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To date, the main criterion by which long ncRNAs (lncRNAs) are discriminated from
mRNAs is based on the capacity of the transcripts to encode a protein. However, it
becomes important to identify non-ORF-based sequence characteristics that can be used
to parse between ncRNAs and mRNAs. In this study, we first established an extremely
selective workflow to define a highly refined database of lncRNAs which was used for
comparison with mRNAs. Then using this highly selective collection of lncRNAs, we found
the CG dinucleotide frequencies were clearly distinct. In addition, we showed that the bias
in CG dinucleotide frequency was conserved in human and mouse genomes. We propose
that this sequence feature will serve as a useful classifier in transcript classification
pipelines. We also suggest that our refined database of “bona fide” lncRNAs will be
valuable for the discovery of other sequence characteristics distinct to lncRNAs.
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INTRODUCTION
In the early sixties, the discovery of ribosomal RNA (rRNA)
and transfer RNA (tRNA) (Rosset and Monier, 1963; Holley
et al., 1965) was the first step toward the identification of dif-
ferent classes of so-called non-protein-coding RNAs (ncRNA or
npcRNA). In recent years, ncRNAs have become regarded as
key regulatory molecules, and data assigning new functions to
these RNAs continue to accumulate exponentially (Mercer et al.,
2009; Clark and Mattick, 2011; Mattick, 2011). The primary class,
typically referred to as housekeeping or infrastructural ncRNAs
(Figure S1), includes tRNA, rRNA, and small nuclear or nucle-
olar RNA (snRNA and snoRNA) (reviewed in Yoshihisa, 2006;
Kawaji and Hayashizaki, 2008). The class of small/short ncRNAs,
such as microRNAs (miRNA), short interfering RNAs (siRNA)
and piwi-interacting RNAs (piRNA), has also been extensively
studied in the last decade, including their biogenesis, function
and mechanisms of action, and are now known to be essential
regulators of a number of biological processes (Yoshihisa, 2006;
Ghildiyal and Zamore, 2009; Li et al., 2010; Farazi et al., 2011).
As opposed to these well-documented classes of RNAs, a growing
number of longer transcripts are classified into various categories,
according to their function, subcellular localization, or genomic
proximity with respect to protein-coding genes (e.g., overlapping,
antisense, bidirectional). These ncRNAs are often referred to as
the dark matter of the genome even though they have been shown
to represent the majority of distinct transcripts that arise from
mammalian genomes (Mattick, 2001, 2003; Kapranov et al., 2007;
Kapranov and St Laurent, 2012). The advent of whole transcrip-
tome sequencing, which has exposed the prevalence of ncRNA
transcription, in combination with the profusion of molecular

functions operated by these transcripts, has led to an increasing
interest and awareness in ncRNAs over the last decade (Chen and
Carmichael, 2009; Wilusz et al., 2009). Unifying and discriminat-
ing characteristics of ncRNAs remain an important challenge for
the further understanding of these biomolecules.

Any attempt to identify or predict new lncRNAs implies
that they can be associated with specific features such as struc-
tural, thermodynamic, or even sequence and base composition.
Whereas small ncRNAs seem to be conserved among species
(Quach et al., 2009; Jan et al., 2011), lncRNAs appear to have
evolved independently and do not exhibit strong conservation
during evolution (Marques and Ponting, 2009). This may explain
the few attempts to examine and identify specific features for
this class of lncRNA. In addition, available databases for non-
protein-coding RNAs typically suffer from certain redundancy
and mixtures of various classes of ncRNA.

Here, we first describe the definition of a database of lncRNAs
that can be used for examination of sequence-specific features. In
addition to extensive literature mining, it is based on the exclu-
sion of hypothetical or predicted sequences, of short RNAs and of
sequences that may introduce biases because of redundancy (iso-
forms, repeats, pseudogenes). Second, we demonstrate the utility
of this database by identify a conserved sequence signature of
ncRNAs, the CG dinucleotide enrichment, that can be used to
effectively discriminate lncRNA from mRNAs.

DEFINING A REFERENCE DATABASE OF lncRNAs
AVAILABLE DATABASES
There are a number of comprehensive ncRNA databases, which
cover various classes of ncRNAs, include housekeeping RNAs,
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such as tRNAs, snoRNAs and rRNAs (Sprinzl et al., 1998;
Wuyts et al., 2004; Griffiths-Jones et al., 2005), small RNAs,
such as miRNAs and piRNAs (Griffiths-Jones, 2004), and lncR-
NAs. However, each of these databases have limitations in their
applicability to sequence analysis. The Rfam database contains
thousands of mammalian RNA, the majority of which are
infrastructural RNAs, predicted using co-variance models from
multiple-sequence alignments of genomic datasets, with little
direct experimental support for their transcription (Griffiths-
Jones et al., 2003). The literature-curated subset of RNAdb com-
prises approximately two-thirds of miRNAs and snoRNAs (Pang
et al., 2005). Likewise, the HGNC (HUGO Gene Nomenclature
Classification) database, which contains only human entries (Seal
et al., 2011), discriminates non-protein-coding gene loci from
infrastructural RNA genes, pseudogenes or antisense sequences of
coding genes, is contaminated by genes hosting snoRNA or clus-
ters of miRNA. A certain redundancy is also caused by the pres-
ence of non-coding isoforms of mRNA (Hube et al., 2006, 2011;
Dinger et al., 2008, 2011; Ulveling et al., 2011a,b) and non-coding
transcripts overlapping or antisense of coding transcripts.

WORKFLOW TO RETAIN ONLY BONA FIDE lncRNA
Therefore, we sought to develop a highly filtered set of lncRNAs
that was amenable to sequence analysis. We used the lncRNAdb
(Amaral et al., 2011) and the HGNC database using the “gene
with no protein product locus type” track (Bruford et al., 2008)
as main sources of entries included in this collection. We decided
to generate this specific collection through a pipeline to keep
“bona fide” and accurate lncRNAs. The pipeline consisted of three
steps, that (1) excluded “contaminant” RNA, (2) prequalified
sequences, and (3) confirmed the candidate (Figure S2).

(1) The first criterion to define “bona fide” regulatory lncRNA
candidates was to eliminate known infrastructural RNA and
small RNAs, as well as pseudogenes and RNA antisense to
annotated protein-coding genes. Indeed, we reasoned that
these latter types of transcripts, inherently redundant in
sequence and base composition with their cognate protein-
coding RNA, would introduce biases in the search for specific
features to distinguish lncRNA from other types of RNA.

(2) The second step pre-qualified selected RNA by collect-
ing only human entries, with a validated RefSeq status
(“inferred,” “model,” “predicted,” “provisional” and “wgs”
are not curated and were therefore excluded, whereas the
“validated” status indicated that the RefSeq record was
reviewed and subsequently included) and a clearly identified
NR_ access number (corresponding to a mix of non-coding
transcripts including structural RNAs, transcribed pseudo-
genes, and others).

(3) The pre-collection was then re-checked by genome map-
ping using UCSC and GenBank database (NCBI) (Benson
et al., 2011) and manually curated based upon extensive
literature analysis to validate the uniqueness of retained
sequences, the absence of associated protein, and any asso-
ciated function as functional ncRNA. Additional annotation
information (available in the Table S1) was derived from
the GenBank database and from the literature (Name/Alias,

RefSeq number, chromosome, exon count, length of tran-
scripts, ORF max and Link to disease).

With the concern not to introduce biases of representative-
ness, we decided to qualify only the longest isoform, if any.
Ultimately, our collection (Table S1) contains 52 unique confi-
dently characterized human entries. This dataset contains RNAs
that present a median and mean length of 1.5 and 3.1 kb,
respectively.

SPECIFIC FEATURES ASSOCIATED WITH “BONA FIDE”
ncRNA
To identify specific features that may increase the prediction
accuracy of yet unknown lncRNAs, we performed an analy-
sis of sequence composition (dinucleotides index) using the
above-defined reference lncRNA collection compared to ran-
domly sampled collections of 50 mRNAs or 50 pseudogene RNA
sequences.

DATASETS COMPOSITION AND DATA CROSS-VALIDATION
Human mRNA and pseudogene transcripts were selected ran-
domly from the HGNC database and the corresponding
nucleotide sequences were extracted from GenBank. We grouped
sequences in datasets of 50 sequences that were cross-validated
between each other. Briefly, dinucleotide relative abundance
(DRA) was calculated as defined below for each dataset and com-
pared using the Student’s t-test. Five mRNA and five pseudogene
RNA datasets showing no statistical difference were kept for fur-
ther analyses. Results obtained with mRNA datasets were then
compared to those obtained by Bulmer (1987) to further vali-
date our method. Under-representation of dinucleotides CG and
TA were observed in both studies (Bulmer, 1987 and the present
work, Figure 1A), validating the power of the method used
here.

To compare data obtained from mRNA, pseudogene and
non-coding RNA datasets and to limit bias in the internal com-
position that may subsist, we have chosen to standardize and
correct the DRA for each dinucleotide to that obtained from
the entire genome. Human genome chromosomes were obtained
from the Genome Reference Consortium Human genome build
37 (GRCh37; ftp://ftp.ncbi.nih.gov/genomes/). The same DRA
calculation was performed and validated using data available on
the Guide to Human Genome Website (http://www.cshlp.org).

DRA AND TRANSCRIPT SIGNATURE CALCULATION
The transcript signature (TS) is defined as the ratio of its DRA
to the DRA of the whole human genome. The DRA is defined
as ρXY = f ∗

XY/f ∗
X f ∗

Y where fX is the frequency of the nucleotide X
and f ∗

XY is the frequency of the dinucleotide XY. The symbol ρ∗
measures the abundance of dinucleotides relative to what would
be expected from the component base frequencies. Hence, ρ∗
(actually ρ∗ − 1) can also be referred to as the dinucleotide bias.

The relative counts of each nucleotide / dinucleotide are
computed within each transcript sequence using the “count”
function from the “seqinr” package in the R environment
(Charif et al., 2005) (http://cran.r-project.org/web/packages/
seqinr/index.html).
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FIGURE 1 | Characterization of specific features of the “bona fide”

lncRNA database. (A) Frequencies of occurrence of dinucleotides amongst
the “bona fide” lncRNAs compared to that in mRNAs and pseudogenic RNAs
(pseudoRNA) and compared to published dinucleotide frequencies in intronic
and exonic sequences (Bulmer, 1987) (gray text). Frequencies of
underrepresented dinucleotides are framed in gray where no difference is
observed, or yellow where differences between mRNA, pseudoRNA and
lncRNA are observed. (B) The CG dinucleotide signature for mRNAs,
pseudoRNAs and lncRNAs is expressed as a% enrichment over the
frequency of CG dinucleotide in the whole human genome. Histograms

represent mean values ± s.e.m. ∗∗∗p-value < 0.005 (student’s t-test,
two-sided). (C) Raw data obtained from CPC (Coding Potential Calculator;
http://cpc.cbi.pku.edu.cn) using the three databases (mRNA, pseudoRNA and
lncRNA) were plotted according to the number of sequences presenting
negative (non-coding prediction) or positive (coding capacity) scores. (D)

Using data extracted from EMBOSS CUSP tool (http://emboss.sourceforge.

net), which creates a codon usage table from a nucleotide sequence, the
number of stop codons per 1000 bases is represented for the three
databases and a set of random sequences generated using the Random DNA
Sequence Generator software (http://users-birc.au.dk/biopv/php/fabox).

COMPARISON OF TRANSCRIPT SIGNATURE (TS)
The TS characterizes the enrichment of each dinucleotide nor-
malized to that of the whole human genome. We observed
an absence of variation for all dinucleotides except for TA
and CG. The dinucleotide TA is broadly under-represented
in most prokaryotic sequences and in all eukaryotic genomes
(Karlin, 1998). In addition, it is well established that the human
genome exhibits extreme CG under-representation owing to the
methylation-deamination conversion of CG to TG/CA (Gentles
and Karlin, 2001).

Consistent with these data, the dinucleotide TA exhibited an
under-representation at the same level for all types of transcripts
(about 20%). In contrast, the CG dinucleotide was enriched in all
three collections of RNA compared to the entire human genome.
More importantly, the CG dinucleotide occurs at almost twice the
frequency in mRNA than in the whole genome and this signa-
ture clearly distinguishes coding RNA from “bona fide” ncRNA
(Figure 1B and Figure S3). As mentioned above, transcripts orig-
inating from pseudogenes, which retain sequence similarities with
the gene from which they derive although lacking coding capacity,
exhibit an intermediate CG dinucleotide signature.

CPC DETECTION
We used a recently described computational tool, CPC (Coding
Potential Calculator; http://cpc.cbi.pku.edu.cn), which is a

Support Vector Machine-based classifier that takes into consid-
eration multiple protein features (peptide length, amino acid
composition, protein homologs, secondary structure, and pro-
tein alignment) to distinguish mRNAs from ncRNAs (Kong et al.,
2007), to compare the coding capacity of the three databases
(mRNA, pseudoRNA and “bona fide” ncRNA). For each category
of RNA, the number of sequences presenting a negative (non-
coding prediction) or positive (coding capacity) score was plotted
(Figure 1C). We found that over 90% of mRNAs indeed exhibited
protein-coding capacity, as well as pseudogenic RNAs. As men-
tioned above, transcripts originating from pseudogenes exhibit
a high sequence homology with the coding genes from which
they evolved. It is therefore not surprising that, except for the
presence of stop-codons, pseudogenic RNAs exhibit a compara-
ble capacity to encode proteins. In contrast, only one sequence
from our “bona fide” lncRNA database was considered as a
potentially coding transcript. The WBSCR26 lncRNA contains a
putative 240 nt long ORF (80 aa) out of the 471 nt of the transcript
(NR_026690, frame 3). As expected, the remaining 98% of ncR-
NAs were indeed detected as non-coding transcripts, once again
validating the strength of the method used to identify “bona fide”
ncRNAs.

It should be noted that the identification of “bona fide”
lncRNAs as non-coding transcripts could not rely solely on the
absence of a sufficiently long ORF to be considered. Indeed, as
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shown in Figure S4, ∼50% of the transcripts are predicted to
contain an ORF longer than if occurring by chance (Dinger et al.,
2008; Ulveling et al., 2011b). Although there was a slight increase
(4% vs. 5% for mRNA and ncRNA, respectively) in the number
of stop codons in lncRNAs, which indeed is comparable to that
found in randomly chosen sequences (Figure 1D).

In summary, “bona fide” lncRNA cannot be distinguished
from randomly chosen mRNA and pseudogene transcripts in
terms coding capacity. However, we uncovered a CG dinucleotide
signature that clearly discriminates these “bona fide” lncRNAs
from mRNAs.

USE OF CG TRANSCRIPT SIGNATURE TO DISCRIMINATE
BETWEEN lncRNAs AND mRNAs
To assess whether the CG transcript signature that we identified
was a conserved and consistent feature and could be used to dis-
criminate between non-coding and coding RNAs, we decided to
test its power against human and murine reference gene tran-
script sequence files. The two databases (human.rna.fna and
mouse.rna.fna) were downloaded from NCBI (ftp://ftp.ncbi.nlm.

nih.gov/) and cleaned of “contaminant” sequences (all RNAs con-
taining “partial,” “predicted,” “transcript variant” that were > 1,
“NR_” RefSeq prefix and “RIKEN” in their title were discarded)
to retain only sequences with a “NM_” RefSeq status and used
to build a mRNA dataset. The lncRNA dataset was selected on
the basis of the “NR_” Refseq prefix. The human collected mRNA
and lncRNA datasets contained 18,999 and 6056 non-redundant
transcripts, respectively. In parallel, murine datasets were com-
posed of 19,101 and 1116 transcripts corresponding to mRNAs
and lncRNAs, respectively.

The distributions of the CG transcript signature for each
large dataset are noticeably different, both in humans and mouse
(Figure 2). Consistent with data obtained with the reduced col-
lection of 52 “bona fide” lncRNAs (Figure 1B), the distribution
corresponding to lncRNAs is clearly shifted to the left, toward
a lower representation of CG dinucleotides (mean 1.96; median
1.81). In clear contrast, the profile corresponding to mRNA is
shifted toward a higher representation of CG dinucleotides (mean
2.29; median 2.18).

CONCLUSION
We demonstrate that the collection of “bona fide” lncRNAs pre-
sented here serves as a powerful resource to detect novel unifying
features for lncRNAs and distinguish them from other classes of
transcripts.

It is interesting to note that lncRNAs exhibit sequence char-
acteristics, at the levels of nucleotides and dinucleotides, similar
to that previously described for inherently non-coding sequences
like intronic and intergenic regions (Bulmer, 1987; Gentles and
Karlin, 2001). Remarkably, the CG dinucleotide composition that
we identified discriminates lncRNAs from mRNAs, and, to a lesser
extent, lncRNAs from pseudogenic transcripts. Indeed, pseudo-
genic RNAs, although non-coding, share sequence features with
the coding gene from which they originate. Similarly, although
still anecdotal, bifunctional RNAs, which can operate both as
a functional RNA and an mRNA for the production of a pro-
tein, also exhibit intermediate CG dinucleotide signature (not

FIGURE 2 | Use of the CG dinucleotide frequency to categorize whole

genome transcripts. Distribution of transcript signature scores (CG)
obtained from ncRNA, mRNA and all grouped transcripts in human and
murine sequences. Human and mouse transcripts in were downloaded
from NCBI (human.rna.fna and mouse.rna.fna, respectively) and filtered to
specifically select lncRNA and mRNA sequences. Briefly, lncRNAs were
selected using NR_ as RefSeq accession number filter, and mRNAs were
depleted using “partial,” “predicted,” “RIKEN,” “transcript variant” (with a
number >1 to only keep the first one) and “NR_” as keywords. Number of
RNA sequences used for the distribution plots, including the mean,
median, and standard error for each dataset. ∗∗∗p-value < 0.005 (student’s
t-test, two-sided).

shown). Although this observation is preliminary, it has been
revealed after performing a thorough curation of existing datasets
to reduce biases introduced by redundancy (e.g., homologs, anti-
sense, isoforms, and pseudogenes) or a mixture of sequences (in
terms of length, class, and species).

Even if the number of these “bona fide” lncRNAs is lim-
ited, this set will increase as new experimental evidence supports
functional roles for unclassified lncRNAs. Meanwhile, we believe
that this collection will help uncover additional structural, ther-
modynamic or sequence features specific for strict non-coding
RNAs, and will provide an interesting index classification index
for lncRNAs.

To date and to our knowledge the CG dinucleotide repre-
sents the first sequence feature that allows discrimination between
lncRNA and mRNA that does not depend on coding potential.
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