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Background: There is increasing interest in investigating genetic risk models in empirical
studies, but such studies are premature when the expected predictive ability of the risk
model is low. We assessed how accurately the predictive ability of genetic risk models
can be estimated in simulated data that are created based on the odds ratios (ORs)
and frequencies of single-nucleotide polymorphisms (SNPs) obtained from genome-wide
association studies (GWASs).

Methods: We aimed to replicate published prediction studies that reported the area under
the receiver operating characteristic curve (AUC) as a measure of predictive ability. We
searched GWAS articles for all SNPs included in these models and extracted ORs and risk
allele frequencies to construct genotypes and disease status for a hypothetical population.
Using these hypothetical data, we reconstructed the published genetic risk models and
compared their AUC values to those reported in the original articles.

Results: The accuracy of the AUC values varied with the method used for the construction
of the risk models. When logistic regression analysis was used to construct the genetic
risk model, AUC values estimated by the simulation method were similar to the published
values with a median absolute difference of 0.02 [range: 0.00, 0.04]. This difference was
0.03 [range: 0.01, 0.06] and 0.05 [range: 0.01, 0.08] for unweighted and weighted risk
scores.

Conclusions: The predictive ability of genetic risk models can be estimated using
simulated data based on results from GWASs. Simulation methods can be useful to
estimate the predictive ability in the absence of empirical data and to decide whether
empirical investigation of genetic risk models is warranted.
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INTRODUCTION
Empirical studies on genetic risk models for multifactorial dis-
eases so far show that the predictive ability is moderate at best
(Willems et al., 2011; Husing et al., 2012), with a few promis-
ing exceptions (Maller et al., 2006; Romanos et al., 2009). The
predictive ability is expected to improve further with the iden-
tification of novel genetic variants, including common variants
with smaller effects and rarer variants with larger effects (Wu
et al., 2011), but this improvement is not evident. For exam-
ple, genetic risk models with up to 40 single-nucleotide poly-
morphisms (SNPs) predicted type 2 diabetes only marginally
better than models with less than half of the variants included
(Willems et al., 2011), and rare variants only improve the pre-
dictive ability when they are not too rare (Mihaescu et al.,
2013). It can be argued that investigation of the predictive
ability in empirical studies is only warranted when sufficient
predictive ability is expected. This expected predictive ability

may be estimated in simulation studies using hypothetical
data.

Several different modeling methods have been used to investi-
gate the predictive ability of genetic risk models (Janssens et al.,
2006; Gail, 2008; Lu and Elston, 2008; Moonesinghe et al., 2010;
Pepe et al., 2010). These methods all assess the predictive abil-
ity as the degree to which the risk model discriminates between
patients and nonpatients, quantified as the area under the receiver
operating characteristic (ROC) curve (AUC). Using epidemiolog-
ical parameters such as a population-average risk of disease and
the odds ratios (ORs) and frequencies of the genetic variants in
the model, these methods obtain the AUC by simulating a dataset
for a hypothetical population (Janssens et al., 2006; Pepe et al.,
2010) or by using analytical formulas (Gail, 2008; Lu and Elston,
2008; Moonesinghe et al., 2010). A comparison of these methods
showed that the simulation methods could accurately reproduce
the AUC values of published prediction studies when the ORs
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and allele frequencies were obtained from the prediction studies
themselves (Kundu et al., 2012). This observation demonstrates
that the AUC value can be estimated using a simple model based
on a few basic parameters.

The question that remains is whether the AUC values can also
be reproduced when the ORs and frequencies are obtained from
other studies or sources, such as genome-wide association stud-
ies (GWASs) that reported the variant discoveries. When that is
possible, the expected predictive ability of genetic risk models can
be estimated prior to the collection of empirical data to justify
whether the prediction study is worth conducting. The AUC value
is determined by the ORs and frequencies of the variants included
in the risk model, which implies that different AUC should be
expected when the ORs and frequencies differ. However, the vari-
ation in ORs and frequencies may not be large enough to produce
substantially different AUCs, particularly since AUC is argued to
be an insensitive metric unable to detect minor improvements in
predictive ability (Cook, 2007).

To investigate how accurately AUC can be estimated in sim-
ulated data, we aimed to reproduce AUC values from published
genetic prediction studies. We constructed datasets on the basis
of ORs and frequencies from GWASs for the SNPs in the risk
models, and compared AUC values of published prediction stud-
ies with those estimated in the simulated data. As accuracy might
be related to the computational method that was used to calculate
individual risks, we compared accuracy for published studies that
had used unweighted or weighted risk scores or logistic regression
analysis. In addition to estimating the AUC values, we explored
the extent to which simulated data can reconstruct plots that are
frequently presented in prediction studies.

MATERIALS AND METHODS
We aimed to reproduce AUC values from published empiri-
cal prediction studies using simulated data. For each prediction
study, we constructed genotypes and disease status for a hypo-
thetical population, estimated disease risks for each hypothetical
individual, and assessed the AUC of the risk model. To create a
dataset for each hypothetical population, we used ORs and allele
frequencies from published GWASs. The simulation method,
study selection, data extraction, and analyses are described next.

SIMULATION METHOD
The simulation method created datasets of individual genotypes
and disease status for hypothetical populations based on ORs
and allele frequencies of genetic variants, and population-average
risks of disease (Janssens et al., 2006). The datasets were con-
structed in such a way that the population-average disease risk,
allele frequencies, and ORs estimated from the dataset match
the prespecified input values. In this study, the input values
were obtained from published GWASs (see below). Genotypes
and disease status were constructed for 100,000 individuals.
Construction of the dataset involved the following three steps,
which have been described in more detail elsewhere (Janssens
et al., 2006):

1. Modeling genotype data: For each SNP, the distribution of
the three genotypes in the hypothetical population was based

on genotype frequencies, which in turn were calculated from
allele frequencies assuming Hardy-Weinberg Equilibrium.
Genotypes were randomly distributed over all individuals.

2. Modeling individual disease risks: The simulation method
requires disease risks to assign disease status to all individuals
(step 3). Individual disease risks were estimated using Bayes’
theorem, which specifies that the posterior odds of disease is
obtained by multiplying the prior odds by the likelihood ratio
of the individual genotype profile.

posterior odds = prior odds ∗
G∏

g = 1

LRgi (1)

where: prior odds = d
1−d , with d = population disease risk,

LRgi = likelihood ratio for genotype i of SNP g.
The likelihood ratios of genotype profiles were calculated
by multiplying the likelihood ratios of the single geno-
types, assuming independent effects of the SNPs (naive Bayes
assumption). Posterior risks were calculated from the poste-
rior odds using the formula: risk = odds/(1+ odds).

3. Modeling disease status: Disease status (0 or 1) was assigned
based on a procedure that compares the disease risk of each
individual to a randomly drawn value between 0 and 1 from
a uniform distribution. An individual was assigned to develop
the disease (patients) when the disease risk was higher than
the random value and to not develop the disease (nonpatients)
when the risk was lower than the random value.

Based on individual disease risks and disease status, the area
under the receiver-operating characteristic curve (AUC) was
obtained using the method of Hanley and McNeil (1982).

SELECTION OF GENETIC RISK PREDICTION STUDIES
We aimed to reproduce empirical studies that assessed genetic risk
models based on SNPs. Risk models that additionally included
nongenetic risk factors or genetic variants other than SNPs, such
as haplotypes and copy number variations, were not consid-
ered. We selected risk models that were unweighted risk scores,
weighted risk scores or logistic regression models. Unweighted
risk scores are commonly calculated as the number of risk alleles
across all SNPs, assuming that all SNPs contribute equally to the
risk of disease. Weighted risk scores and logistic regression mod-
els assume different effects of SNPs and calculate their cumulative
effect as the sum of the log(OR) of the risk alleles across all SNPs.
In weighted risk scores, the weights (ORs) are obtained from the
literature, generally GWASs or meta-analyses, whereas in logistic
regression models the weights are estimated in the same dataset
that is used for the construction of the risk model.

To select genetic prediction studies, we searched PubMed for
studies on diseases that are frequently investigated for genetic risk
prediction, namely age-related macular degeneration, colorectal
cancer, Crohn disease, prostate cancer, type 1 diabetes, and type 2
diabetes. For each disease we used the following search strategy in
PubMed: “(genetic[title] OR genomic[title] OR genes[title] OR
DNA[title] OR polymorphism[title] OR polygenic[title]) AND
(risk[All Fields]) AND (score[All Fields] OR model[All Fields]
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OR prediction[All Fields])” (accessed August 2012). We selected
studies that (1) reported the AUC value for a genetic risk model
that was based on SNPs and (2) explicitly stated which SNPs
were included. The PubMed search yielded 515 publications, of
which 20 met the inclusion criteria. Most excluded publications
were genetic association studies and studies that investigated the
cumulative effect of multiple SNPs on disease risk. We addition-
ally considered prediction studies from our recent review on type
2 diabetes (Willems et al., 2011). This review included 19 studies,
of which 10 reported about genetic risk models that were based on
SNPs only. Five of these were already retrieved from the PubMed
search, thus a total of 25 studies were included in the present
analyses.

DATA EXTRACTION
From the selected prediction studies, we retrieved citations to the
GWASs, meta-analyses or pooled analyses for the SNPs included
in the risk models. From these articles, we extracted unadjusted
per allele ORs with the 95% confidence intervals (CIs) and the
allele frequencies in controls. ORs and allele frequencies were
converted, if pertinent, so that all ORs and frequencies are for
risk alleles. We made the following decisions to handle multiple
citations and missing data: if more than one citation was given
for the same SNP, we selected the study with the largest sam-
ple size; if the cited study did not report per allele ORs, these
were calculated from per genotype ORs; if CIs were not reported,
these were calculated from an allele by disease status 2 × 2 con-
tingency table using the sample size and allele frequencies from
the cited study; and if allele frequencies were not reported, fre-
quencies were obtained from the 1000 Genomes Project (1000
Genomes Project Consortium, 2012). If the cited publications
did not report original analyses of OR and allele frequencies, for
example when citations were reviews or earlier prediction stud-
ies, we obtained ORs and frequencies from the largest GWAS or
meta-analysis published up to 12 months before the prediction
study. And finally, if no GWAS or meta-analysis was published,
as was the case for two SNPs in all our analysis, we used ORs
and allele frequencies from the prediction study itself. Two inves-
tigators (Suman Kundu, Catherina M. C. Meijer) independently
extracted data from the cited publications and discrepancies were
discussed with a third investigator (Raluca Mihaescu or A. Cecile
J. W. Janssens). Supplementary Table 1 lists all SNPs, risk allele
frequencies and per allele ORs that were used in the analyses.

Population disease risks were obtained from the prediction
studies or from epidemiological studies when disease risks were
not reported. The following population disease risks were used:
20% for type 2 diabetes (Van Hoek et al., 2008), 15% for prostate
cancer (Howlader et al., 2012), 0.2% for type 1 diabetes (Dabelea
et al., 2014), 6.5% for age-related macular degeneration (Klein
et al., 2011), 4.8% for colorectal cancer (Howlader et al., 2012),
and 0.2% for Crohn disease (Kappelman et al., 2007).

DATA ANALYSES
In the simulated data, we obtained the AUC value of the genetic
risk model. When the risk model in the published prediction
study was constructed as weighted risk scores or logistic regres-
sion model, Bayes theorem was used to calculate the disease risks.

When the risk model was constructed as unweighted risk scores,
we similarly obtained unweighted allele scores in our simulated
data.

To estimate the AUC values we followed two different
strategies: first, we estimated AUC using the point estimates of
published ORs, and second, we randomly drew ORs from the
published 95% CIs for each SNP assuming normal distribution
to investigate the impact of variation in ORs on the estimated
AUC values. To obtain robust estimates of the AUC, all simula-
tions were repeated 100 times. Results are presented as averages
of 100 iterations.

In addition to estimating the AUC values of the risk models,
we also aimed to reproduce plots that are frequently presented in
prediction studies. We selected four different plots: a histogram
showing the distribution of the number of risk alleles among
patients and nonpatients, a scatter plot presenting predicted risks
against the number of risk alleles, a quintiles plot presenting
the ORs with 95% CIs for quintiles of genetic risks, and a ROC
plot showing the sensitivity vs. 1-specificity across all possible
risk thresholds. For each plot we arbitrarily selected an exam-
ple from the published prediction studies. We constructed the
data for the hypothetical population in the same way as explained
above, except that we used the sample size and population dis-
ease risk of the published prediction study because these impact
the CIs in the quintiles plot and the absolute risks in the scatter
plot. All analyses were performed using the PredictABEL package
in R software, version 2.14.1 (www.r-project.org) (Kundu et al.,
2011).

RESULTS
Table 1 shows the AUC estimates in the simulated data along
with the published AUC values. When the prediction study had
used unweighted or weighted risk scores the absolute differences
between the estimated and published AUC values ranged from
0.01 to 0.06 (median: 0.03) and from 0.01 to 0.08 (median: 0.05),
respectively. When prediction studies had used logistic regres-
sion models to calculate individual risks the absolute difference in
AUC ranged from 0.00 to 0.04 (median: 0.02). These results were
the same irrespective of whether the data were simulated on the
basis of the published point estimates of the ORs or on random
values from the 95% CIs (data not shown).

To illustrate that minor differences in ORs and risk allele
frequencies may not impact AUC, we present the ORs of two
different studies (Lango et al., 2008; Van Hoek et al., 2008) that
investigated the same risk model for the prediction of type 2
diabetes (Table 2). These studies showed the same AUC value
(0.60), but the individual SNPs had different ORs. For exam-
ple, the OR of KCNJ11 was 1.25 in the GoDARTS study and
1.03 in the Rotterdam study, and the OR of NOTCH2 was 1.15
and 1.01, respectively. The ORs from the GWASs were similar
for the two studies, but generally higher than those reported in
the two prediction studies themselves. Risk allele frequencies did
not markedly differ between the cited studies and the prediction
studies (Supplementary Table 2). The estimated AUC values in
simulated data were 0.61 for both studies.

Figure 1 shows four plots produced by the simulation method
and their original versions in the published simulation studies.
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Table 1 | AUC values in published prediction studies and their estimates in simulated data.

Published prediction study Simulated data

Disease First author, year Study design Sample size Number of SNPs AUC AUC

UNWEIGHTED RISK SCORE

Crohn disease Peter et al., 2011 Case-control 872 7 0.70 0.67

Prostate cancer Johansson et al., 2012 Case-control 1508 33 0.64a 0.67

Type 1 diabetes Yamashita et al., 2011 Case-control 1743 7 0.65a 0.64

Type 2 diabetes Lin et al., 2009 Cross-sectional 5360 15 0.57 0.59

Type 2 diabetes Qi et al., 2010 Prospective cohort 3210 17 0.62 0.60

Type 2 diabetes Van Hoek et al., 2008 Prospective cohort 6544 18 0.56 0.60

Type 2 diabetes Meigs et al., 2008 Prospective cohort 2377 18 0.58b 0.59

Type 2 diabetes Wang et al., 2010 Cross-sectional 7232 19 0.55 0.60

Type 2 diabetes Talmud et al., 2010 Prospective cohort 5535 20 0.54 0.60

WEIGHTED RISK SCORE

Prostate cancer Sun et al., 2011 Case-control 4621 28 0.62 0.66

Prostate cancer Kader et al., 2012 Case-control 1654 33 0.59 0.67

Type 2 diabetes Lin et al., 2009 Cross-sectional 5360 15 0.59 0.60

Type 2 diabetes Talmud et al., 2010 Prospective cohort 5535 20 0.55 0.61

LOGISTIC REGRESSION MODEL

AMD Scholl et al., 2008 Case-control 179 3 0.73 0.69

AMD Hecker et al., 2010 Case-control 274 4 0.77 0.76

AMD Grassmann et al., 2012 Case-control 1782 13 0.82 0.78

Colorectal cancer Dunlop et al., 2013 Case-control 39266 10 0.57 0.60

Colorectal cancer Lubbe et al., 2012 Prospective cohort 14929 14 0.58 0.60

Crohn disease Peter et al., 2011 Case-control 872 7 0.71 0.68

Prostate cancer Aly et al., 2011 Prospective cohort 5241 36 0.67 0.69

Prostate cancer Helfand et al., 2010 Case-control 1464 9 0.61 0.62

Type 2 diabetes Weedon et al., 2006 Case-control 6077 3 0.58 0.59

Type 2 diabetes Vaxillaire et al., 2008 Prospective cohort 5212 3 0.56 0.58

Type 2 diabetes Hu et al., 2009 Case-control 3634 11 0.62 0.61

Type 2 diabetes Miyake et al., 2009 Case-control 2000 11 0.63 0.63

Type 2 diabetes Fontaine-Bisson et al., 2010 Cross-sectional 2751 17 0.59 0.61

Type 2 diabetes Van Hoek et al., 2008 Prospective cohort 6544 18 0.60 0.61

Type 2 diabetes Lango et al., 2008 Case-control 4907 18 0.60 0.61

Type 2 diabetes Sparso et al., 2009 Case-control 9395 19 0.60 0.61

AUC, area under the receiver operating characteristic curve; CI, confidence interval; AMD, age-related macular degeneration; SNP, single nucleotide polymorphism.
aAdjusted for age; bAdjusted for sex.

The ROC curve and the histogram were relatively similar
between the simulation and published studies (Figures 1A,D),
but the quintiles and scatter plots showed larger differences
(Figures 1B,C). The scatterplot showed a similar spread of pre-
dicted risks for each number of risk alleles in both the empirical
and simulation study, but the R2-value was higher for the simu-
lated data. For the quintiles plot, the accuracy of the reproduction
was affected by the choice of risk thresholds that define the quin-
tiles and by the simulation sample size. In separate iterations,
the graphs in the simulated data differed most when the sam-
ple size and risk thresholds of the published study were used
(Supplementary Figure 1A). The graphs were markedly similar
when the risk thresholds were chosen based on a quintile distribu-
tion in the simulation study (Supplementary Figure 1B), or when
sample size was increased to 100,000 (Supplementary Figure 1C).
When the simulated dataset had large sample size, the estimated

ORs for the quintiles were very similar with that in the published
study, but the confidence intervals were narrower.

DISCUSSION
We investigated how accurately simulation studies can estimate
the AUC values from empirical genetic prediction studies using
ORs and frequencies from GWASs. The simulation method
used in this study could reproduce AUC values fairly accurately,
predominantly when prediction studies used logistic regression
models to obtain individual risks. The simulation method could
also reproduce plots that are frequently reported in prediction
studies.

Before discussing the implications of our findings, the assump-
tions of the simulation method need to be addressed. To esti-
mate individual disease risks, the method assumes that (1) the
combined effect of genetic variants follows a multiplicative (log

Frontiers in Genetics | Statistical Genetics and Methodology June 2014 | Volume 5 | Article 179 | 4

http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Kundu et al. Predictive ability of genetic risk models

Table 2 | Odds ratios of 18 single nucleotide polymorphisms in two prediction studies on type 2 diabetes and their corresponding values in the

cited genome-wide association studies.

Gene SNP OR in prediction study OR in cited GWAS*

GoDARTS study Rotterdam study GoDARTS study Rotterdam study

ADAM30/NOTCH2 rs2641348† 1.15 (1.01, 1.30) 1.01 (0.88, 1.17) 1.10 (1.06, 1.15)

ADAMTS9 rs4607103‡‡ 1.05 (0.96, 1.16) 1.14 (1.03, 1.28) 1.09 (1.06, 1.12)

CDC123 rs12779790� 1.10 (0.99, 1.21) 1.05 (0.94, 1.19) 1.11 (1.07, 1.14)

CDKAL1 rs10946398§ 1.11 (1.02, 1.21) 1.11 (1.02, 1.22) 1.12 (1.08, 1.16)1

CDKN2A/2B rs10811661 1.21 (1.08, 1.35) 1.10 (0.98, 1.24) 1.20 (1.14, 1.25)

CDKN2A/2B rs564398‡ 1.13 (1.04, 1.22) 1.04 (0.95, 1.14) 1.12 (1.07, 1.17)

FTO rs8050136 1.11 (1.02, 1.20) 1.09 (0.99, 1.19) 1.15 (1.09, 1.22)

HHEX-IDE rs1111875 1.02 (0.94, 1.11) 1.06 (0.97, 1.15) 1.13 (1.08, 1.17)

IGF2BP2 rs4402960 1.12 (1.03, 1.22) 1.11 (1.01, 1.22) 1.17 (1.10, 1.25)

JAZF1 rs864745§§ 1.00 (0.93, 1.09) 1.09 (1.00, 1.19) 1.10 (1.07, 1.13)

KCNJ11 rs5219 1.25 (1.15, 1.36) 1.03 (0.93, 1.13) 1.18 (1.04, 1.34) 1.14 (1.10, 1.19)

PPARG rs1801282 1.21 (1.07, 1.36) 1.09 (0.95, 1.24) 1.14 (1.08, 1.20)

SLC30A8 rs13266634 1.10 (1.01, 1.20) 1.13 (1.02, 1.24) 1.12 (1.07, 1.16)

TCF2 rs757210†† 1.07 (0.99, 1.16) 1.07 (0.98, 1.18) 1.12 (1.07, 1.18) 1.22 (1.15, 1.30)1

TCF7L2 rs7903146 1.36 (1.24, 1.48) 1.31 (1.19, 1.44) 1.47 (1.33, 1.62) 1.38 (1.31, 1.46)

THADA rs7578597 1.04 (0.90, 1.19) 1.10 (0.96, 1.27) 1.15 (1.10, 1.20)

TSPAN8/LGR5 rs7961581¶ 1.09 (1.00, 1.19) 1.09 (0.99, 1.20) 1.09 (1.06, 1.12)

WFS1 rs10010131** 1.07 (0.99, 1.16) 1.12 (1.05, 1.27) 1.11 (1.07, 1.16)

Table is adapted from Janssens and Van Duijn (2009). The risk models of the GoDARTS study (Lango et al., 2008) and the Rotterdam Study (Van Hoek et al., 2008)

included the same 18 genes and both had an AUC of 0.60. The AUC values from simulated data were the same and both were 0.61. The SNPs listed in the table

are those used by the GoDARTS study. For several genes, the Rotterdam Study used different SNPs that were in linkage disequilibrium: †rs1493694, r2 = 0.74;
‡ rs1412829, r2 = 0.97; §rs7754840, r2 = 1.00; ¶ rs1353362, r2 = 0.96; �rs11257622; r2 = 0.83; **rs10012946, r2 = 1.00; †† rs4430796, r2 = 0.61; ‡‡ rs4411878,

r2 = 0.95; §§rs1635852, r2 = 0.97. SNP, single nucleotide polymorphism; GWAS, genome-wide association study. *When only one value is presented, both prediction

studies cited the same GWAS. 1GWAS studies reported for the SNP used by the Rotterdam study; all others are for SNPs used by the GoDARTS study.

additive) risk model; (2) genetic variants inherit independently;
(3) genetic variants have independent effects on the disease risk;
and (4) effect sizes for genetic variants are considered as unad-
justed per allele ORs (marginal effects). These assumptions may
impact the predictive ability of risk models and therefore affect
AUC values (Moonesinghe et al., 2011), but they appear to be
valid for two reasons. First, these assumptions are also consid-
ered in empirical prediction studies, with the exception of the
marginal effect sizes. Both our approach, based on Bayes theorem,
and the weighted risk scores are based on marginal effect sizes of
the SNPs, but in logistic regression models the effect sizes of the
SNPs are simultaneously estimated, adjusted for each other. Yet,
the difference between marginal and adjusted effect sizes seems
not large enough to affect an aggregate measure like AUC, as was
also observed by others (Wu et al., 2013). Second, we recently
showed that observed AUC values and those estimated from sim-
ulated data were similar when ORs and frequencies of the genetic
variants were obtained from the empirical prediction study itself
(Kundu et al., 2012), suggesting that the modeling method itself
produces accurate results. Therefore, we do not expect that the
modeling assumptions and the simulation method as such have
influenced the estimated values of AUC.

Our analyses focused on risks scores and logistic regression
models because these are most frequently used in empirical pre-
diction research. One might argue that our simulation method
might soon become outdated because these models are very

simple, but more sophisticated risk models do not evidently show
higher predictive ability. Risk models based on neural networks,
decision trees, support vector machines (Forberg et al., 2009;
Gulkesen et al., 2010; Lee et al., 2010; Muniz et al., 2010; Wu
et al., 2010; Kim et al., 2011; Van Der Ploeg et al., 2011) often
show higher predictive ability than logistic regression models in
data that were used to develop the models (Lee et al., 2010; Muniz
et al., 2010; Kim et al., 2011), but are frequently outperformed
by logistic regression analyses in validation studies (Forberg et al.,
2009; Gulkesen et al., 2010; Wu et al., 2010; Van Der Ploeg et al.,
2011). This suggests that logistic regression is expected to remain
relevant for constructing genetic risk models in the future.

Our study showed that the AUC value of genetic risk predic-
tion models can be estimated from the ORs and allele frequencies
from GWASs. Estimated AUCs generally approximated the pub-
lished AUCs because the ORs and allele frequencies from GWASs
did not markedly differ from those observed in the prediction
studies. Typically, some odds ratios and frequencies were higher
and others were lower, so on average they resulted in a similar
AUC as published.

The AUC values estimated in simulated data approximated the
published AUCs, but a detailed look into the discrepancies shows
that the simulation method tends to overestimate rather than
underestimate the AUC values. We do expect the slight overes-
timation, because GWAS results by definition are selected on the
basis of their high OR in the GWAS. Independent investigation
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FIGURE 1 | Plots published in empirical prediction studies and their

reproductions in simulated data. (A) Receiver operating characteristic (ROC)
curves for unweighted and weighted gene count scores (Peter et al., 2011).
(B) Quintiles plot presenting the odds ratios with 95% confidence intervals by

quintiles of the weighted genetic scores (Lin et al., 2009). (C) Scatter plot
showing the variation in predicted risks stratified by the number of risk alleles
(Dunlop et al., 2013). (D) Histogram showing the distribution of the number of
risk alleles among patients and nonpatients (Peter et al., 2011).

of these SNP effects, such as in empirical prediction studies, is
more likely to show lower than higher ORs. When the simulation
method uses the higher GWAS ORs, a slightly higher AUC should
be expected.

While most AUC values tend to be slightly overestimated
by the simulation method, several others were underestimated.

Table 1 shows that we underestimated the AUC values of pre-
diction studies with smaller sample size. This might be a
consequence of publication bias. Prediction studies with small
sample size might only be published when they show higher pre-
dictive ability. If so, the contributing ORs must be high as well,
and likely be higher than the ORs from GWAS. This is indeed
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what we observed. The ORs of two major SNPs in the AMD stud-
ies (Scholl et al., 2008; Grassmann et al., 2012) were markedly
higher than those in the GWAS, and hence led to higher AUC
than what we estimated on the basis of the GWAS results in the
simulated data. This observation underscores the importance of
sufficient sample size in empirical prediction studies to prevent
overestimation of predictive ability.

AUC values were more accurate for empirical studies that
used logistic regression models than for studies that investigated
weighted risk scores. This difference might be explained by dif-
ferences in model fit. When logistic regression models are used
to estimate individual risks, the ORs of the variants in the model
reflect the “true” ORs in the population under study, but this is
not the case when weighted risk scores are calculated. In empir-
ical studies that calculate weighted risk scores, the weights are
obtained from GWASs and meta-analyses, and these usually dif-
fer from the ORs observed in the study itself. Yet, in our modeling
the ORs to construct the hypothetical dataset and the weighted
risk scores were the same. Therefore, the weighted risk scores by
definition have better model fit in simulated data, which might
explain the higher AUC estimates.

Simulation studies can be used to assess the predictive ability
when empirical data are not available and their collection is not
an option. We recently investigated the predictive ability of per-
sonal genome tests that were offered by three companies directly
to consumers via the internet. Using the simulation method
described in this study, we showed for six diseases that the pre-
dictive ability on the population level was similar between the
companies, but that for individual consumers differences in pre-
dicted risks were substantial (Kalf et al., 2014). The simulation
method was able to provide insight in the predictive ability of
commercial genome tests that would otherwise not have been
available.

Simulation methods that investigate the predictive ability of
genetic risk models can also be used to obtain the expected predic-
tive performance of genetic variants before conducting empirical
studies. The method can be used to justify whether empirical
assessment of the risk models is warranted or, in case the expected
predictive ability is not promising, whether further genomic
discoveries should be awaited.
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