij

) =
�xik�xjk siksjk

[
E
(
yi|xik

)− E
(
yj|xjk

)]2
p (xik) p(xjk), the regression

coefficient can be derived as below.
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Table 4 | The expected phenotype conditional to one’s genotype on

the observed marker.

Marker QTL QTL conditional E (yi |xik )

genotype genotype probability

ak ak ql ql r2
kl (1 − 2rkl ) βl

Ql ql rkl (1 − rkl )

qlQl rkl (1 − rkl )

QlQl (1 − rkl )
2

Ak ak ql ql rkl (1 − Rkl )
(
Rkl − rkl

)
βl

Ql ql (1 − rkl )
(
1 − Rkl

)
qlQl rklRkl

QlQl (1 − rkl )

Ak Ak ql ql
(
1 − Rkl

)2 (
2Rkl − 1

)
βl

Ql ql Rkl
(
1 − Rkl

)
qlQl Rkl (1 − Rkl )

QlQl R2
kl

It is assumed that the kth locus is the observed marker and the lth locus is the

QTL.

rkl and Rkl are the conditional probabilities of the coupling phases of the

haplotypes as defined in Table S1.

E(b) = −2pk
(
qk − pk

)
2pkqk

[
�L

l = 1τklβl
]2

2pkq3
k

+ −4pkqk

2pkqk
4
[
�L

l = 1τklβl
]2

p2
kq2

k

+ 2qk
(
qk − pk

)
2pkqk

[
�L

l = 1τklβl
]2

2p3
kqk

+ −2pk
(
qk − pk

)
2pkqk

[
�L

l = 1 − τ klβl
]2

2pkq3
k

+ −4pkqk

2pkqk
4
[
�L

l = 1 − τ klβl
]

p2
kq2

k

+ 2qk
(
qk − pk

)
2pkqk

[
�L

l = 1 − τ klβl
]2

2p3
kqk

= −4pkqk
[
�L

l=1τklβl
]2

(8)

Equation (8) can be rearranged as

E (b) = −2�L
l1=1�

L
l2=1ρkl1ρkl2σl1σl2 . (9)

It is easy to see that when L = 1, Equation (9) can be simplified
to Equation (7).

Scenario II: multiple markers and multiple QTLs
When the genetic relatedness matrix is constructed with M
markers, each of which may be in LD with L QTLs, the HE
regression becomes Yij = a + b�ij, in which �ij = 1

M �M
k siksjk.

For convenience, �ijk denotes the relatedness fraction constructed

with the kth marker between the ith and the jth individuals.

According to the definition of the regression coefficient, b =
Cov(�ij,Yij)

var(�ij)
.

cov
(
�ij, Yij

) = 1

M
cov

(
M∑

k = 1

�ijk, Yij

)
= 1

M

M∑
k = 1

cov
(
�ijk, Yij

)

= 1

M

M∑
k = 1

−4pkqk
[
�L

l = 1τklβl
]2

var
(
�ij
) = �M

k = 1�
M
l = 1cov

(
�ijk, Xijl

)
/M2, in which

cov
(
�ijk, Xijl

) = ρ2
kl, as expressed in Equation (4).

E(b) =
{

�M
k = 1 − 4pkqk

[
�L

l = 1τklβl
]2

M

}/{
�M

k = 1�
M
l = 1ρ

2
kl

M2

}
(10)

After rearrangement

E (b) = −2σ 2
A� + 
 (11)

in which σ 2
A = �L

l 2plqlβ
2
l , � =

�M
k = 1�

L
l = 1ρ

2
kl

ML
�M

k = 1�
M
l = 1ρ

2
kl

M2

= ρ̄2
Q

ρ̄2
M

and


 = −2�M
k = 1(�L

l1 = 1�
L
l2 �=l1

2ρkl1ρkl2
√

pl1 ql1 pl2 ql2βl1βl2)/M, sum-

marizing the between-locus variance. ρ̄2
Q = �M

k = 1�
L
l = 1ρ

2
kl

ML is the
average squared LD between a marker and a QTL across the

genome, and ρ̄2
M = �M

k = 1�
M
l = 1ρ

2
kl

M2 is the averaged LD between every
pair of markers, including the LD between each marker to itself.
The interpretation of Equation (11) will be clear in Simulation
III and Simulation IV.

If the phenotype is standardized, heritability equals the addi-
tive variance component. It is straightforward to obtain an esti-
mate of the heritability for a single QTL, as in scenario I, or all
QTLs, as in scenario II (See Supplementary Note IV)

E

(
−b

2

)
= h2� (12)

THE SAMPLING VARIANCE OF THE REGRESSION COEFFICIENT
The sum of square error (SSE) is

SSE = var
(
Yij
)− b̂2var

(
�ij
)

var
(
Yij
) = 8σ 4

y (Supplementary Note III), and b̂2var
(
�ij
) =

4σ 4
A�2var

(
�ij
) = 4σ 4

A
ρ̄4

Q

ρ̄2
M

SSE = 8σ 4
y − 4σ 4

A.

MSE = SSE/N ′, in which N ′ = N(N−1)
2 − (d + 1) and d is the

number of the regression coefficient (here d = 1).

σ̂b =
√

MSE

var
(
�ij
) =

√√√√{8σ 4
y − 4σ 4

A

ρ̄4
Q

ρ̄2
M

}
/{N ′var(�ij)} (13)
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Table 5 | The joint distribution of E (�ij )andE (Yij |xi , xj ) for one marker and one QTL.

Individual i

Genotype(xi ) ak ak Ak ak Ak Ak

sik
−2pk√
2pk qk

qk − pk√
2pk qk

2qk√
2pk qk

E(yi |xik ) (1 − 2rkl ) βl
(
Rkl − rkl

)
βl

(
2Rkl − 1

)
βl

Genotype(xj ) sjk E (yj |xjk ) Frequency q2
k

2pk qk p2
k

akak
−2pk√
2pk qk

(1 − 2rkl ) βl q2
k

4p2
k

2pk qk

−2pk (qk − pk )
2pk qk

−4pk qk

2pk qk
0 ( − τkl )

2β2
l 4( − τkl )

2β2
l

q4
k 2pk q3

k p2
k q2

k

Ak ak
q − p√

2pq

(
Rkl − rkl

)
βl 2pk qk

−2pk (qk − pk )
2pk qk

(qk − pk )2

2pk qk

2qk (qk − pk )
2pk qk

In
di

vi
du

al
j

τ2
klβ

2
l 0 (−τkl )

2β2
l

2pk q3
k 4p2

k q2
k 2p3

k qk

AkAk
2q√
2pq

(
2Rkl − 1

)
βl p2

k
−4pk qk

2pk qk

2qk (qk − pk )
2pk qk

4q2
k

2pk qk
4τ2

klβ
2
l τ2

klβ
2
l 0

p2
k q2

k 2p3
k qk p4

k

s.k represents the standardized genotypes of the kth locus.

For the nine cells, the symmetrical cells are highlighted in same color. In each highlighted cell, three terms from the top to the bottom are �ij = sik sjk , E
(
Yij |xik , xjk

) =[
E (yi |xik ) − E

(
yj |xjk

)]2 and their frequencies.

τkl = 1 − rkl − Rkl .

For scenario I, as only one marker is used, var
(
�ij
) = 1 and

ρ̄2
M = 1.

σ̂b =
√

8σ 4
y − 4σ 4

Aρ̄4
Q

N ′ (14)

Given the current GWAS data, which incorporates thousands of
individuals and often up to one million markers, it is reasonable
to assume N ′ ≈ N = N(N−1)

2 and 8Me � 4σ 4
A�2.

σ̂b ≈
√

16Me

N(N − 1)
≈ 4

N

√
Me (15)

For real GWAS data with about one million markers, Me =
1

var(�ij)
= 1

ρ̄2
M

ranges from 30,000 to 50,000 markers due to the

strong LD pattern (Vinkhuyzen et al., 2013).
When the phenotype is standardized, the sampling variance

of the regression coefficient is half of the additive variance
component.

σ̂h2 = 1

2
σ̂b ≈ 2

N

√
Me (16)

THE MATHEMATICAL EXPECTATION OF THE HE REGRESSION
INTERCEPT
The expectation of the intercept is E

(
Yij
) = E[(yi − yj

)2] =
E(y2

i ) + E(y2
j ) − 2E(yiyj). E

(
y2

i

) = var
(
yi
)− E

(
yi
)2

, E
(

y2
j

)
=

var
(
yj
)− E

(
yj
)2

, E
(
yiyj
) = cov

(
yi, yj

)+ E
(
yi
)

E(yj). As the
individuals are not related to each other, assuming no

common environment, cov
(
yi, yj

) = 0. So, E
(
Yij
) =

var
(
yi
)+ var

(
yj
) = 2σ 2

A + 2σ 2
e , twice the phenotypic vari-

ance. The negative ratio between the regression coefficient
and the intercept provides an estimate of the heritability if the
phenotype is not standardized.

The derived regression coefficients and their sampling variance
at the completion of the derivation are summarized in Table 6.

THE ADDITIVE VARIANCE COMPONENT STRUCTURE OF A
QUANTITATIVE TRAIT WITHOUT ASCERTAINMENT
The additive variance of a trait is defined as σ 2

A = �L
l = 12plqlβ

2
l +

�L
l1=1�

L
l2 �=l1

2ρl1l2
√

pl1 ql1 pl2 ql2βl1βl2 . However, for a complex trait
with polygenic genetic architecture, if the QTLs are randomly
allocated along the genome, σ 2

A = �L
l = 12plqlβ

2
l (Supplementary

Note V), a phenomenon that the between-locus covariances
tradeoff. This is often true for a trait without ascertainment or
selection. When each QTL is tagged perfectly and randomly allo-
cated along the genome, � = 1. Equation (11) zeros out the 


term and directly gives the unbiased estimate of twice negative
of the additive variance. Removing the scale makes the heri-
tability estimate unbiased. In practice, due to imperfect LD, the
heritability is reduced to h2�.

In fact, the HE regression and the mixed model are equivalent
and can agree on the heritability estimate (see Simulation III).
However, this equivalence can be disturbed when QTL effects are
not randomly distributed (Simulation IV).

EXTENSION TO CASE-CONTROL GWAS DATA
Like the debut application of the original HE regression for
schizophrenia (Elston et al., 1973), the IBS HE regression is also
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Table 6 | Summary of the derivations.

Scenario E (b) σb

In genetic parameters In statistical

parameters

One marker and one QTL −4τ2
klpk qkβ2

l −2ρ2
klσ

2
l

√
8σ 4

y − 4σ 4
Aρ4

Q

N ′

One marker and multiple QTLs −4pk qk

[
�L

l=1τklβl

]2 −2�L
l1=1�L

l2=1ρkl1 ρkl2 σl1 σl2 As above

Multiple markers and multiple QTLs

⎧⎪⎨⎪⎩
�M

k=1 − 4pk qk

[
�L

l=1τklβl

]2
M

⎫⎪⎬⎪⎭
/{�M

k=1�M
l=1ρ2

kl
M2

}
−2σ 2

A� if QTLs are
randomly allocated along

the genome.

≈ 4
N

√
Me

For E(b), the first expression is derived from the conditional probability and the second expression is for statistical neatness.

When the phenotype is standardized, h2 = −0.5b and σh2 = 0.5σb.

extended to case-control GWAS data in this study. However, due
to scale issues and ascertainment (Dempster and Lerner, 1950;
Falconer, 1966), the estimated heritability needs to be trans-
formed to the liability scale, which is genetically meaningful for
ascertained samples. One transformation was proposed by Lee
et al. (2011), denoted here as Hong23. It is expressed as h2

l =
h2

o
K(1−K)

z2
K(1−K)
P(1−P) , in which h2

l is the heritability on the liability

scale, h2
o is the heritability on the observed scale directly estimated

based on the case-control data, K is the prevalence of the disease,
P is the proportion of the cases in the data, and z is the height
of the standard normal distribution in which the prevalence K is
located.

Once the heritability is estimated by the HE regression on the
observed scale with Hong23, it can be easily transformed from the
observed scale to the liability scale. Simulation studies will be con-
ducted to investigate whether the HE regression better estimates
heritability than does the mixed linear model (Simulation IV).

In addition, Y in the HE regression can also be expressed as a
cross-product, and then E (b) = −2pkqkτ

2
klβ

2
l , which is half that

of Equation (7) (See Supplementary Note VI).

MONTE CARLO SIMULATION RESULTS
In the Monte Carlo simulation, we will investigate the precision
of the derived equations.

SIMULATION I: ONE MARKER AND ONE QTL [EVALUATION OF
EQUATION (7)]
This simulation investigated the accuracy of Equation (7) for
a single-marker application. One thousand unrelated individu-
als were simulated. One marker and one QTL were simulated,
both of which were equifrequent and biallelic. The heritabil-
ity of the QTL was 0.5. The LD between the marker and the
QTL was set at three levels: ρ = 0.25, ρ = 0.5, and ρ = 0.75.
The single marker was used to construct the genetic related-
ness, �. Then a single-marker-based HE regression was con-
ducted. After standardizing the phenotype, the negative half
of the regression coefficient returned the unbiased heritability
estimate.

As indicated by Equation (7), given ρ = 0.25, ρ = 0.5, and
ρ = 0.75, the regression coefficient expectation was −0.062,

0.125, and 0.57, respectively. After 100 rounds of simulation, the
derived expectation of the regression coefficient, as well as the
sampling variance (Table 6), were in good agreement with the
simulation results listed in Table 7. This simulation indicates that
the single-marker HE regression is a competitive tool for QTL
mapping.

SIMULATION II: STATISTICAL POWER OF THE SINGLE-MARKER HE
REGRESSION
For the single-marker HE regression, as the expectation and
the sampling variance of the regression coefficient were already

derived, a t-test could be constructed as t = h2ρ2
kl

2/N , in which

the linkage disequilibrium between the kth marker and the lth

QTL is ρkl. When the sample size is sufficiently large, the t-
test approaches the z-score distribution, and the non-centrality

parameter of χ2
1 is consequently N

h2ρ2
kl

4 · Nh2ρ2
kl ∼ χ2

1 , a χ2-test
with one degree of freedom. In Table 8, the required sample size
to detect association with a SNP for a GWAS (type-I error rate of
10−8) and the required sample size to detect a QTL are indicated.

In contrast, for a conventional one-marker association lin-
ear regression, yi = μ + bksik + ei, if the phenotype and the
genotypes are both standardized, E (bk) = ρklβl, and its stan-

dard error is σbk =
√

σ 2
e

Nσ 2
sk

, a t-test can be constructed as t =

ρklβl/

√
σ 2(e)

Nσ 2(sk)
=
√

Nh2ρ2
kl

1−h2ρ2
kl

. Taking the square of the t statistic,

the non-centrality parameter of χ2
1 is

Nh2ρ2
kl

1−h2ρ2
kl

≈ Nh2ρ2
kl ∼ χ2

1 .

These two χ2 tests differ by the factor N
h2ρ2

kl
4 . Once N >

4
h2ρ2

kl
, the single-marker HE regression is more powerful than the

conventional liner regression; otherwise, the conventional linear
regression method is more powerful. As listed in Table 9, given
that the heritability of a QTL is 0.01, if the LD between the
target marker is low (ρkl = 0.25), medium (ρkl = 0.5), or high
(ρkl = 0.75), the sample size required to allow HE to outperform
the linear regression is 6400, 1600, and 712, respectively. If the
heritability is even smaller, say h2 = 0.001, the required sample
size is 12,800, 3200, and 1423 to make the HE regression more
powerful under the low, medium, and high LD, respectively.
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Depending on the sample size, heritability, and LD patterns
between the QTL and the target marker, the power of the HE
regression may or may not be greater than the conventional linear
regression. However, when the sample size is large, or the heri-
tability of the QTL is large, HE regression is a more powerful tool
for association studies. These results are based on the assumption
that the real sampling variance agrees with the derived theoretical
result.

SIMULATION III: THE ALL-MARKER HE REGRESSION AND THE MIXED
LINEAR MODEL ARE EQUIVALENT [� = 0 IN EQUATION (11)]
In this simulation, 100 equifrequent and biallelic QTLs were sim-
ulated, and the additive effect of each QTL was sampled from
N (0, 1). Four LD levels (ρl1,l2 = 0, 0.25, 0.5, 0.75) were adopted
for each of two consecutive QTLs, and the effective number of
markers decreased correspondingly (Me ≈ 100, 90, 61, 29). One
thousand unrelated individuals were simulated, and the genetic
relatedness of each pair of individuals was estimated on these
100 QTLs. The heritability of the simulated polygenic model was

Table 7 | Simulation evaluations of Equation (7).

LD Analytical resultsa Simulation resultsb

ρ = 0.25 −0.062 (0.004) −0.062 (0.0039)

ρ = 0.5 −0.25 (0.004) −0.25 (0.0039)

ρ = 0.75 −0.56 (0.004) −0.56 (0.0039)

aThe standard error was calculated: σ̂b =
√

8σ4
y −4σ4

Aρ4
Q

N ′ ≈ 4
N

√
Me. Here N = 1000

and Me = 1.
bThe standard errors in parentheses indicate the mean of the standard error

from 100 simulation replications.

Table 8 | The sample size required for the single-marker HE regression

to detect a QTL associated with the target marker.

h2 ρkl

0.25 0.5 0.75

0.005 33,276 8,319 3,697

0.01 16,638 4,159 1,849

0.025 6,655 1,664 739

0.05 3,327 832 370

Here the p-value cutoff was 10−8.

Table 9 | The required sample size that makes the HE regression more

powerful than the conventional single-marker linear regression.

h2 ρkl

0.25 0.5 0.75

0.005 12,800 3,200 1,423

0.01 6,400 1,600 712

0.025 2,560 640 285

0.05 1,280 320 143

0.5, which is calculated as h2 = σ 2
A

σ 2
A+σ 2

e
. And σ 2

A = �L
l = 12plqlβ

2
l +

�L
l1 = 1�

L
l2 �= l1

2ρl1l2
√

pl1 ql1 pl2 ql2βl1βl2 .
Both the HE regression and the mixed linear model were

employed to estimate the additive variance component. The
mixed linear model (Yang et al., 2010) can be expressed as yi =
μ + xijaj + ei, where yi is the phenotype of the ith individual, μ

is the mean, xij is the indicator variable with values of 0, 1, or 2
depending on the reference allele counts, and ej is the residual.
Restricted maximum likelihood (REML) was employed to esti-
mate the variance components of the mixed linear model (Yang
et al., 2010).

As shown in Table 10, the estimated heritability from either
the HE regression or the mixed linear model was equal and not
biased, demonstrating the equivalence between the HE regres-
sion and the mixed linear model when the QTLs are randomly
distributed regardless of their pairwise LD.

E (b) = −2σ 2
A� (ignoring 
) sheds light on the inference of

the general LD pattern between the tagged markers and the causal

variance. � = ρ̄2
Q

ρ̄2
M

, and ρ̄2
M can be estimated from markers. If the

heritability of the trait is known (not likely though), it is possible
to estimate ρ̄2

Q. For example, the heritability of height is estimated
at around 0.8 (Visscher et al., 2006; Perola et al., 2007) in linkage,
but is 0.4 as estimated in an association study (Yang et al., 2010).
If the estimate from linkage was considered to be the true her-
itability, �̂ = 0.5. Assuming the effective number of markers is
Me = 10, 000, ρ̄2

M = 0.0001, ρ̄2
Q = �̂ρ̄2

M = 0.00005. The average
absolute value of the LD between a QTL and a marker is 0.007.

SIMULATION IV: WHEN THE HE REGRESSION AND THE MIXED LINEAR
MODEL ARE NOT EQUIVALENT [WHEN � �= 0 IN EQUATION (11)]
The general setting for this simulation was similar to the last
one, but the QTL effects were sorted such that the addi-
tive effects were increased along the simulated chromosomal
segment. The covariance between any two QTLs can be pre-
dicted by cov

(Ql1 ,Ql2

) = ρl1,l2
√

pl1 ql1 pl2 ql2βl1βl2 . The heritabil-

ity is defined as h2 = σ 2
A

σ 2
A+σ 2

e
, in which σ 2

A = �L
l=12plqlβ

2
l +

�L
l1 = 1�

L
l2 �= l1

2ρl1l2
√

pl1 ql1 pl2 ql2βl1βl2 . Different from the last sim-

ulation, 
 = −2�M
k = 1(�L

l1 = 1�
L
l2 �= l1

2ρkl1ρkl2σl1σl2 )/M �= 0.
With this set-up, which is not likely to be true in practice

but illustrates an extreme case, the HE regression and the mixed

Table 10 | Simulation evaluations of Equation (11) and comparison

between the HE regression and the mixed linear model method

(� = 0) .

LD (ρ) Equation (11)a HE resultsb Mixed model resultsc

ρ = 0 0.5 (0.020) 0.499 (0.020) 0.499 (0.041)

ρ = 0.25 0.5 (0.019) 0.500 (0.019) 0.501 (0.042)

ρ = 0.5 0.5 (0.016) 0.502 (0.015) 0.491 (0.043)

ρ = 0.75 0.5 (0.011) 0.488 (0.011) 0.508 (0.048)

aCalculated given 	 = 0.
b,cThe standard errors in parentheses indicate the mean of the standard error

from 100 simulation replications.
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Table 11 | Simulation evaluations of Equation (11) when the

covariance summation is not zero (� �= 0).

LD (ρ) Equation (11)a HE resultsb Mixed model resultsc

ρ = 0 0.500 (0.020) 0.497 (0.020) 0.499 (0.041)

ρ = 0.25 0.715 (0.019) 0.712 (0.019) 0.414 (0.041)

ρ = 0.5 0.853 (0.015) 0.850 (0.015) 0.347 (0.043)

ρ = 0.75 0.878 (0.011) 0.881 (0.011) 0.291 (0.048)

aCalculated given 	 �= 0.
b,cThe standard errors in parentheses indicate the mean of the standard error

from 100 simulation replications.

model gave very different estimations. With increased correla-
tion between markers, the HE gave inflated estimates and the
mixed model gave deflated estimates. Although both methods
gave biased estimates, Equation (11) still could predict the results
of the HE regression correctly (See Table 11).

SIMULATION V: APPLICATION TO CASE-CONTROL DATA
The HE regression was applied to case-control data. A poly-
genic model of L equifrequent diallelic QTLs was simulated, and
each locus was in Hardy–Weinberg equilibrium and any pair of
QTLs was in linkage equilibrium. The heritability on the liabil-
ity scale was h2

l , the heritability on the liability scale. The effect
of each QTL was sampled from N(0, σ 2

b ), and σ 2
b = h2

l /[2 × p ×(
1 − p

)× L], in which p = 0.5. The phenotype of each individ-
ual under the liability scale was scaled to unit. The ascertainment
of cases on the liability scale was K. Individuals were sampled
from the described reference population until 1000 cases and
1000 controls were recruited.

The heritability on the liability scale was 0.5. In order to cover
a broad range of scenarios, three levels of QTL number, L = 100,
1000, and 10,000, and three levels of disease prevalence at the
population level, K = 0.1, 0.01, and 0.001, were adopted. Nine
scenarios were simulated in total, and 30 independent simulation
replications were implemented for each scenario.

The genetic relationship matrix was constructed using all indi-
viduals and the allele frequencies were estimated from the sample.
The genetic additive variance components were estimated with
the HE regression and the mixed model method. As the directly
estimated variance component was on the observed scale and
could be greater than 1, we employed both the REML and non-
constrained REML for mixed model methods, which allowed the
heritability to be greater than 1.

As illustrated in Figure 1, the estimated h2
l was compared

across all three methods. In general the HE regression resulted
in a more precise estimate than that of the REML and non-
constrained REML. For the mixed model methods, either with
or without constraints, REML often underestimated the variance
components. The bias was caused by two factors: the number of
QTLs (in each row panel) and the prevalence of the disease (in
each column panel). With fewer QTLs, a lower prevalence could
exacerbate underestimation by the mixed model.

CONCLUSION
The analytical results summarized in Table 6 were evaluated using
Monte Carlo simulation, and were highly precise in general. The

single-marker HE regression is a competitive tool for QTL map-
ping, particularly with a large sample size (Simulations I, II). The
HE regression and the mixed model method were equivalent, with
both providing a precise heritability estimate for a typical poly-
genic trait (Simulation III). However, if QTL effects are correlated,
neither the HE regression nor the mixed model method gave an
unbiased estimate (Simulation IV). For case-control studies, the
HE regression should be preferred in general (Simulation V).

GENETIC ANALYSIS REPOSITORY (GEAR)
In order to facilitate application of the HE regression method to
estimate complex trait heritability, GEAR software was developed.
GEAR was developed on Java and can run across many operat-
ing systems, such as Windows, Mac, and Linus/Unix, as long as a
Java virtual machine is available. GEAR has been demonstrated to
function in the following situations.

(1) It can generate genetic relatedness of unrelated individu-
als, as formulated in Equation (3), based on whole-genome
markers.

(2) It can estimate the effective number of markers based on a
genetic-relatedness matrix.

(3) It can estimate heritability with the HE regression. GEAR can
read genotype data saved in PLINK binary format (Purcell
et al., 2007).

GEAR can be downloaded from the website: https://sourceforge.
net/projects/gbchen/files/GEAR/

The online GEAR manual can be found at https://sourceforge.
net/p/gbchen/wiki/GEAR/

DISCUSSION
Historically, linkage was the major tool for QTL mapping of
complex traits since the 1970s, which was gradually replaced by
association analysis when GWAS became popular (The Wellcome
Trust Consortium, 2007). The transmission/disequilibrium test
(TDT; Ott, 1989; Spielman et al., 1993) triggered the transi-
tion from linkage to association for family-based studies. In the
year 2000, generalized TDT was proposed (Laird et al., 2000),
which is robust for population stratification. Shortly after that,
population-based design emerged as the major flow in genetic
data, and GWAS became the leading method for estimating her-
itability up until now. Extension of the original HE regression to
association studies can be seen as an effort to increase the diversity
of GWAS analysis tools.

In this study, we established a theory for a modified HE regres-
sion, in which IBS scores replace IBD scores. Although IBS is
used to detect IBD in linkage studies (Lange, 1986a,b; Bishop
and Williamson, 1990), it is considered to be a way of inferring
IBD for relatives, such as sib pairs, when founder genotypes are
unavailable. In this study, IBS served as the key concept to detect
association of unrelated samples rather than relatives. Linkage
and association have both been proposed to estimate heritabil-
ity of complex traits. For example, for height, the heritability
estimated from linkage studies is around 0.8 (Visscher et al.,
2006; Perola et al., 2007), but around 0.4 from association studies
(Yang et al., 2010). Thus, far there is no clear conclusion regard-
ing the fundamental difference between the heritability estimated
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FIGURE 1 | Estimation of heritability on the liability scale using

the HE regression and mixed linear model methods. In each row,
from left to right, each panel represents the case-control sample
simulated under the same heritability on the liability scale (h2

l ) but
with different prevalence. In each panel, the vertical axis indicates

the estimated heritability on the liability scale (h2
l ), whereas the

horizontal axis indicates which of the three methods (REML,
non-constrained REML, and HE regression [least square estimate])
was used. The standard error of the mean (SEM) is indicated at
the top of each bar.

from these two kinds of methods. Despite their mathematical
similarity, application, and interpretation differences should be
appreciated.

Under various scenarios, the mathematical expectations of the
regression coefficients, as well as the sampling variances, were
derived. There is substantial mathematical similarity between the

IBD HE regression and the IBS HE regression. For example, for
both models under the single-marker scenario, their regression
coefficients can be expressed in a unified form, E(b) = −2ρ2σ 2

A.
As these two models are based on different genetic mecha-
nisms, the interpretations of their respective regression coeffi-
cients are reasonably different. In the IBD-based HE regression,
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E(b) = − 2 (1 − 2c)2 σ 2
Al

, 1 − 2c ranges from 0 to 1; whereas

in the IBS-based HE regression, E(b) = −2τ 2
klσ

2
Al

, in which τkl,
ranges from −1 to 1. As the values of r and R rely upon the
allele frequencies of the biallelic marker and the biallelic QTL,
they reach either −1 or 1 only given that the marker has the
same allele frequency as that of the QTL. However, after tak-
ing the square, both (1 − 2c)2 and τ 2 lie between 0 and 1,
inclusive.

Equation (11), E (b) = −2σ 2
A� (ignoring 
), provides a pos-

sible way to estimate the LD pattern between causal loci and
markers. If the true heritability is not readily known, it is pos-
sible to estimate ρ̄2

Q, the average LD between QTLs and markers.
As demonstrated in simulation III, it may be possible to estimate
ρ̄2
Q. However, the causal loci can be in any possible form, such

as SNPs, chromatin markers, or methylation markers, and dif-
ferent methods capture genetic variation in different forms. In
practice, the obstacle in estimating ρ̄2

Q lies in how heritability esti-
mated from different methods, such as linkage and association,
or genotyping platforms, such as SNP markers and methylation
markers, can be connected to each other. Equation (11) sheds
light on the investigation for how QTLs are distributed along the
genome.

Application of the HE regression to heritability estimation of
complex traits revealed that the HE regression seems to be equiva-
lent to the mixed model approaches in general (
 = 0). A similar
equivalence was previously established for linkage analysis (Sham
and Purcell, 2001). However, for GWAS data, it should be noted
that the equivalence is conditional on the genetic architecture of a
trait. As indicated in the simulation, the equivalence stands only
for typical polygenic genetic architecture, which may be true for
many traits without ascertainment or selection, such as height
(Yang et al., 2010). However, when substantial covariance exists
between causal loci, the equivalence does not stand and neither
the HE regression nor the mixed model method gave unbiased
estimates. The equivalence may break down under other circum-
stances that have not been investigated. In real studies, this kind
of covariance may be a result of selection in active regions, such
as HLA loci, which harbors many signals; then, the HE regres-
sion and the mixed model estimates may differ. The equivalence
may break down under other circumstances that have not been
investigated in this study.

In GWAS, many samples are collected for complex diseases,
which are often in a case-control design. Complex disease preva-
lence is often low; consequently, the cases are under strong
ascertainment, which disrupts the assumptions underlying the
mixed linear model. As observed in the simulation studies, the
HE regression is more precise in estimating heritability than the
mixed linear model for case-control studies across a broad range
of scenarios. Use of HE regression is advantageous when the dis-
ease prevalence is low and the number of causal loci is few. In their
original work, Lee et al. (2011) assumed an infinitesimal model of
complex diseases. However, when this assumption was disrupted
during simulation (likely in practice as well), the mixed linear
model method gave biased estimates of heritability. Thus, when-
ever possible, the HE regression method is preferable to estimate
heritability of complex traits.

As derived in this work, the HE regression and the mixed
model method are equivalent under polygenic genetic architec-
ture. In other words, when the estimates generated by these two
methods significantly differ for the same data, caveats should be
presented. As investigated in the simulation, the real heritability
may lie between the estimates of these two methods. Speed
et al. (2012) previously investigated the assumptions underly-
ing the mixed model method and proposed alternative weighting
methods to adjust the heritability estimation. However, as their
weighting method depends on genetic architecture, which is
often unknown, it is difficult to justify which weighting method
is appropriate to adopt for certain data (Gusev et al., 2013).
Thus, simply comparing the estimates from the HE regression
and the mixed model method may offer an alternative way of
justification.

It should be noted that the HE regression method is on the
basis of the least square framework rather than the maximal
likelihood framework as many mixed model based on (Yang
et al., 2010; Speed et al., 2012; Lee et al., 2013). As a numerical
method, maximal likelihood methods give estimates optimizing
the likelihood under the assumptions, which may break down in
practice. Given recent interests in comparing estimates with or
without imputation for the genome (Gusev et al., 2013), con-
troversial results have been observed. It is not sure what the
increased or decreased estimation of heritability indicates after
imputation. A reasonable guess will be that the local covariance
structure, as indicated in Equation (11), changes and eventually
bring out different estimates. The proposed IBS HE regression,
which depends on fewer assumptions compared with maximal
likelihood methods, may help melt the controversy.

In practice, undocumented relatedness may creep into sam-
ples, and eventually bring about suspiciously high relatedness. As
discussed previously (Powell et al., 2010), Equation (3) gives a
score of 0 for a pair of unrelated individuals, 0.5 for first-degree
relatives, and 1 for duplicated individuals or monozygotic twins.
It seems easy to eliminate related individuals if a cutoff, say a relat-
edness of less than 0.05, is applied to the sample. For association
studies, population stratification may increase false positive rates.
To reduce the threat of population stratification, phenotypes can
be adjusted by principal components (Price et al., 2006) and then
fit into the HE regression. If a sample is admixed, the power of
the HE regression may be reduced if, in the ancestral popula-
tions, the allele frequency spectrums are different from each other
or genetic heterogeneity exists in the genetic architecture of the
underlying trait in question. More investigation will be required
to overcome this challenge.

The variance components have often been estimated via REML
(Yang et al., 2010; Lee et al., 2011). Given its various merits,
REML is computationally expensive, particularly for large sam-
ple sizes. The computational complex is on the scale of O(tN3),
which indicates that it is cubic to the sample size and t rounds
of iterations. The time complex of the HE regression is far lower,
asymptotically O(2N2), given two parameters, the intercept and
the regression coefficient, included in the model. Given the large
sample sizes often employed in GWAS, the computational burden
can be dramatically reduced. Although the HE regression method
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is derived on a simple-regression scenario, its extension to a
multiple-regression scenario is straightforward. For instance, the
genetic relatedness between each pair of individuals can be con-
structed on each chromosome and then all chromosome-based
relatedness scores can be fit into the regression framework. In
addition, the difference between a pair of phenotypes can also be
expressed as a cross product and squared sum (Sham and Purcell,
2001).
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