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Residual feed intake (RFI) is a complex trait that is economically important for livestock
production; however, the genetic and biological mechanisms regulating RFI are largely
unknown in pigs. Therefore, the study aimed to identify single nucleotide polymorphisms
(SNPs), candidate genes and biological pathways involved in regulating RFI using Genome-
wide association (GWA) and pathway analyses. A total of 596 Yorkshire boars with
phenotypes for two different measures of RFI (RFI1 and 2) and 60k genotypic data was
used. GWA analysis was performed using a univariate mixed model and 12 and 7 SNPs
were found to be significantly associated with RFI1 and RFI2, respectively. Several genes
such as xin actin-binding repeat-containing protein 2 (XIRP2), tetratricopeptide repeat
domain 29 (TTC29), suppressor of glucose, autophagy associated 1 (SOGA1), MAS1, G-
protein-coupled receptor (GPCR) kinase 5 (GRK5 ), prospero-homeobox protein 1 (PROX1),
GPCR 155 (GPR155 ), and FYVE domain containing the 26 (ZFYVE26 ) were identified
as putative candidates for RFI based on their genomic location in the vicinity of these
SNPs. Genes located within 50 kbp of SNPs significantly associated with RFI and RFI2
(q-value ≤ 0.2) were subsequently used for pathway analyses. These analyses were
performed by assigning genes to biological pathways and then testing the association
of individual pathways with RFI using a Fisher’s exact test. Metabolic pathway was
significantly associated with both RFIs. Other biological pathways regulating phagosome,
tight junctions, olfactory transduction, and insulin secretion were significantly associated
with both RFI traits when relaxed threshold for cut-off p-value was used (p ≤ 0.05). These
results implied porcine RFI is regulated by multiple biological mechanisms, although
the metabolic processes might be the most important. Olfactory transduction pathway
controlling the perception of feed via smell, insulin pathway controlling food intake might
be important pathways for RFI. Furthermore, our study revealed key genes and genetic
variants that control feed efficiency that could potentially be useful for genetic selection of
more feed efficient pigs.
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INTRODUCTION
Residual feed intake is defined as the difference between the
observed feed intake and the feed intake predicted based on pro-
duction traits such as average daily gain and backfat thickness. RFI
is a sensitive and accurate indicator of feed efficiency in livestock
that is being increasingly accepted as an alternative measure for
feed efficiency in livestock species. Genetic selection for animals
with reduced RFI can be advantageous from both economic and
environmental perspectives (Dekkers and Gilbert, 2010; Cruzen
et al., 2012; Saintilan et al., 2013). However, genetic variants and
biological mechanisms regulating RFI need to be identified, which

Abbreviations: Bp, base pairs; dEBV, deregressed estimated breeding values; EBV,
estimated breeding values; FDR, false discovery rate; GWA, genome-wide associ-
ation; MAF, minor allele frequency; Mb, mega base pairs; QTL, quantitative trait
locus; RFI, residual feed intake; SNP, single nucleotide polymorphism.

would help to improve genetic selection for this trait. GWA, a
hypothesis-free approach that uses a large numbers of SNPs spread
throughout the genome to identify quantitative trait loci (QTL)
potentially harboring candidate loci, has been widely used to
explore the genetics underlying complex traits. Past studies have
led to the identification of many QTLs influencing feed conversion
ratio (FCR) in pigs1. FCR is currently the only available measure
of feed efficiency that is included in the selection index for the
Danish pig breeds. However, ratio traits such as FCR are not ideal
for statistical and biological reasons (Gunsett, 1984) and the accu-
rate definition for feed efficiency in animals is still being debated.
Recently, several studies have been conducted to identify QTLs
and candidate genes putatively influencing RFI in pigs. Using a

1http://www.animalgenome.org/cgi-bin/QTLdb/SS/index
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Piétrain–Large White backcross population, Gilbert et al. (2010)
identified QTLs on pig chromosomes (SSC) 5 and 9 for RFI in
growing pigs. In Yorkshire pigs, a GWA study revealed several
significant SNPs on SSC 2, 3, 5, 7, 8, 9, 14, and 15 influencing
RFI (Onteru et al., 2013). A candicate gene study performed by
Fan et al. (2010) validated these SNPs in FTO and TCF7L2 genes
as genetic markers for RFI in pigs. Recently, Shirali et al. (2013)
detected novel QTLs for residual energy intake on SSC 2, 4, 7, 8,
and 14 in a crossed populations (Pietrain grand-sires crossed with
grand-dams bred from a three-way cross of Leicoma boars with
Landrace × Large White dams). Sanchez et al. (2014) detected a
SNP on SSC 6 for RFI in Large White pigs.

Recently, we have identified significant SNPs on SSC 1,
9, and 13 for RFI in Duroc pigs (Do et al., 2014). Danish
Durocs, used as terminal sires in combination with crossbred
LY sows (Landrace × Yorkshire), are bred with a higher empha-
sis on growth and feed efficiency traits compared to Yorkshire
pigs, where the emphasis is considerably more on improv-
ing litter size. Given these differing emphases on selection, it
is reasonable that the genetic architeture of these two breeds
differs with respect to traits like feed efficiency that are target-
ted more intesively for selection within Durocs. In accordance
with this, we have found that the genetic variation (heritabil-
ity) of RFI is higher in Yorkshire compared to Duroc pigs (Do
et al., 2013a). Therefore, while the biological mechanisms are
likely conserved even across species (Mayr, 1963; Raff, 1996),
the genetic regulation of these mechanisms is not necessarily
conserved, and investigating the genetics underlying the same
phenotype in a different breed could provide novel insights into
the biological mechanisms underlying feed efficiency. Compar-
ing findings of genomic investigations on different breeds that
have differing linkage disequilibrium (LD) structure could also
potentially assist in narrowing the boundaries of putative QTL
regions.

While GWA studies have been reasonably successful, they
often focus on a top few significant SNPs while ignoring other
SNPs with lower significance levels that could still be biologi-
cally relevant. Gene set enrichment and pathway analyses using
publicly available biological databases could potentially comple-
ment efforts to identify causal loci for complex traits, as has been
shown in previous studies (Kadarmideen, 2008; Torkamani et al.,
2008; Wang et al., 2010). These approaches, instead of relying
solely on statistically associated genetic variants, focus on bio-
logical pathways that are mediated by genes located in the vicinity
of these variants. Such approaches have been shown to provide
valuable insights into the biology underlying complex pheno-
types (Kadarmideen et al., 2006; Farber, 2013; Kadarmideen,
2014). Therefore, the objective of our study was to use both
GWA and pathway analyses to identify SNPs, genes, and biolog-
ical pathways that could potentially influence RFI in Yorkshire
pigs.

MATERIALS AND METHODS
ESTIMATION OF RESIDUAL FEED INTAKE AND DEREGRESSED
ESTIMATED BREEDING VALUES
Data were recorded during a 5-year period (2008–2012) and sup-
plied by the Pig Research Centre of the Danish Agriculture and

Food Council. A total of 596 Yorkshire pigs had both phenotypic
(RFI) and genotypic records (based on PorcineSNP60 Illumina
iSelect BeadChip). The method of calculation of RFI has been
previously discussed in detail (Do et al., 2013a). In summary,
RFI was computed as the difference between the observed aver-
age daily feed intake and the predicted daily feed intake using
two statistical models. In the first model (RFI1), predicted daily
feed intake was estimated using linear regression of daily feed
intake on initial test weight (BWd) and average daily gain from
30 to 100 kg, whereas in the second model (RFI2), backfat was
used as an additional regressor. The EBVs for RFI were calcu-
lated using a univariate animal model where barn–year–season
were used as fixed effects and the effect of pen and the additive
genetic effect were treated as random effects. The pedigree was
traced back to January, 1971 and included 14,681 pigs with 1951
sires, 6766 dams. These EBVs were further deregressed as previ-
ously described (Ostersen et al., 2011; Do et al., 2013b), following
the deregression procedure of Garrick et al. (2009). This proce-
dure adjusts for ancestral information, so that the deregressed
EBV (dEBVs) only includes information from individual animals
and their descendants. Since our resource population consists of
5337 pigs of which only 1564 pigs had genotypic records, the use
of deregressed proofs was intended to maximize use of phenotypic
information from non-genotyped pigs. Because the dEBVs have
unequal variances, they should be used in a weighted analysis. The
weight for the ith animal was estimated as:

wi = (1 : h2)

[(c + ((1 − r2
i )/r2

i ))h2]
in which c was the part of the genetic variance that was assumed
to be not explained by markers (c = 0.1), h2 was the heritability of
the trait, and r2

i was the reliability of the dEBV of the ith animal.

GENOTYPING AND DATA QUALITY CONTROL
The details of the resource population used and DNA collection
were described in Henryon et al. (2001). For genotyping, genomic
DNA was isolated from tissue by treatment with proteinase K fol-
lowed by sodium chloride precipitation and SNPs were genotyped
on the PorcineSNP60 Illumina iSelect BeadChip. Data quality
control prior to GWA analyses was implemented by discarding ani-
mals and SNPs with a call rate <0.95, SNPs deviating from Hardy
Weinberg equilibrium (p < 0.0001) and SNPs with a MAF < 0.05.

LINEAR MIXED MODEL USED FOR GENOME WIDE ASSOCIATION
ANALYSES
A univariate linear mixed model was implemented to test the
association between each SNP and RFI. The model was similar
with previous GWA analysis in Duroc pigs (Do et al., 2014). In
summary, the model for each SNP (analyzed individually) was as
follows:

y = 1μ + Za + mg + e

where y is the vector of dEBVs for RFI, 1is a vector of 1s with
length equal to number of observations, μ is the general mean, Z
is an incidence matrix relating phenotypes to the corresponding
random polygenic effect, a is a vector of the random polygenic
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effect ∼N(0, Aσ2
u) where A is the additive relationship matrix and

σ2
u is the polygenic variance, m is a vector with genotypic indi-

cators (−1, 0, or 1) associating records to the marker effect, g
is a scalar of the associated additive effect of the SNP, and e is a
vector of random environmental deviates: N(0, W−1σ2

e ) where σ2
e

is the general error variance and W is the diagonal matrix con-
taining weights of the dEBVs. The model was fitted by restricted
maximum likelihood (REML) using the DMU software (Madsen
et al., 2006) and testing was done using a Wald test against a null
hypothesis of g = 0. The Wald test was based on a t-distribution
and regression coefficients and SEs were obtained by solving lin-
ear mixed model equations using DMU (Madsen et al., 2006).
This test was done by the t-distribution function “pt()” in R with
p = 2∗pt[abs(β/SE), (n − 3), log = FALSE, lower.tail = FALSE;
where β is regression coefficient, SE is standard error estimated
based on the inverse of the mixed model coefficient matrix and
n is number of SNPs in the genotype data]. Bonferroni corrected
significance threshold, used to account for multiple comparisons,
was estimated at a p = 1.31e−06. However, Bonferroni correc-
tion is known to be overly conservative especially when genetic
data exhibits high LD, which could produce false negative results
(Duggal et al., 2008). Therefore, in our analyses we considered a
less conservative significance threshold of a p = 1e−04 in order
to account for multiple tests. The p was chosen here based on a
Bonferroni adjustment only for the number of independent tests
that was in turn inferred by the number of principal compo-
nents accounting for a 99% of the variance of the SNP matrix
(Gao et al., 2008). Moreover, to further characterize candidate
regions affecting RFI, we performed LD block analyses for the
chromosomal regions with multiple (or the most) significant SNPs
clustered. The blocks were defined based on criteria suggested by
Gabriel et al. (2002) which implemented in Haploview (Barrett
et al., 2005).

PATHWAY ANALYSES
Assignment of genes to SNPs
Assigning genes close to a few SNPs with high statistical signif-
icance, and ignoring many SNPs with lower significance levels
could result in missing out on key putative candidates and asso-
ciated pathways. Hence, we used the procedure of controlling
false discovery rate (FDR; Benjamini and Hochberg, 1995) to
select SNPs for pathways analyses. All SNPs with a FDR (or
q-value) ≤0.2 were used to identify putative candidate genes.
Based on previous studies, we also included pathway annota-
tions associated with genes within 50 kb of SNPs associated
with RFI at a nominal significance thresold of 0.05, in path-
way analyses (Choquette et al., 2012; Peñagaricano et al., 2013).
Positional candidate genes, located within 50 kb of these SNPs,
were identified using function GetNeighGenes() in the NCBI2R
package2 for R program (R Development Core Team, 2008). The
distance of 50 kb was used in order to capture proximal regula-
tory and other functional regions close to the gene. Moreover,
several studies showed that the average LD was high in pigs.
The average distance between adjacent SNP pairs (with average
r2 = 0.5) was around 72 kb in the current population (Wang

2http://cran.r-project.org/web/packages/NCBI2R/index.html

et al., 2013). Therefore, the distance of 50 kb was suitable to
capture the causal genes/SNPs. Individually, each gene was con-
sidered to be significantly associated with RFI if a SNP with a
q-value ≤0.2 (as well as for relxed thresold at a p ≤ 0.05) was
located either inside the genic region or within 50 kb of the
genes.

Assignment of genes to Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and pathway analyses
For functional annotation, Kyoto Encyclopedia of Genes and
Genomes3 (KEGG) was used for getting pathways. To assign genes
to pathways, we used the function GetPathways() in NCBI2R
package; and to get number and names of genes in each path-
way, the mapPathwaytoname() function4 was used. Because RFI
was production trait in pigs, the assigned pathways belonging to
human diseases and drug development categories were removed.
To determine whether a pathway term was significantly associated
with RFI, we tested if genes significantly associated with RFI were
overrepresented amongst all the genes of any given pathway. This
association analysis was performed using a Fisher’s exact test via
the fisher.test() function in R.

RESULTS
GENOME-WIDE ASSOCIATION ANALYSES
After data quality control, a total of 37,192 SNPs and 596
pigs remained in the final dataset for GWA analyses. Eleven
SNPs were significantly associated with RFI1 (Figure 1),
and seven were associated with RFI2 (Figure 2); two SNPs
(MARC0027992 and ASGA0039145) being associated with both
traits [p ≤ 1e−04 (0.0001)]. The most significant associations
were found between ASGA0039145 and RFI1 (p = 7.76e−06) and
between MARC0027992 and RFI2 (p = 2.47e−05). Significant
SNPs associated with RFI1 were located on SSC 3, 7, 8, 9, 15, and
17 meanwhile those for RFI2 were located in SSC 1, 7, 8, 10, 14, and
15 (Table 1). A search for genes located in the immediate 50 kbp
vicinity of these SNPs revealed XIRP2, TTC29, SOGA1, MAS1,
GRK5, PROX1, GPR155, and ZFYVE26 as putative candidates.
Two LD blocks were detected on a candidate region (86–88 Mb on
SSC8) which associated with both RFI (Figure 3).

PATHWAY-BASED ASSOCIATION ANALYSES
Based on results from GWA analyses, a total of 402 SNPs asso-
ciated with RFI1 and another 304 SNPs associated with RFI2
(based on a FDR threshold of q-value ≤0.2) were used to locate
339 and 304 genes, respectively, within 50 kb of these SNPs
for pathway analyses. A total of 21,296 genes in 50 kb flank-
ing regions of SNPs which passed QC was used as background
for enrichment test. Pathway analysis tests for KEGG pathways
revealed a metabolic pathway to be associated with both RFI1
(p = 0.008) and RFI2 (p = 0.002); and an additional olfac-
tory transduction pathway only associated with RFI2 (p = 0.03).
Repeating pathway analyses after relaxing the significance thresh-
old to p ≤ 0.05, revealed 15 and 12 pathways associated with RFI1
and RFI2, respectively (Table S1 in Supplementary Materials), of

3http://www.genome.jp/kegg/
4http://biobeat.wordpress.com/category/r/
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FIGURE 1 | Manhattan plot of genome-wide p of association for residual feed intake 1 (RFI). The horizontal red and blue line represents the Bonferroni
(p = 1.31e−06) and genome-wide significance threshold (p ≤ 1e−04), respectively.

FIGURE 2 | Manhattan plot of genome-wide p of association for RFI 2. The horizontal red and blue line represents the Bonferroni (p = 1.31e−06) and
genome-wide significance threshold (p ≤ 1e−04), respectively.

which nine pathways were commonly associated with both RFI
phenotypes. The pathways associated with both RFI phenotypes
included metabolic pathway, olfactory transduction, tight junc-
tion and phagosome pathway that were associated with both RFI
traits at p ≤ 0.01.

DISCUSSION
The statistical and bioinformatics methods used in the cur-
rent study are similar to those applied in a separate study
aiming to identify QTLs influencing RFI in Duroc pigs (Do
et al., 2014). However, in order to account for multiple com-
parisons, we used a less stringent genome-wide significance
threshold (p ≤ 0.0001) that adjusts the nominal significance
threshold only for the number of independent tests that are
possible given a particular dataset. The Bonferroni correction
that was used in the previous study (Do et al., 2014), is known

to overcompensate for multiple testing, especially when applied
to correlated data. As such, the use of a relaxed threshold
was expected to decrease the number of false negatives thereby
increasing power. Several studies have applied pathway analy-
sis on GWA datasets and reported pathways and GOs associated
with backfat thickness (Fontanesi et al., 2012), feeding behavior
(Do et al., 2013b), and RFI (Do et al., 2014) in pigs. However,
these studies focused on genes in close proximity to signifi-
cantly associated SNPs based on stringent genome-wide thresholds
like Bonferroni, while ignoring many SNPs with lower signifi-
cance levels. Therefore, we used a lower significance threshold
including all genes located near SNPs associated with RFI at a
q-value ≤0.2 in the current study. (Peñagaricano et al., 2013)
also used more relaxed threshold with p ≤ 0.05 and detected
many significant pathways and network from GWA data for
bull fertility traits. Moreover, since the porcine genome contains
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Table 1 | Genome-wide significant SNPs for residual feed intake inYorkshire.

Trait1 SNP SSC2 Positions P Nearest gene Gene positions3 Gene names

RFI1 ALGA0085846 15 82,835,779 9.7e−05 XIRP2 15:82,491,704-82,597,617 Xin actin-binding repeat-containing

protein 2

RFI1 ALGA0085859 15 83,426,312 9.1e−05 ENSSSCG00000023421 15:83,412,046-83,526,943 Novel gene

RFI1 ALGA0114110 8 87,012,660 3.6e−05 TTC29 8:86,904,297-86,936,988 Tetratricopeptide Repeat Domain 29

RFI1 ASGA0039145 8 87,177,392 7.8e−06 ENSSSCG00000009034 8:87,200,641-87,201,588 Novel gene

RFI1 ASGA0039146 8 87,161,359 2.5e−05 ENSSSCG00000009034 8:87,200,641-87,201,588 Novel gene

RFI1 ASGA0089759 8 87,000,474 2.6e−05 TTC29 8:86,904,297-86,936,988 Tetratricopeptide Repeat Domain 29

RFI1 ASGA0103232 9 142,526,652 4.2e−05 PROX1 9:142,428,903-142,469,651 Prospero homeobox protein 1

RFI1 MARC0027992 7 18,810,414 2.7e−05 ENSSSCG00000018237 7:18,702,099-18,702,261 U1 spliceosomal RNA

RFI1 MARC0082350 15 89,623,572 8.4e−05 GPR155 15:89,587,688-89,695,502 G protein-coupled receptor 155

RFI1 ALGA0043644 7 97,889,360 5.4e−05 ZFYVE26 7:97,825,802-97,898,510 Zinc finger, FYVE domain

containing 26

RFI1 H3GA0010038 3 94,756,601 1.0e−04 ENSSSCG00000008418 3: 95,389,252-95,546,928 Novel gene

RFI1 MARC0067053 17 45,539,648 1.1e−04 SOGA1 17: 45,467,693-45,539,349 Suppressor of glucose, autophagy

associated 1

RFI2 ALGA0117721 10 44,751,617 8.1e−05 ENSSSCG00000011017 10:44,914,173-44,928,565 Novel gene

RFI2 ASGA0039145 8 87,177,392 4.7e−05 ENSSSCG00000009034 8:87,200,641-87,201,588 Novel gene

RFI2 DRGA0008464 8 27,798,101 9.0e−05 RPS18 8:28,015,649-28,016,107 Ribosomal protein S18

RFI2 H3GA0045110 15 136,035,441 2.7e−05 ENSSSCG00000026566 15:135,772,108-135,772,198 Novel microRNA

RFI2 MARC0027992 7 18,810,414 2.5e−05 ENSSSCG00000018237 7:18,702,099-18,702,261 U1 spliceosomal RNA

RFI2 MARC0072970 1 9,324,586 1.0e−04 MAS1 1: 9,326,800-9,327,777 MAS1 oncogene

RFI2 H3GA0042665 14 140,742,709 1.0e−04 GRK5 14: 140,637,968-140,875,398 G protein-coupled receptor kinase 5

1RFI1: residual feed intake 1; RFI2: residual feed intake 2.
2Pig chromosome.
3Based on Sscrofa10.2 (GCA_000003025.4) at http://www.ensembl.org/Sus_scrofa/Info/Index

many uncharacterized genes, widely used annotation servers
like DAVID5 and GOEAST6 are of limited use, as they per-
form poorly in converting porcine gene IDs. Therefore, we
performed functional annotation of genes by directly query-
ing KEGG databases that are better able to handle porcine
gene IDs.

Comparing results from our previous study targeting a Duroc
resource population almost twice in size, we were able to iden-
tify overlapping QTLs at approximately 87 Mb on SSC 8, and
at approximately 136 Mb on SSC 15 (Table 1; Do et al., 2014).
The proportionally small number of overlapping QTLs is in
agreement with other studies that have investigated QTLs for
a specific trait within different pig breeds (Gregersen et al.,
2012). Furthermore, despite of substantial differences in the
location of QTL regions between the two breeds, pathway anal-
yses identified many pathways (e.g., insulin regulation related
pathways and cellular communication pathways) that were also
identified in our previous study with Duroc. Taken together,
these observations reaffirm the notion that while the biolog-
ical mechanisms underlying a particular phenotype do not

5http://david.abcc.ncifcrf.gov/
6http://omicslab.genetics.ac.cn/GOEAST/

differ, the genetic regulation of these mechanisms can differ
between breeds. This is particularly important in the context
of developing marker-assisted and genomic selection strate-
gies, as it demonstrates that improving the same trait may
require different sets of markers for different lines/breeds of
livestock.

CANDIDATE GENES FOR RESIDUAL FEED INTAKE
Significant associations between both RFI and SNPs on SSC 7
(MARC0027992) and 8 (ALGA0039145) were found in the present
study. Here, ENSSSCG00000018237 encoding U1 spliceosomal
RNA was found near a SNP significantly associated with both
RFIs on SSC 7. U1 spliceosomal RNA constitutes U1 small nuclear
ribonucleoprotein that plays a role in splicing of pre-mRNAs
(Zwieb, 1996). Another independent study (Onteru et al., 2013)
reported a QTL region between 16 and 17 Mb on SSC 7 in York-
shire pigs for RFI. In this study, a SNP significantly associated
with RFI1 was found within an intron 4–5 of zinc finger, FYVE
domain containing the 26 (ZFYVE26) gene that is also located on
SSC 7. The gene encodes a protein containing a FYVE zinc fin-
ger binding domain which helps target the protein to membrane
lipids (Laity et al., 2001). While ZFYVE26 has been associated
with autosomal recessive spastic paraplegia in humans (Herd et al.,
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FIGURE 3 | Linkage disequilibrium (LD) pattern on a region from 86 to 88 Mb on pig chromosome 8. LD blocks are marked with triangles. Values in boxes
are LD (r2) between SNP pairs and the boxes are red indicated LOD > 2 and D′ = 1 (LOD is the log of the likelihood odds ratio, a measure of confidence in the
value of D′).

2004), the precise biological function of this gene has not yet been
described.

Another important association was between SNP ASGA0039145
on SSC 8 and both RFI traits. This SNP is located in a genomic
region where QTLs influencing FCR have been reported in an
independent study based on a Duroc resource population (Sahana
et al., 2013). The ENSSSCG00000009034 is a gene closest to this
SNP; however, the gene has not been functionally characterized yet.
Moreover, this SNP is tightly linked with five other SNPs to form
the LD block 1 (Figure 3). This LD block spans 487 kb region and
consists three significant SNPs for RFI1. This LD block also covers
a TTC29 gene which encodes a testis development protein that
could also be an interesting candidate for further investigation.
Also known as NYD-SP14, TTC29 is a component of axonemal
dyneins (Yamamoto et al., 2008) that have recently been demon-
strated to play an important role in fat metabolism (Sohle et al.,
2012).

We also found many SNPs to be associated with either RFI1
or RFI2 in our analyses. On SSC3, the SNP H3GA0010038
associated with only RFI1 located closest to a novel gene.
On SSC 9, another transcriptional factor PROX1 was found
proximal to an SNP exclusively associated with RFI1. PROX1
likely plays a fundamental role in the early development of
the central nervous system (Kaltezioti et al., 2010). It also is
a key regulator of lymphatic endothelial cell fate specification
(Ma, 2007), ERRα mediated control of the molecular clock
(Choquette et al., 2012), and modulation of insulin sensitivity
and glucose handling (Fontanesi et al., 2012) that could influ-
ence energy metabolism and RFI. On SSC17, MARC0067053
is significantly associated with RFI1 (p = 1.08e−04), and
is located in 5UTR′ region of SOGA1 gene. This gene
encodes a SOGA1 protein that plays a role in reducing glu-
cose production (Cowerd et al., 2010). It also contributes to

adiponectin-mediated insulin-dependent inhibition of autophagy
(Forbes, 2010). Since autophagy provides biochemical intermedi-
ates for glucose production (Forbes, 2010) which influences feed
consumption, SOGA1 could be an interesting candidate gene for
RFI1.

Moreover, on SSC 1 and SSC 14, close to significant SNPs,
we reported two members of G-protein couple receptor (MAS1
and GRK5) as possible candidate genes for RFI2. For instance,
the GRK5 regulates the GPCR signaling pathway and GRK5
deficiency led to insulin resistance and hepatic steatosis, or
decreases diet-induced obesity and adipogenesis in mice (Wang
et al., 2012b). On chromosome 10, a functionally uncharacterized
gene ENSSSCG00000011017 encoding a lysozyme-like ortholog,
was located near ALGA0117721 that was significantly associated
with RFI2. Other candidate genes in proximity to SNP associated
exclusively with RFI1 or RFI2 were RPS18, GPR155, and XIRP2.
Dysregulation of GPCR 155 (GPR155) is associated with higher
feed efficiency in chicken while RPS18, encoding the 40S riboso-
mal protein S18, is involved in regulation of development (Laity
et al., 2001). However, very little is known about the biological
function of these genes and their relevance in the context of RFI is
not apparent.

Notably, melanocortin 4 receptor (MC4R; SSC 1: 178,553,488-
178,555,219) is perhaps most well-known candidate gene for feed
efficiency or/and feed intake in pigs (Kim et al., 2000; Houston
et al., 2004; Burgos et al., 2006; Davoli et al., 2012; Onteru et al.,
2013). The MC4R gene codes for a G protein transmembrane
receptor playing an important role in energy homeostasis control.
In pigs, a SNP (missense substitution 298 Asp > Asn) in MC4R
gene has been identified and associated to average daily gain, feed
intake and fatness traits in many difference studies (Kim et al.,
2000; Houston et al., 2004; Fan et al., 2009; Davoli et al., 2012).
Moreover, Leptin (SSC 18: 21, 201, 786-21, 204, 671) plays a key
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role in regulating energy intake and expenditure and is a candidate
gene for feed efficiency in pigs (Barb et al., 2001). However, vari-
ants in these genes are not included the PorcineSNP60 Illumina
iSelect BeadChip and it is unclear whether such variants could
influence RFI in the current population.

STATISTICAL METHODS USED IN GWAS
One of the challenges for doing GWAS in livestock population is
the large proportion of animals have phenotypic but no geno-
typic records, especially in dairy cattle. Recently, Wang et al.
(2012a) proposed a single step GBLUP (or ssGBLUP) method
that incorporates all genotypes, observed phenotypes and pedi-
gree information jointly in one step and provides GEBVs for all
animals with or without genomic data or phenotypic data or both
(based on the methods of Aguilar et al., 2010; Christensen and
Lund, 2010). The ssGWAS is a method based on GBLUP (Wang
et al., 2014) which derives the SNP effects (or SNP variance) from
GEBVs calculated from ssGBLUP. However, the use of the ssGWAS
method is limited by finding appropriate number of iterations
required to get marker solutions and most importantly, its inabil-
ity to determine the genome-wide significance level for each SNP
in the entire genomic data. However, our approach in this study
of combining GWAS with pathways analysis requires a genome-
wide adjusted p-value for each SNP for selecting the top SNPs
for further downstream gene enrichment and pathway analyses
using bioinformatics tools. Hence the genome-wide p-values for
each SNP are not possible in ssGWAS method, we have adapted
a mixed model GWAS and implemented using DMU package
(Madsen et al., 2006). We used deregressed EBVs as a pseudo-
phenotype but ssGBLUP would have also been a better choice in
that it handles variability far better than the use of deregressed
EBV as Wang et al. (2012a) reported differences in accuracy of
genomic breeding values compared to other methods including
classical GWAS.

There is still some controversy as to how to properly determine
SEs of estimated SNP effects by GBLUP based-methods. Recently,
Gualdron Duarte et al. (2014) provided a way to determine signif-
icance values for each SNP marker effect by linear transformations
of genomic evaluations. Briefly, the likelihood ratio is calculated
to test the significance of the largest effect segment of each chro-
mosome by comparing against a reduced model with fixed effects
and GEBVs. The critical value (size of the test) is adjusted by the
Bonferroni correction. Moreover, we also would like to note that
our GWA model could be extended to the case where the addi-
tive genetic relationship is substituted by the genomic relationship
matrix like in EMMAX7.

PATHWAYS INVOLVED IN RESIDUAL FEED INTAKE
Results from gene-set enrichment analyses are largely dependent
on how gene-sets are identified or defined. In the current study,
our gene-set was determined by the significance threshold that
was used to declare SNPs significantly associated with RFI. Con-
sequently, our enrichment analyses was very dependent on our
choice of significance threshold. The choice of significance thresh-
old also influences the degree of confidence that can be ascribed

7http://genetics.cs.ucla.edu/emmax/

to results from gene-set enrichment analyses. Choosing a strin-
gent threshold like Bonferroni will likely yield very few results
with higher confidence as opposed to a lenient threshold that will
likely yield more results with lower confidence. In our analyses,
we decided to use a FDR based q-value threshold of 0.2 to balance
the number of results and the degree of confidence associated with
them. Applying more stringent FDR thresholds (for e.g., of 0.05 or
0.10) significantly reduced the numbers of SNP, and consequently
the number of genes in the gene-set, for pathway annotation.
Therefore, by setting the at a q-value ≤0.2 (p ∼ 0.001; mean-
ing 20% of SNPs using for pathway analyses are likely to be false),
we had a reasonable number of SNPs for gene-set enrichment
analyses.

Regardless to different thresholds, the metabolic pathway8

was significantly associated with both RFI traits. Many previous
studies have shown that variation in mediators of metabolic pro-
cesses contribute to the variation of RFI (e.g., reviewed in Herd
et al., 2004; Herd and Arthur, 2009; Hoque and Suzuki, 2009;
Dekkers and Gilbert, 2010). However, the metabolic pathway is
a broad overarching term that contains many specific modules
(e.g., energy, carbohydrate and lipid, nucleotide and amino acid
and secondary metabolism). So future investigations evaluating
the contribution of specific sub-modules within this pathway to
the genetic variation in RFI might be warranted. An interesting
pathway associated with RFI2 (and with RFI1 when analysis is
performed based on a nominal threshold of a p ≤ 0.05) was
related to olfactory transduction. Olfactory transduction path-
ways are responsible for the perception of odor via olfactory
receptors and downstream biochemical signaling events that ulti-
mately get transformed into electrical impulses sent to the brain
(Ma, 2007). Pigs have the largest repertoire of functional olfac-
tory receptors (Groenen et al., 2012) encoded by at least 1113
genes (Nguyen et al., 2012), 14 and 11 of which are located near
SNPs significantly associated with RFI1 and RFI2, respectively,
(Table S1 in Supplementary Materials). Olfaction is one of the
major sensory modalities that contribute to hedonic evaluation
of a food, resulting in food choice and its possible consump-
tion. It is modulated in response to changing levels of various
molecules, such as ghrelin, orexins, neuropeptide Y, insulin, lep-
tin, and cholecystokinin (Palouzier-Paulignan et al., 2012). These
molecules are known to play an important role in controlling
of RFI. For example, genetic selection for low and high RFI in
pigs has been shown to change leptin concentration in plasma
(Lefaucheur et al., 2011). Lower RFI has also been shown to be
associated with lower serum leptin concentrations in Duroc pigs
(Hoque et al., 2009).

Another interesting pathway significantly associated with both
RFI traits (when using a nominal threshold of a p < 0.05) was the
insulin secretion pathway (Table S1 in Supplementary Materials).
Do et al. (2014) also reported Insulin signaling pathway associ-
ated with RFI in Duroc pigs. Insulin-dependent regulation of feed
intake has been described in many species including cattle (Chen
et al., 2012; Rolf et al., 2012) and pigs (Colditz, 2004; Cruzen et al.,
2012). The results imply that insulin secretion is possibly an inter-
mediary pathway by which olfactory transduction influences RFI.

8http://www.genome.jp/kegg-bin/show_pathway?org_name=ssc&mapno=01100
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Richardson and Herd (2004) indicated that differences in some
plasma metabolites and hormones have been positively related to
genetic and phenotypic measures of RFI in ruminants.

The genetic variants identified by GWA studies may facili-
tate the incorporation of marker-assisted selection in commercial
breeding schemes for improvement of complex traits. Moreover,
Snelling et al. (2013) and Kadarmideen (2014) have suggested
that genomic selection could perform better if it is guided by
network and pathway analysis. Biological pathways identified by
post-GWA analyses could further our current understanding of
the genetic underlying different complex traits. Therefore, our
results would be of interest not only to breeders interested in
using marker-assisted selection to improve feed efficiency in pigs,
but also to biologists interested in better understanding the bio-
logical mechanisms influencing feed efficiency. However, it is
also important to consider potential limitations of our study,
such as the limited size of Yorkshire resource population, statis-
tical model used in the estimation of RFI, and statistical models
used in GWA; gene set enrichment and pathway analyses. Finally,
it is also important to note that all results reported in this
study are only relevant to the specific definition used in this
study.

In summary, the present study describes SNPs, candidate genes
and biological pathways putatively influencing RFI in Yorkshire
pigs. Important candidate genes such as XIRP2, TTC29, SOGA1,
MAS1, GRK5, PROX1, GPR155, and ZFYVE26 were identified here
that could be further investigated for harboring causal variants.
Pathway analyses identified metabolic and olfactory transduction
pathways to be associated with RFI. Many other pathways (such
as insulin secretion, tight junction) that were found to be associ-
ated with RFI based on a lenient nominal significance threshold
might be of some interest. However, more studies are required to
determine their role in regulating RFI.
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