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Progress and challenge of microRNA research in immunity
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MicroRNAs (miRNAs) are 19–24 nucleotide long non-coding RNA species that regulate the
expression of multiple target genes at the post-transcriptional level. They are required for
normal immune system development and function, and their expression is dynamically
regulated in different immune cell subsets during lineage differentiation and immune
response. Aberrant expression of miRNAs results in dysregulated innate and adaptive
immunity. This in turn can lead to failure to fight against invading pathogens and the
development of autoimmune diseases and hematopoietic malignancies. In this article,
we review current progress in miRNA research in immunity in both physiological and
pathological settings. We also discuss research limitations and challenges that researchers
are just beginning to solve.
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INTRODUCTION
Gene expression is post-transcriptionally regulated by different
types of non-coding RNAs. Among them, microRNAs (miRNAs)
inhibit translation or facilitate degradation of target messenger
RNAs (mRNAs; Carthew and Sontheimer, 2009). Primary miRNA
transcripts are produced by RNA polymerases II and III and
processed in the nucleus by the RNase III enzyme Drosha into
pre-miRNAs (Lee et al., 2002, 2003, 2004; Yi et al., 2003; Lund
et al., 2004; Han et al., 2006). Once shuttled into the cytoplasm,
pre-miRNAs are further processed by another RNase III enzyme,
Dicer, to produce 19- to 24- base-pair long polynucleotides. These
mature miRNAs are incorporated into the RNA-induced silencing
complex (RISC),where they interact with the core component pro-
tein Argonaute (Ago; Grishok et al., 2001; Hutvagner et al., 2001;
Ketting et al., 2001; Hutvagner and Zamore, 2002; Lee et al., 2002;
Mourelatos et al., 2002; Lingel et al., 2003). RISC is the functional
unit of miRNA-mediated regulation. It uses the “seed sequence”
of the miRNA to recognize complementary regions mainly in the
3′ UTRs of mRNAs being targeted for degradation or translational
silencing (Hutvagner and Zamore, 2002; Lewis et al., 2005; Pillai
et al., 2007). Recent studies have revealed the critical role of miR-
NAs in tuning immunity. Immune cells express unique miRNA
profiles which contribute to their respective functions (Kuchen
et al., 2010) and change their miRNA repertoires in response to
varying stimuli such as T cell receptor (TCR) activation (Bron-
evetsky et al., 2013). The past decade has seen many fascinating
discoveries about the role of miRNAs in immunity. Unfortunately,
the complex natures of the miRNA-mediated gene regulation as
well as existing technical challenges have also slowed down research
progress.

CURRENT PROGRESS IN miRNA RESEARCH IN IMMUNITY
PROGRESS IN FUNCTIONAL ASSESSMENT OF miRNAs IN IMMUNE
CELL DEVELOPMENT AND FUNCTION
MicroRNAs were initially discovered for their role in influencing
cell fate and differentiation decisions during the development of

an organism (Bartel, 2004). In the past decade, mounting evidence
has demonstrated that miRNAs are equally important in regulating
the immune system. Efforts to discover the cellular and molecular
mechanisms of miRNA-mediated immune regulation have relied
on gain-of-function and loss-of-function approaches. The gen-
eral importance of miRNAs in immune cells has been repeatedly
confirmed by deletion of key components of the miRNA biogen-
esis pathway such as Ago, Dicer, and Drosha (Cobb et al., 2005,
2006; Muljo et al., 2005; O’Carroll et al., 2007; Koralov et al., 2008).
These gross loss-of-function experiments revealed two important
characteristics of miRNA-mediated regulation. First, miRNAs reg-
ulate the survival and proliferative function of precursor cells
and influence the number and type of differentiated cells that
are produced during hematopoiesis and immune responses. In
some instances, deletion of all miRNAs greatly promoted one cell
type while impairing another. Second, immune cells require miR-
NAs to carry out their normal functions. Indeed, deletion of Dicer
or Drosha in regulatory T (Treg) cells compromised their sup-
pressive capacity and resulted in autoimmune phenotypes (Chong
et al., 2008; Liston et al., 2008; Zhou et al., 2008). Taken together,
it was reasonable to conclude that miRNA-mediated gene reg-
ulation is involved in controlling all aspects of immunity and
miRNA dysregulation results in immune-associated phenotypes
such as chronic inflammation and autoimmunity by disrupting
the normal development, homeostasis, and function of immune
cells.

In the past several years, functional studies have further
expanded the list of cell types and function regulated by individual
miRNAs (Table 1). These studies began to discover mechanisms
by which miRNAs regulate immune processes. A given miRNA
can influence immune cell development by directly inhibiting
transcription factors (TFs) and repressors that are crucial for
determining cell-type specific differentiation and maintaining lin-
eage identity (Fontana et al., 2007; Johnnidis et al., 2008; Du et al.,
2009). miRNAs can also modulate immune responses through tar-
geting key signaling molecules downstream of different immune
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Table 1 | miRNAs involved in immune system.

Function miRNA

Innate immunity Granulocyte development miR-155, miR-223

Monocyte development miR-155, miR-17-92

Neutrophil function miR-223

Macrophage activation miR-155, miR-146a, miR-21

Dendritic cell function miR-155

Adaptive immunity T cell development miR-181

B cell development miR-150

T cell proliferation miR-182, miR-214

Th1, 17 cell differentiation miR-155, miR-210, miR-326

Tfh cell differentiation miR-10a, miR-17-92

Treg cell function miR-155, miR-146a

CD8 T cell function miR-155

B cell function miR-155, miR-150

Immunological diseases Autoimmunity SLE miR-23b, miR-146a, miR-125a, miR-21, miR-148a, miR-155, miR-15a

RA miR-23b, miR-146a, miR-155, miR-223

MS miR-155, miR-326, miR-23b, miR-124

Infectious disease miR-155

Immune cell malignancy miR-15a, miR-16, miR-17-92, miR-155, miR-223, miR-29b

cell-type specific receptors such as B and T cell receptors as well
as innate pathogen recognition receptors (Li et al., 2007; Androul-
idaki et al., 2009; Hou et al., 2009; O’Connell et al., 2009; Belver
et al., 2010; Sheedy et al., 2010). Through repressing the expres-
sion of their many targets, miRNAs exert varied, subtle, and often
contrasting influence.

miRNA in adaptive immunity
Loss-of-function and gain-of-function studies of individual miR-
NAs have revealed that a given miRNA can impact different aspects
of adaptive immune cell development and function. For example,
miR-181 is a positive regulator of B cell differentiation and ectopic
expression results in a substantial increase in B cells (Chen et al.,
2004). Similarly, miR-17∼92 has been shown to be critical in pro-
moting early B cell development, as loss of miR-17∼92 leads to
increased Bim expression and apoptosis at the pro-B cell to pre-B
cell transition (Ventura et al., 2008). In contrast, miR-150 lim-
its early B cell differentiation, since forced expression of miR-150,
which targets c-Myb, impaired transition from pro-B cells to pre-B
cells (Xiao et al., 2007). In the periphery, several studies have found
that miR-155 plays a key role in controlling B cell biology. Mice
deficient of miR-155, which is induced during germinal center
(GC) reaction in vivo, have defects in both antibody secretion and
class switching (Thai et al., 2007; Vigorito et al., 2007). The pheno-
type seems to be a consequence of repressing a number of genes
including PU.1 and AID, an enzyme critical for somatic hyper-
mutation and antibody class switching (Vigorito et al., 2007; Teng
et al., 2008). In contrast, there is increased follicular B cell acti-
vation with enhanced antibody secretion upon T cell-dependent

antigen immunization in mice deficient of miR-150 (Xiao et al.,
2007).

In T cells, emerging data has suggested that miRNAs also
regulate the development and function of different T cell sub-
sets required for adaptive immune response. Loss of miR-
155 enhanced Th2 but impaired Th1 and Th17 differentiation
(Rodriguez et al., 2007; O’Connell et al., 2010). Th17 differen-
tiation was shown to be regulated by miR-326, too (Du et al.,
2009). Recently, attention has also turned to miRNA regula-
tion in follicular T (Tfh) cells, the T cell subset that helps
activate B cells during humoral response. Bcl-6, a critical TF
for Tfh differentiation, has been shown to regulate expres-
sion of several miRNAs (Yu et al., 2009), and miR-10a was
known to modulate plasticity of Tfh cells (Takahashi et al.,
2012). The latest studies have demonstrated several mecha-
nisms through which miR-17∼92 regulates Tfh differentiation
that involve targeting RORα and phosphatase, PHLPP2 (Baumjo-
hann et al., 2013; Kang et al., 2013). Similarly, insight into the
cell-extrinsic role of miRNAs might be gained from research
on Treg cells. It has been reported that miR-155 and miR-
146a can influence Treg homeostasis and suppressor function
through targeting SOCS1 and Stat1, respectively (Lu et al., 2009,
2010).

miRNA in innate immunity
The role of individual miRNAs in controlling the develop-
ment and function of innate immune cells has also been well
documented. For example, miR-17∼92 has been shown to
be important in monocyte differentiation. miR-17∼92 targets
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Runx1, which promotes monocytopoiesis, while Runx1 sup-
presses miR-17-92 by binding to its promoter region (Fontana
et al., 2007). The range and complexity of miRNA involvement
in innate immunity have been further demonstrated through
studies of pattern recognition receptor pathways. Toll like recep-
tor (TLR) signaling was discovered to induce expression of a
variety of miRNAs including miR-155, miR-146a, and miR-
21 (Taganov et al., 2006; O’Connell et al., 2007; Sheedy et al.,
2010). In mouse macrophage, miR-155 induced by TLR lig-
ands represses negative regulators of TLR signaling such as
SHIP1 and SOCS1 (Androulidaki et al., 2009; O’Connell et al.,
2009). In contrast, miR-146a acts as a negative regulator of
NF-κB through IRAK1 and TRAF6, and deficiency in miR-146a
leads to autoimmunity and myeloid malignancy (Taganov et al.,
2006; Boldin et al., 2011; Zhao et al., 2011). The function of
miR-146a as a negative regulator of inflammation is also impli-
cated in RIG-I-dependent type 1 interferon (IFN) production
by macrophages upon viral infection, in which miR-146a tar-
gets IRAK2 (Hou et al., 2009). The discovery of these interactions
evidence the dynamism of miRNA activity: inflammatory stim-
uli can influence miRNA expression, and in turn, individual
miRNAs tightly regulate innate immunity by targeting specific
mRNAs involved in the activation and resolution of immune
responses.

PROGRESS IN FUNCTIONAL ASSESSMENT OF miRNAs IN IMMUNE
DISEASES
Given that miRNAs tune immune cells to function properly, it
was not surprising that abnormal miRNA expression leads to
immunological disorders. To date, much progress has been made
to correlate specific miRNAs with particular disease states, and
a large number of miRNAs have been reported to be up- or
down-regulated in certain autoimmunity, infectious diseases, and
cancers. These aberrant miRNAs have been thought responsible
for the inappropriate expression of target proteins associated with
the respective pathologies.

miRNA in autoimmunity
Recent studies have identified abnormal miRNA expression in
many autoimmune diseases including systemic lupus erythemato-
sus (SLE), multiple sclerosis (MS) and rheumatoid arthritis (RA)
and the functional relevance of specific miRNAs has been explored
in the corresponding mouse models (Junker et al., 2010; Ceribelli
et al., 2011; Amarilyo and La Cava, 2012). In human lupus patients,
decreased expression of miR-146a leads to hyperactivation of
type I IFN and decreased miR-125a to elevated inflammatory
chemokine, RANTES (Tang et al., 2009; Zhao et al., 2010). Another
set of miRNAs, miR-155 and miR-15a, was found to be increased
in the mouse lupus model where Treg cell activity and autoanti-
body production were affected (Divekar et al., 2010; Yuan et al.,
2012). Unlike in lupus, miR-146a is upregulated in RA synovial
tissue, where it presumably suppresses proinflammatory cytokines
such as TNFα (Nakasa et al., 2008). Similarly, miR-155 and miR-
223 are highly expressed in synovial fibroblasts and T cells from
RA patients, respectively (Stanczyk et al., 2008; Fulci et al., 2010).
Mouse models of arthritis have demonstrated the involvement of
miR-155 in regulating B cell and Th17 cell functions attributed to

disease development (Kurowska-Stolarska et al., 2011). Among the
many miRNAs dysregulated in MS (Junker, 2011), miR-155 was
found to modulate astrocyte function in MS and Th17 differenti-
ation in the mouse experimental autoimmune encephalomyelitis
(EAE) model (Junker et al., 2009; O’Connell et al., 2010). miR-124
is able to control neuroinflammation by keeping microglia quies-
cent in steady-state condition; its downregulation at the onset of
EAE results in microglia activation and inflammation (Ponomarev
et al., 2010). Other autoimmune inflammation including type I
diabetes and inflammatory bowel disease (IBD) have been linked
to many miRNAs, too (Hezova et al., 2010; Oertli et al., 2011).
Nonetheless, the targets of these miRNAs and their mechanisms
for regulating autoimmunity remain to be discovered.

miRNA in infectious diseases
Several functional studies thus far have demonstrated an impor-
tant role of miR-155 in host defense against microbial infections.
Lack of miR-155 resulted in impaired effector CD8+ T cell
function during acute or chronic lymphocytic choriomeningitis
virus (LCMV) infection, and defective memory cell differenti-
ation upon infection with Listeria monocytogenes (Dudda et al.,
2013; Gracias et al., 2013; Lind et al., 2013). Perhaps one of
the more surprising discoveries was that miRNAs are directly
involved in interactions between host immune responses and
infecting pathogens. The fact that viruses themselves generate
miRNAs regulating expression of both viral and host genes high-
lights an essential role of miRNAs in immune responses against
infection (Sullivan and Ganem, 2005). Viral miRNA expressed
late in SV40 infection down regulates the expression of viral
T-antigens in order to avoid alerting cytotoxic T cells (Sulli-
van et al., 2005). On the other hand, the immune system exerts
antiviral activity by regulating the expression of miRNAs in host
cells (Pedersen et al., 2007). Some of these host miRNAs were
predicted to directly target viral genes. As mediators of host-
pathogen interaction, miRNAs influence the outcome of infectious
diseases.

miRNA in cancer
Differential expression patterns of miRNA have also been found
in various malignancies and correlated with clinical outcome (Mi
et al., 2007; Marcucci et al., 2008). Studies on the functional rel-
evance of individual miRNAs have revealed that miRNAs can
directly modulate the expression levels of oncogenes and tumor
suppressor genes, and influence epigenetic regulation, all of which
contribute ultimately to tumor development. For example, miR-
NAs that target anti-apoptotic protein BCL-2 have been found to
be deleted in chronic lymphocytic leukemia (CLL; Calin et al.,
2002; Cimmino et al., 2005). In mouse lymphocytes, forced
expression of miR-17-92 leads to a lymphoproliferative pheno-
type through targeting tumor suppressive proteins such as PTEN
and BIM (Xiao et al., 2008). miR-155 was also found overex-
pressed in B cell lymphomas, and subsequently shown to target
SHIP and C/EBPβ involved in IL-6 signaling (Costinean et al.,
2006, 2009). Oncogenic protein can silence the transcription
of miR-223 by recruiting chromatin remodeling enzymes (Fazi
et al., 2007), while miR-29b promotes expression of tumor sup-
pressor genes by repressing DNA methyltransferases in acute
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myeloid leukemia (AML; Garzon et al., 2009). Research on the
role of miRNAs in immune cell malignancies complemented
concurrent research on how miRNAs regulate proliferation and
differentiation.

CURRENT CHALLENGES IN miRNA RESEARCH IN IMMUNITY
MicroRNAs control many important immunological processes,
and much like TFs, they exhibit diverse effects through their action
on multiple mRNA species. As such, miRNA regulatory networks
are complex, and before designing any kind of treatment, the
networks must be understood in all their complexities. Despite the
great efforts that have been committed to discover the precise role
of miRNAs in the immune system, many issues remain unsolved.
Some of these are technical limitations of current approaches, such
as the sensitivity of in vivo and in vitro assays, and the ability to
isolate sufficient cells of certain immune cell subsets for miRNA
profiling and functional analysis. At the same time, the biology
of miRNA-mediated regulation also presents inherent difficulties,
such as transient low level induction of miRNAs under certain
circumstances and the presence of isomiRs (Morin et al., 2008).
Here, we will discuss two major challenges that researchers are just
beginning to solve.

CHALLENGE OF miRNA TARGET IDENTIFICATION
In the past decade, many computational algorithms have been
developed to identify potential miRNA target genes (Bartel, 2009).
With time, performance and target prediction have improved sig-
nificantly, and different prediction methods now share a high
degree of overlap. Advances in computational prediction could
be largely attributed to the recognition of the importance of
seed pairing (Lewis et al., 2005). Unfortunately, many impor-
tant functional miRNA targets could not be identified due to
the inability of these tools to find miRNA binding sites with
seed mismatches (Doran and Strauss, 2007). Moreover, most of
the existing miRNA target predictions have been restricted to
mRNA 3′ UTRs. Genes that are regulated by miRNA through
binding in the 5′ untranslated, promoter or protein coding
regions were likely missed (Lytle et al., 2007; Place et al., 2008;
Tay et al., 2008). A few years ago, High-throughput sequencing
of RNA isolated by crosslinking immunoprecipitation (HITS-
CLIP) or photoactivatable-ribonucleoside-enhanced crosslinking
and immunoprecipitation (PAR-CLIP) techniques were developed
(Chi et al., 2009; Hafner et al., 2010; Zisoulis et al., 2010; Van Wyns-
berghe et al., 2011). These experimental approaches promised to
provide direct biochemical evidence of specific miRNA–mRNA
interactions without the false positives and negatives of bioin-
formatic prediction, but they had their own limitations. Because
biochemical identification of Ago binding sites came from HITS
analysis of pooled mRNA after Ago immunoprecipitation, there
was no easy way to identify the corresponding miRNAs respon-
sible for Ago binding. The difficulty increased when it was
discovered that a substantial number of Ago binding sites iden-
tified in those studies did not contain clear seed matches. It
was uncertain whether this apparently seedless targeting was
caused by non-canonical miRNA-target interactions or miRNA-
independent mechanisms (Leung et al., 2011). One strategy to
overcome the uncertainty was to perform differential HITS-CLIP

(dCLIP) analysis and compare mRNA expression changes in T cells
with or without a single miRNA; in this case, miR-155 was cho-
sen (Loeb et al., 2012). Combined with luciferase reporter assay
and site-directed mutagenesis studies, the authors demonstrated
that miR-155 could target and repress genes through binding
to sites without canonical seed matching. Finally, since many
Ago-interacting proteins have been described in the past and
it seems highly unlikely that all of them constitute a common
complex (Nilsen, 2007), it is plausible that the cell type of inter-
est or even the differentiation state of the cell could all impact
miRNA-mediated gene regulation. Thus, it will be useful to con-
duct the aforementioned dCLIP analysis with a given miRNA
in other immune cell types in a genetically controlled manner
to gain clearer understanding of the role of miRNA in immune
system.

CHALLENGE OF FUNCTIONAL VALIDATION OF miRNA TARGETS
As 100s of genes could be regulated by a single miRNA, its loss
often leads to multiple and complicated biological consequences.
Because many of the targets could also operate in a collabora-
tive or competitive manner, it is almost impossible to attribute
an observed miRNA-dependent phenotype to the regulation of a
single target. To resolve this second challenge in miRNA research
in immunity, studies heretofore have mostly relied on two genetic
approaches: (1) an overepxression approach in which a chosen
miRNA-dependent phenotype is recapitulated upon overexpres-
sion of a proposed miRNA target in a WT animal [i.e., our
miR-155/SOCS1 study in Treg cells (Lu et al., 2009)]; (2) a knock-
down/knockout approach in which a selected miRNA-dependent
phenotype is rescued by knocking down the proposed miRNA
target in the miRNA KO animal [i.e., our miR-146a/Stat1 study
in Treg cells (Lu et al., 2010); Figure 1]. While both approaches
are valid and provide strong correlative support for hypothesized
models, neither could faithfully represent the dynamic miRNA-
mediated regulation in a given cell type and in a given time in vivo,
as both miRNAs and their targets are also subjected to regulation
in response to different stimulation and environmental cues. The
ideal method to address this challenge is to generate a mutant
mouse line harboring mutations in the miRNA binding site of
the target gene. The introduced mutations should only disrupt
the interaction of the selected miRNA with the gene of interest.
By comparing these mice to miRNA-deficient mice, one would be
able to isolate the effects of a miRNA to one key immune regu-
lator and the biological significance of single target repression in
miRNA-mediated immune regulation could be determined. The
method is theoretically sound and should provide the most direct
experimental evidence of how a single target controlled by one
miRNA controls immune responsiveness. To date, however, it has
only been taken in two studies, both of which demonstrated a
key role of miR-155-mediated regulation of AID in controlling B
cell function (Dorsett et al., 2008; Teng et al., 2008). One could
argue that the impact of those studies is somewhat limited due
to the restricted expression of the target gene, AID, in the B cell
lineage. Considering the time and financial commitment needed
to generate a mouse model that could only answer such a nar-
row question, it is not too surprising why this approach has not
been applied to more miRNA research. Nevertheless, as the gene
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FIGURE 1 | Models for miRNA study. Current experimental approaches to validate the biological significance of a single target repressed by a given miRNA in
an observed phenotype.

targeting techniques [e.g., CRISPR/Cas-mediated genome engi-
neering (Yang et al., 2013)] have been improving rapidly in the
last couple years, more miRNA studies using the aforementioned
knock-in type of approach should become available in the near
future.

CONCLUDING REMARKS
In the past decade, intensive investigation in miRNA-mediated
gene regulation has demonstrated that miRNAs are key regula-
tors of the development and function of the immune system. As
such, miRNAs are differentially expressed in immune cell subsets
and tightly regulated to ensure homeostasis and proper immune
response. Studies in different disease conditions have further
revealed their role in immune system dysregulation and patho-
genesis. Despite the highly complex nature of miRNA regulatory
networks and the existence of aforementioned technical limita-
tions, recent advances have made miRNA biology a fascinating
subject in immunological research. From a basic immunological
point of view, the control of immune cell biology by miRNAs
provides a powerful model to dissect the molecular orchestra-
tion of cellular differentiation, function, and homeostasis. On a
practical level, manipulating miRNA pathways in immune cells
promises to offer novel therapeutic approaches in the treatment
of autoimmunity, infectious disease, and immune malignancies.
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