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Regulation of hematopoiesis is controlled by microRNAs (miRNAs). In this review, we
focus on miR-146a, and its role in regulating normal and malignant hematopoiesis. miR-
146a is a negative regulator of immune cell activation by repressing two targets,TRAF6 and
IRAK1. Genetic deletion of miR-146a confirmed a role of miR-146a during innate immune
signaling as well as for hematopoietic stem cell function. miR-146a is also implicated in
the pathogenesis of human myelodysplastic syndromes (MDSs) as it is located within a
commonly deleted region on chromosome 5, and miR-146a-deficient mice exhibit features
of an MDS-like disease. With new insight into miR-146a through genetic and expression
analyses, we highlight and discuss the recent advances in the understanding of miR-146a
in physiological hematopoiesis during steady-state and inflammation, as well as in MDS.
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INTRODUCTION
Mammalian hematopoiesis is a highly regulated process involv-
ing multipotent stem and progenitor cells giving rise to all blood
cell types. During steady-state, hematopoiesis is in a homeostatic
balance to ensure that newly differentiated cells replenish dying
blood cells. At the same time, hematopoiesis is a highly dynamic
process that can respond efficiently to external stimuli, such
as during inflammation and infections. Under inflammatory or
infectious states, such as part of the host innate immune response,
hematopoietic stem and progenitor cells (HSPCs) respond by
increasing the production of mature blood cells, particularly
immune cells of the myeloid lineage (Baldridge et al., 2011). Reg-
ulation of hematopoiesis is tightly controlled by transcription
factors, chromatin remodeling factors, and small non-coding
RNAs, such as microRNAs (miRNAs; Chen et al., 2004; O’Connell
et al., 2010; O’Connell and Baltimore, 2012). Herein, we will focus
on one particular miRNA, miR-146a, and its role in regulating
normal and malignant hematopoiesis. The importance of miR-
146a became apparent almost 10 years ago through a microarray
screen in search of miRNAs that are regulated by NF-κB tran-
scription factors (Taganov et al., 2006). Through target analysis, it
became evident that miR-146a may be an important negative reg-
ulator of immune cell activation by repressing two targets, TRAF6
and IRAK1, both of which are signaling transducers upstream of
NF-κB. A mouse model with targeted genetic deletion of miR-146a
confirmed a role of miR-146a during innate immune signaling

as well as for hematopoietic stem cell (HSC) function (Boldin
et al., 2011; Zhao et al., 2011). miR-146a is also implicated in the
pathogenesis of human myelodysplastic syndromes (MDSs) as it
is located within a commonly deleted region on chromosome 5
(Starczynowski et al., 2010). In this review, we highlight some of
the recent advances in the understanding of miR-146a in physi-
ological hematopoiesis during steady-state and inflammation, as
well as its dysregulation in malignant hematopoiesis, especially
in MDS.

DISCOVERY OF THE miR-146 FAMILY
miR-146a and miR-146b are two miRNAs of the same family. They
have an identical seed region and putative mRNA targets, but dif-
fer in their mature strand sequence by only two nucleotides and in
their stem-loop secondary structure. In humans, miR-146a resides
on chromosome 5q33.3 and miR-146b resides on chromosome
10q24.32, while in mice, miR-146a resides on chromosome 11
and miR-146b on chromosome 19. The miR-146 family was ini-
tially described as NF-κB target genes through a microarray study
to identify miRNAs that were upregulated upon lipopolysaccha-
ride (LPS) stimulation in THP1 cells (Taganov et al., 2006). Three
miRNAs, miR-146, miR-155 and miR-132, showed significantly
increased expression following LPS simulation. Furthermore, a
promoter analysis identified two functional and conserved NF-
κB binding sites upstream of the miR-146a gene. This finding
identified the first NF-κB-regulated miRNA family.

www.frontiersin.org July 2014 | Volume 5 | Article 219 | 1

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Journal/10.3389/fgene.2014.00219/abstract
http://community.frontiersin.org/people/u/171227
http://community.frontiersin.org/people/u/128640
mailto:daniel.starczynowski@cchmc.org
mailto:daniel.starczynowski@cchmc.org
mailto:jzhao@caltech.edu
http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Zhao and Starczynowski miR-146 and HSC

EXPRESSION OF miR-146a IN NORMAL AND MALIGNANT
HEMATOPOIETIC CELLS
The expression pattern of miR-146a and miR-146b overlaps
within certain mouse hematopoietic lineages. Their expression
is similarly high in double-positive and double-negative thy-
mocytes and primitive bone marrow (BM) cells (i.e., lineage
negative BM cells) by >2-fold as compared to LSK cells (lin-
eage negative/Sca1+/cKit+). Within primitive BM cells, their
expression is higher (∼1.5 fold) in HSCs and in myeloid pro-
genitors compared to other progenitor cell subtypes. In contrast,
miR-146a and miR-146b expression differs in mature myeloid
(Mac1+), erythroid (Ter119+), and lymphoid (CD4+ and
CD8+) cells. Although the expression of miR-146a is detectable
in HSCs and throughout mature blood cell maturation, its expres-
sion increases >5-fold as HSCs mature, suggesting a potential
role throughout hematopoietic development (Starczynowski et al.,
2011; Zhao et al., 2013). In general, the basal expression of
miR-146a is modest, except in certain specialized myeloid cell
lineages, including Ly-6Clow monocytes and epidermal Langer-
hans cells, which have constitutively high levels of expression
(Jurkin et al., 2010; Etzrodt et al., 2012). However, miR-146a
expression can be highly induced in hematopoietic cells by a
wide range of infectious and inflammatory stimuli, including
Toll-like receptor (TLR) ligands, pro-inflammatory cytokines,
T-cell receptor ligands, as well as numerous pathogens, impli-
cating a role of miR-146a (Figure 1) in immune cell activa-
tion and stress-mediated hematopoiesis (So et al., 2013). The
basal and inducible expression pattern of miR-146a is regu-
lated by a combination of lineage-specific transcription fac-
tors, including PU.1 and c-ETS (Cameron et al., 2008; Cur-
tale et al., 2010; Ghani et al., 2011), and activation-dependent
transcription factors, most notably NF-κB and AP1 (Taganov
et al., 2006; Ho et al., 2014). In non-hematopoietic cells, miR-
146a can be upregulated by the transcription factor Snail in
colorectal cancer stem cells (Hwang et al., 2014), and miR-
146b is directly induced by transcription factor STAT3 in
breast epithelial cancer cells (Xiang et al., 2014). The expres-
sion of miR-146a or miR-146b has not been as extensively
studied in human hematopoietic cells. However, consistent
with the mouse studies, miR-146a is expressed at high lev-
els in human BM CD34+ HSPC cells (Starczynowski et al.,
2010).

miR-146a is located within the commonly deleted region
associated with del(5q) MDS (or 5q-syndrome). MDS are het-
erogeneous HSC disorders characterized by persistent cytopenia
due to ineffective hematopoiesis and dysplasia of BM cells.
As the disease progresses, patients may develop BM failure.
MDS patients are also at an elevated risk of transforming to
acute myeloid leukemia (AML; Scott and Deeg, 2011). Despite
the heterogeneous clinical presentation and variable outcome
of MDS, many patients have shared underlying pathological
features. These include peripheral blood cytopenia affecting
one or more blood lineages (e.g., erythrocytes, granulocytes,
monocytes, and/or megakaryocytes), and normal/hypercellular
marrows with morphological dysplasia (Tefferi and Vardiman,
2009). As per the diagnostic criteria, blasts account for less
than 30% of the marrow. Examination of miR-146a in BM

FIGURE 1 | Control of theTRAF6 signalosome by miR-146a. Activated
Toll-like receptor (TLR) or lnterleukin-1 receptor (IL1R) results in the
recruitment of MyD88 and IRAK4, which activates the serine/threonine
kinase, IRAKI, through IRAK4-dependent phosphorylation (dashed line).
IRAKI associates with an E3 ubiquitin ligase, TRAF6, which mediates the
activation of the IKK complex through K63-linked polyubiquitin chains,
resulting in NF-κB transcription factor activation. TRAF6 also regulates other
proteins (as indicated by grey box) that may also contribute to immune
signaling and malignancies. miR-146a suppresses IRAKI and TRAF6 protein
expression through direct binding at 3′UTR sites within IRAKI and TRAF6
mRNAs. Reduced expression and/or deletion of miR-146a results in
derepression of IRAKI and TRAF6 protein, and increased downstream
pathway activation resulting in reduced HSC fitness, increased
inflammatory cytokine expression, and altered myeloid differentiation.
miR-146a also represses STAT1 and CXCR4 in hematopoietic cells, which
may also contribute to the HSC defects following deletion of miR-146a.

HSPC from del(5q) MDS patients has revealed reduced expres-
sion by approximately half, consistent with deletion of a single
allele (Starczynowski et al., 2010; Votavova et al., 2011; Table 1).
In addition, miR-146a is consistently downregulated in a large
non-del(5q) MDS cohort suggesting that multiple mechanisms
may contribute to its reduced expression in MDS (Table 1;
Sokol et al., 2011; Zhao et al., 2013). In this non-del(5q) MDS
cohort, miR-146a consists of a miRNA diagnostic signature
that can distinguish MDS patients from age-matched controls
(Sokol et al., 2011). This finding is further confirmed through
another large cohort of unselected MDS BM samples show-
ing that miR-146a is down regulated ∼5-fold in MDS patients
as compared to healthy controls; in contrast, such down reg-
ulation is not consistently observed in AML BM cells (Zhao
et al., 2013). Although miR-146a is consistently down regu-
lated in del(5q) MDS, additional miRNAs residing on chr
5q (i.e., miR-145) may also contribute to aspects of MDS
pathogenesis.

Frontiers in Genetics | Non-Coding RNA July 2014 | Volume 5 | Article 219 | 2

http://www.frontiersin.org/Non-Coding_RNA/
http://www.frontiersin.org/Non-Coding_RNA/archive


Zhao and Starczynowski miR-146 and HSC

Table 1 | Evidence of low miR-146a expression in MDS.

Study Cell source Experimental group Control group Experimental method

Sokol (2011) BM MNC Low or INT-1 Normal microarray

Starczynowski (2010) BM MNC del(5q) Normal and MDS dip(5q) qRT-PCR

Votavova (2011) CD34+ del(5q) Normal qRT-PCR

Zhao (2013) BM MNC MDS Normal qRT-PCR

BM, bone marrow; MNC, mononuclear cells.

ROLE OF miR-146a DURING STEADY-STATE HEMATOPOIESIS
miR-146a germline knockout (miR-146a–/–) mice are born at the
expected Mendelian frequency and show no obvious abnormali-
ties at a young age. Furthermore, miR-146a does not appear to be
essential for fetal and steady-state hematopoiesis in young mice.
All hematopoietic cell subset frequencies, from primitive HSCs to
mature myeloid and lymphoid populations, are identical in young
(∼6 week old) miR-146a–/– mice as compared to wild-type (WT)
mice. In addition, the ability of miR-146a–/– long-term HSCs to
generate all hematopoietic lineages competitively with WT HSCs
in lethally irradiated recipient mice is nearly identical for up to the
first 10 months post-transplant. However, after 10 months, miR-
146a–/– HSCs are out-numbered by co-transplanted WT HSCs
(Zhao et al., 2013). The subtle cell intrinsic defect seen only in miR-
146a–/– long-term HSCs after 10 months suggests an interesting
role of miR-146a in maintaining the self-renewal of long-term
HSCs.

The impact of enforced expression of miR-146a on
hematopoiesis is not as dramatic as miR-146a deletion. Overall,
most studies have shown a minor impact of miR-146a over-
expression on HSPC numbers and functions (Opalinska et al.,
2010; Ghani et al., 2011; Starczynowski et al., 2011). It remains
unclear whether enforced expression of miR-146a would impair
myelopoiesis under stressed conditions. A recent study has gen-
erated a transgenic mouse model with constitutive miR-146a
overexpression via a non-targeted insertion of a lentiviral vec-
tor containing mouse miR-146a sequence under an ubiquitin
promoter (Guo et al., 2013). This miR-146a transgenic mouse
develops spontaneous immune pathologies starting at 3 weeks
of age that are characterized by enlarged spleen and lymph
nodes, inflammatory cell infiltration of liver and lungs and
enhanced expansion of T and B cells. The study suggests that
the lymphoproliferative and autoimmune pathologies seen in
this mouse model are due to miR-146a-mediated repression of
Fas expression in germinal center B cells. This interesting and
rather surprising result is not what would have been predicted
based on miR-146a genetic knockout and knockdown studies,
which have all shown that miR-146a is an important nega-
tive regulator of cell activation and inflammation in immune
and non-hematopoietic cells (Cameron et al., 2008; Perry et al.,
2008; Hou et al., 2009; Chassin et al., 2010; Lu et al., 2010;
Nakasa et al., 2011; Yang et al., 2012). In addition, several pre-
vious studies have shown that miR-146a overexpression in mouse
BM transplant models has minimal and at best transient effects
on hematopoiesis. However, there are two major differences
between the transgenic model and BM transplant models: the

distribution of tissue expression and timing of expression. The
transgenic model overexpresses miR-146a in all tissues, includ-
ing non-hematopoietic cells, and during embryonic develop-
ment. Whether overexpression of miR-146a in non-hematopoietic
tissues and/or enforced expression of miR-146a during fetal
hematopoiesis contribute to the discrepancy is not known. In
summary, miR-146a is not essential for hematopoietic cell devel-
opment, as miR-146a-deficiency does not have major effects on
steady-state hematopoiesis in young mice; however, miR-146a
may have a role in the self-renewal of long-term HSCs. On the
other hand, enforced expression of miR-146a in hematopoietic
cells also appears to have minimal impact on adult steady-state
hematopoiesis.

ROLE OF miR-146a DURING STRESSED HEMATOPOIESIS
In contrast to steady-state hematopoiesis, miR-146a plays a signif-
icant role in regulating hematopoiesis during stressed conditions.
Nominal stressors, such as natural aging and repeated low level
of inflammatory stimulation, have produced striking phenotypes
in miR-146a–/– mice. This is best illustrated in a series of aging
studies conducted by examining matched cohorts of WT and
miR-146a–/– mice over a 2 year period in standard pathogen-
free conditions (Boldin et al., 2011; Zhao et al., 2011, 2013). At
2 months of age, miR-146a–/– mice exhibit normal hematopoi-
etic development; however, at 4 months, miR-146a–/– mice
develop a transient hypercellular state in the BM accompanied
with increased number of HSCs and mature cells, reflecting a state
of increased HSC proliferation and differentiation. By 8 months,
miR-146a–/– mice become severely depleted of BM cells, while
spleens become enlarged with predominant myelopoiesis. This
process of BM depletion and splenic myelopoiesis continues until
mice succumb to BM failure and/or pathologic myeloid-related
diseases. For miR-146a–/– mice beyond 1 year of age, they begin
to exhibit accelerated mortality from a myeloproliferative disease,
peripheral pancytopenia, and ultimately myeloid or lymphoid
cancers.

The decline of HSC function is observed in younger mice
and prior to declines in HSC number, as HSCs from four-
month-old miR-146a–/– mice already exhibit a differentiation
defect, as compared to WT HSCs in competitive repopulation
studies. Interestingly, the long-term aging phenotypes can be
recapitulated in young miR-146a–/– mice through serial injec-
tion of sublethal doses of LPS (Zhao et al., 2013). Based on these
observations, we propose that the aging process provides oppor-
tunities for an organism to encounter a variety of inflammatory
stimuli, including environmental pathogens, commensal bacteria

www.frontiersin.org July 2014 | Volume 5 | Article 219 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Non-Coding_RNA/archive


Zhao and Starczynowski miR-146 and HSC

and endogenous inflammatory mediators. Normally, these inflam-
matory stimuli are short-lived and stimulate only a transient burst
of HSC proliferation and myeloid production. The resolution of
the immune reaction is mediated in part by the upregulation of
miR-146a. However, in the absence of miR-146a, the inflam-
matory signal is prolonged, leading to excessive HSC activation
and myelopoiesis. Furthermore, repeated exposure to unregulated
inflammatory stimuli ultimately leads to premature exhaustion of
HSCs and sustained pathological myelopoiesis.

It was recently shown that HSPCs have an incredible abil-
ity to release a wide range of cytokines in response to TLR
stimulation. Not surprisingly, miR-146a–/– HSPCs, namely
short-term HSCs and multipotent progenitor cells (MPPs), pro-
duce increased amount of pro-inflammatory cytokines, most
notably IL-6, TNF-α, GM-CSF and IL-1β, upon TLR stim-
ulation (Zhao et al., 2014). In addition to the cell-intrinsic
function within HSPCs, miR-146a also impacts hematopoiesis
through the regulation of cytokine production in monocytes,
macrophages and effector T cells. Furthermore, miR-146a is
shown to function in a number of non-hematopoietic tissues,
including endothelial cells, gastrointestinal and lung epithe-
lial cells (Perry et al., 2008; Chassin et al., 2010; Cheng et al.,
2013). Given that non-hematopoietic environments contribute
to pathologic hematopoiesis, especially tumor induction, seen
in miR-146a–/– mice (Zhao et al., 2013), it would be prudent
to examine whether miR-146a regulates the HSC BM niche. In
addition to hematopoietic development, miR-146a has an indis-
pensable role in the immune system as a negative regulator of
mature immune cell activation. The involvement of miR-146a
in the host immune response against infections and autoim-
mune diseases has also been extensively studied. This has been
comprehensively reviewed elsewhere recently (Chan et al., 2013;
Montagner et al., 2013; So et al., 2013) and will not be covered
here.

ROLE OF miR-146a AND INNATE IMMUNE SIGNALING IN
MDS
The first evidence that miR-146a deficiency may contribute to
hematopoietic defects associated with MDS was shown in mice
with reduced levels of miR-146a, and a neighboring miRNA (miR-
145). Knockdown of miR-145 and miR-146a using a miRNA
decoy approach in mouse HSPC resulted in hematological abnor-
malities including elevated platelets, neutropenia, megakaryocytic
dysplasia, and myeloid leukemia. The distinction between miR-
145 and miR-146a’s contribution to the hematopoietic defects has
been revealed by examination of the miR-146a-deficient mice.
As described above, knockout of miR-146a results in an early
onset of myeloid expansion in the BM, and progression to more
aggressive diseases such as lymphomas, BM failure, and myeloid
leukemia (Lu et al., 2010; Boldin et al., 2011; Zhao et al., 2011).
That the miR-146a knockout mice do not show evidence of ele-
vated platelets suggests that loss of miR-145 may contribute to
thrombocytosis associated with del(5q) MDS patients (Kumar
et al., 2011).

At the molecular level, the signaling transducer, TRAF6, is
a well-characterized target of miR-146a. TRAF6 expression is
de-repressed in miR-146a–/– HSPCs, macrophages, T cells and

B cells (Boldin et al., 2011; Yang et al., 2012; Zhao et al., 2013). In
the regulation of hematopoiesis, miR-146a is shown to function
through a defined signaling pathway involving TRAF6, NF-κB, and
IL-6 (Zhao et al., 2013). Overexpression of TRAF6 in mouse HSPC
using a retroviral approach mimicked some of the hematopoietic
defects observed in mice with loss of miR-146a. Enforced TRAF6
expression also resulted in elevated platelets, neutropenia, dys-
plasia, and myeloid leukemia in a subset of mice. Some of the
effects are mediated by IL-6 as overexpression of TRAF6 in IL-6-
deficient HSPC restored platelets and neutrophil counts. However,
the IL6-deficiency did not delay BM failure and AML. Despite
similarities between miR-146a-deficient and TRAF6-transduced
HSPC, the level of TRAF6 expression in transduced HSPC is at
least 10-fold higher than observed in miR-146a-deficient HSPC.
To better understand the contribution of TRAF6 to the miR-
146a-deficient HSPC phenotype, the enforced expression levels
of TRAF6 in BM transplant mice need to reflect what is observed
in miR-146a-deficient HSPC and in MDS patients.

MOLECULAR CONSEQUENCES OF miR-146a DELETION
Multiple groups have now validated TRAF6 and IRAK1 as key
targets of miR-146a (Taganov et al., 2006; Hou et al., 2009; Star-
czynowski et al., 2010; Zhao et al., 2011; Yang et al., 2012; Rhyasen
et al., 2013; So et al., 2013). The TRAF6 3′ untranslated region
(UTR) has two or three highly conserved miR-146a binding
sites (Taganov et al., 2006; Starczynowski et al., 2010), while
the IRAK1 3′UTR has two highly conserved miR-146a bind-
ing sites. When luciferase is fused to the TRAF6 or IRAK1 3′
UTR, overexpression of miR-146a results in reduced luciferase
activity (but not when fused to a 3′ UTR with a mutant miR-
146a binding site), indicating direct binding of miR-146a to the
TRAF6 and IRAK1 3′ UTR (Taganov et al., 2006; Starczynowski
et al., 2010). In mouse HSC cells, overexpression of miR-146a
results in reduced endogenous TRAF6 and IRAK1 protein, and
conversely, knockdown of miR-146a results in derepression of
TRAF6 and IRAK1 protein (Starczynowski et al., 2010, 2011).
As highlighted above, strong evidence that miR-146a regulates
TRAF6 protein expression comes from miR-146a knockout mice
(Boldin et al., 2011; Zhao et al., 2011). These mice have increased
TRAF6 and IRAK1 (2-fold) expression within the hematopoi-
etic compartment. Importantly, in MDS/AML patients, TRAF6
and IRAK1 protein levels are inversely correlated with miR-146a
expression.

As a transcription factor downstream of TRAF6/IRAK1,
NF-κB activation can be detected in miR-146a-deficient mono-
cytes/macrophages, effector T cells and HSCs by gene expression,
biochemical and NF-κB-GFP reporter mouse studies (Boldin et al.,
2011; Etzrodt et al., 2012; Yang et al., 2012; Zhao et al., 2013; Ho
et al., 2014). Although miR-146a appears to have a cell-intrinsic
role in regulating both the long-term HSC self-renewal and HSPC
proliferation, the molecular consequences of miR-146a expres-
sion as they relate to HSC function are still not fully understood.
The canonical NF-κB pathway involving subunits p65 and p50
is thought to contribute to some of the defects observed in
the hematopoietic system of miR-146a-deficient mice following
derepression of TRAF6, as genetic deletion of the p50 subunit
attenuates some of the pathologies in the absence of miR-146a.
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Non-canonical NF-κB signaling, as well as additional signaling
pathways may also contribute to aspects of hematopoiesis regu-
lated by miR-146a (Etzrodt et al., 2012). The signaling networks
regulated by miR-146a become further complicated as TRAF6 reg-
ulates additional signaling pathways through its E3 ubiquitin ligase
domain. As such, future studies to address the molecular mecha-
nisms controlled by TRAF6 overexpression in miR-146a-deficient
HSPC need to be performed.

Although, TRAF6 and IRAK1 remain as key targets regulated
by miR-146a in the hematopoietic system, other molecules and
their associated signaling pathways have emerged as direct tar-
gets of miR-146a (Figure 1). Among them, STAT1 is shown to
be a direct target of miR-146a in regulatory and effector T cells
(Lu et al., 2010; Wang et al., 2013). We have also found STAT1 to
be de-repressed in miR-146a-deficient HSPCs (Zhao et al., 2013).
CXCR4 may also be a direct target of miR-146a in megakary-
opoiesis (Labbaye et al., 2008). Several groups have identified a
number of interesting targets of miR-146a in non-hematopoietic
cells, including HuR in endothelial cells (Cheng et al., 2013) and
Numb in gastrointestinal cells and melanoma cells (Ghorpade
et al., 2013; Forloni et al., 2014; Hwang et al., 2014).

CONCLUSION AND FUTURE DIRECTIONS
It is established that miR-146a is a critical and indispensable
regulator of inflammatory hematopoiesis and immune cell acti-
vation by repressing two key targets, TRAF6 and IRAK1, and in
part by regulating NF-κB activation. Furthermore, there is no
doubt that miR-146a-deficiency is involved in the pathogenesis
of several human immune-mediated diseases and hematologic
malignancies, in particular MDS. Recently, three independent
groups identified Numb as an important target of miR-146a
in different cellular and disease contexts, opening up a new
direction for functional and mechanistic investigation of miR-
146a. Given the importance and complex functions of miR-
146a in different tissues, there is a need to further dissect the
function of miR-146a, the molecular consequences of aberrant
TRAF6 and/or IRAK1 derepression, and validation of other
associated mRNA targets in a cell type-and context-specific
manner through the study of conditional miR-146a knockout
mice. There is also a large knowledge gap in the function of
miR-146b that shares an identical seed sequence and differs in
only two nucleotides within the mature sequence. The knowl-
edge on whether re-expressing or re-introducing miR-146a has
therapeutic benefit in hematologic diseases will be an impor-
tant step in advancing therapies for diseases with diminished
miR-146a expression. Lastly, inhibiting the derepressed targets
of miR-146a, as shown for IRAK1 in MDS (Rhyasen et al.,
2013), constitutes another attractive and feasible therapeutic
approach.
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