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One of the goals in genetic research aims
at identifying genes in biochemical and
physiological processes to reveal genetic
causes of rare and common diseases.
Previous obstacles such as costly genotyp-
ing or sequencing have been reduced with
the chip-based genomewide association
studies (GWAS), now culminating with
the latest toy—next generation sequenc-
ing methodologies (NGS). Concomitantly,
computer technologies have evolved to
an increasing use of multicore processors
and distributed computing on large net-
works or grids. Although the technologies
are not perfect, we now have unprece-
dented opportunities to perform genetic
studies not possible just 10 years ago. The
hype about these new technologies have
been large, but all the promises have how-
ever not been fulfilled entirely as hoped
for. Maybe because the hype has been
more about the technologies as such, and
less about their intended use. Millions of
genetic variations have been detected by
GWAS and NGS, but only a few have been
linked to diseases—with almost no practi-
cal clinical significance. A major reason for
this apparent deadlock is the inadequacy
of the models used, which are based on
the traditional “Mendelian” approach, in
which one gene is supposed to have a main
effect on a trait or a disease. However,
most genes claimed to be associated with
a disease have small effects and only a tiny
fraction of the genetic variance has been
captured.

In this short notice it is argued, why
this traditional approach should be sup-
plemented or even replaced by modeling
approaches in accordance with the com-
plexity of biological systems, if we shall
have any reasonable hope to understand

the genetics behind any trait and bring
genetics into practical use in medicine for
common diseases (Costanzo et al., 2010;
Ramanan et al., 2012).

EVOLUTION, FITNESS, AND EPISTASIS
Evolution of phyla is a complex process
governed by genomic as well as envi-
ronmental factors (Marshall, 2006). Much
theoretic and practical work about evo-
lution are based on theories of adaptive
landscapes of fitness and natural selection,
as advocated by Fisher in his geometrical
model of adaption (Fisher, 1930; Martin
and Lenormand, 2006; Chevin et al., 2010;
Weinreich and Knies, 2013). In this model
fitness is determined in a multidimen-
sional landscape of phenotypes or traits,
on which a selection pressure is imposed
that limits the number of viable pheno-
types. Although the space of theoretically
phenotypes increases with the complex-
ity of an organism, this may come with
a cost of decreasing adaptability (Fisher,
1930; Orr, 2000; Martin and Lenormand,
2006; Borenstein and Krakauer, 2008). The
Fisher model(s) is not explicitly rooted
in genetic models but rather considers
the phenotypic pleiotropic effect of muta-
tions, i.e., particular genes and loci are
not formulated in the model. In con-
trast, Wrights formulation of evolution
(Wright, 1920) can be described as a
multidimensional mutational or genetic
landscape in which each dimension cor-
responds to a specific locus. In “modern”
terms these ideas can be formulated as the
occurrence of stabilizing selection acting
on the increasing mutational load pos-
sibly involving pleiotropic behavior of a
given mutation, that is a mutation may
affect several endophenotypes (Weinreich

et al., 2006; Masel and Siegal, 2009).
Pleiotropicity also means that a selection
pressure imposed on one endophenotype
may not only constrict the number of
viable genotypes but also inflict a collat-
eral selection on other endophenotypes
and genes (Gavrilets and De Jong, 1993;
Snitkin and Segre, 2011). The latter may
be regarded as “innocent” bystanders and
the preserved genotypes may just be those
that happen to be around at the moment
of selection.

Fitness is a measure of the capability
of survival and reproduction of a species
as the result of integrated action of many
subprocesses conditional on the imposed
selection pressure. However, less fitness
may not necessarily result in an entire loss
of a phenotype or trait, but may prevail
and in fact increase fitness if the selec-
tion pressure changes. This scenario is
supported by the long known fact that a
mutation may have major effect in one
genotypic background, but may only have
a minor influence in another and hence
escape purging by selection (Nijhout and
Paulsen, 1997; Kouyos et al., 2006). The
fitness landscape (or any other trait land-
scape) may thus be roughed with several
local optima. This is clearly obvious in the
landscape of species, but is also present
within a species (Marshall, 2006).

For long the question has been if a
mutation impose a pure additive effect
on fitness or if epistasis (the effect of
mutations in a gene or regulatory struc-
ture on the effects of other genes) is
the prevalent driving force in evolution.
The effect of any mutation (genic as well
as exgenic including possible changes in
epigenetic processes) may be increased,
buffered, or ameliorated in particular
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genetic backgrounds, while having nega-
tive (even lethal) effect in other genetic
backgrounds. Buffering is the essence in
evolutionary theory of canalization and
organismal robustness, in which the phe-
notype appears robust to mutational per-
turbations. Mutations may accumulate
and appear as cryptic or neutral vari-
ations as long as they are not selected
against (Masel and Siegal, 2009). These
cryptic genetic variations may be revealed
if some genetic or environmental changes
happen affecting the fitness and then
contribute to evolvability (McGuigan and
Sgró, 2009).

Canalization (or buffering) implies that
the phenotypic mean tends to be pre-
served when a mutation occurs, but the
cost is diminished variation of the phe-
notype, as new (deleterious) mutations
are buffered leaving less degrees of free-
dom of variation compared to the pre-
mutational genotype. Thus, a particular
phenotype representing a local maximum
in the phenotypic landscape, is generated
by an ensemble of genotypes, each depict-
ing a path or trajectory of the genetic
network. Generally, the probability of a
given genetic path being accessible to gen-
erate a phenotype decreases with the num-
ber of mutations. However, as the number
of paths increases exponentially with the
number of mutations a large and increas-
ing number of paths may eventually gen-
erate a phenotype. This hypothesis has
been confirmed empirically (Dowell et al.,
2010; Franke et al., 2011). These and many
other studies have firmly established epis-
tasis as a primary driving force in evo-
lution and as a fundamental principle in
governing biological processes (Rice, 1998;
Segre et al., 2005; Weinreich et al., 2005,
2013; Bershtein et al., 2006; Borenstein
and Krakauer, 2008; Pavlicev et al., 2008;
Chevin et al., 2010; Lunzer et al., 2010;
Breen et al., 2012; Huang et al., 2012;
Hemani et al., 2013; Weinreich and Knies,
2013).

The mechanism behind interactions
and epistasis has been extensively stud-
ied and includes concepts as sign epis-
tasis (Weinreich et al., 2005), reciprocal
epistasis (Poelwijk et al., 2011), and
the expansion of the protein universe
(Povolotskaya and Kondrashov, 2010) to
mention just a few outstanding contribu-
tions. The reader is referred to the cited

work and to the vast literature appearing
now.

THE GENETIC AND PHENOTYPIC
SPACES
Complex species like humans are orga-
nized in interacting and interdependent
functional units called organs or multicel-
lular tissues. This extends the complexity
of the genetics to another level. Despite
the constrains this impose, the phenotypic
space is vast.

Suppose that a diploid organism like
Homo sapiens with 23 sets of chromo-
somes only harbor one mutation in each
chromosome. The theoretically number
of gametes emerging by random segrega-
tion amounts to approximately 8.4 mil-
lion. If all gametes are viable then the
number of possible zygotes will be more
than 7∗1013 or more than 11.000 fold the
number human beings ever lived on planet
Earth. Most probably a vast amount of
the gametes or zygotes are not viable, but
nevertheless, genetic variations so far dis-
covered runs in the millions. This maps
to as many phenotypes and hence, two
human beings will never be genetically
identical.

Similarly, in a physiological process like
blood pressure, which are regulated by
say 100 interacting genes, more than 1030

networks with exactly the same topology
can be constructed if just one mutation is
present in each gene. This would map to
as many physiological states and dynam-
ics. Adding to the number of genes their
alternative spliced forms, the vast num-
ber of posttranslational modifications of
proteins, non-protein regulatory elements
(metabolites, small regulatory RNAs), epi-
genetic modifications, non-genic regula-
tory and genome-organizing structures,
and not the least interactions and commu-
nications between cells in a multicellular
organisms like humans, the combinatorial
space of interactions and hence pheno-
types is (almost) infinite.

POPULATION STRUCTURE AND
GENETIC NETWORKS
Two basic aspects must be addressed
in population genetics: (1) biologi-
cal processes even in its most simple
forms are blue-printed in the genome
of interacting networks of genes; (2) the
expression of the biological processes

and phenotypes are conditional on the
genetic variations and their inherent
epistasis.

The genetic networks coding a trait
can be mapped as a “continuum” reflect-
ing the physiological states they define
(see the Figure 1). Neighboring networks
can be distinguished by variations in one
or several genes or non-genetic regula-
tory structures, but may appear physio-
logical similar as most genetic variations
have small effects. The sensitivity of a net-
work to external factors is encoded in
the genome, and it is the variations in
the process-specific genes and regulatory
structures that determines the range of
the response to an external perturbation.
Identifying genetic networks are neither
simple, nor transparent: functional net-
works are multipartite structures and are
not secluded entities but rather intercon-
nected with other networks (e.g., the glu-
cose and the fat metabolisms are highly
intermingled processes). Nevertheless, it
may be possible to define a reasonable
number of sub-ensembles of networks to
be interpretable.

HETEROGENEITY
Population heterogeneity refers to the
mixture of phenotypically homogeneous
subpopulations, although in the extreme
no subpopulation is truly homoge-
nous as each subject harbors a unique
genomewide genotype. A more or less
well-defined phenotype thus comprise an
ensemble of genotypes in the population.
The initial task is then to cluster subjects
into more physiological homogeneous
subpopulations to increase the accuracy
and power of the genetic analysis (Fenger
et al., 2008, 2011). The application of
appropriate cluster algorithms is generally
ill posed, as no universal formal criteria
for the best clustering is available. Many of
the well-known classification procedures
implement some data-reduction or fea-
ture selection (Saeys et al., 2007), but any
manipulations of the data space are likely
to result in loss of information and should
be avoided.

Allocating subjects to subpopula-
tions is an art of modeling hidden or
latent variables as the number of sub-
populations is not known a priori.
A way to resolve this is by applying
the concept of latent class (LCA) in a
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FIGURE 1 | Risk profile in genetic networks. The population in this example is partitioned into
more homogeneous subpopulations (Pi ) by the LCA-SEM procedure indicated by the sets of two
vertical lines. Each subpopulation is genetically defined by an ensemble of networks with exactly
the same topology but differs in genetic variations. The networks in each subpopulation arise by
successive mutational incidences that are balanced (buffered) to generate a phenotype similar for
all subjects in the subpopulation (see also the text). In reality the subpopulations represent different
local maxima in a miltidimensional phenotypic landscape, but are for illustrative purposes collapsed
to flat, two-dimensional presentation. The range of the phenotype (e.g., diastolic blood pressure)
depends on extra-genetic factors, but can never exceed the range defined by the genotype. Thus,
some subjects (genotypes) will never exceed the threshold (T), while others will experience the
extreme phenotype (e.g., diastolic hypertension) regardless of extra-genetic factors. The D(anger) -
zone indicates the subjects or subpopulations which may be classified in this examples as diastolic
hypertensive. However, this may depend on the circumstances under which the blood pressure is
measured, i.e., subjects may be classified as normotensive although they have a massive
propensity to develop hypertension. Dichotomizing the trait in a population is thus a dubious affaire
and compromise most association studies to the point that information of the genetics of, in this
case diastolic blood pressure, is entirely lost.

structural equation modeling framework
(SEM) (Bollen, 1989; Muthen, 2002;
Skrondal and Rabe-Hesketh, 2007; Fenger
et al., 2008, 2011). The idea of the LCA-
SEM approach is to model a physiological
process, and therefore the most appropri-
ate study population would be a random
selection of subjects as each subject pro-
vide information of the physiological pro-
cess. Genetic structures and variations are
not necessarily modeled directly, but are
embedded as latent variables in the SEM
structure and are mapped or reflected by
the measured variables. Modeling in this
framework addresses two pivotal issues
in complex data: resolving the hetero-
geneity in the population, and simultane-
ously evaluating the data structure within
the sub-populations. This approach out-
performs most other classification meth-
ods in almost all aspects (Magidson and
Vermunt, 2002).

An emerging line of methods imple-
ment ensembles of classification func-
tions (Polikar, 2006). These approaches
are particularly attractive when features in

multi-source or distributed data sets are
partly or completely disjoint, or if access
to data in data set is limited to a subset
of objects. Thus, the problem of missing
data and hence reduced power may be cir-
cumvented to some extent and represent a
potential alternative to imputing missing
genetic data.

Undoubtedly, new and promising
methods will merge, in particular as
theoretical ideas mentioned below are
integrated in future developments.

INHERITANCE: GENES OR
INFORMATION?
Understanding and integrating the wealth
of genetic data in a biological and medical
context requires new approaches and tech-
niques. Fortunately many new approaches
are emerging increasingly embracing the
nature of biological systems. In particu-
larly the recent developments in network
theory (Dorogovtsev and Mendes, 2002;
Newman, 2009) including concepts of
modularity (Newman and Girvan, 2004),
stochastic block modeling (Karrer and

Newman, 2011), statistical mechan-
ics (Reichardt and Bornholdt, 2006;
Ronhovde and Nussinov, 2009), and infor-
mation theory (Anand and Bianconi,
2010) are promising.

All these methods comprise passing
of information that have its corollary in
genetics. Stabilizing selection may give
rise to prevailing linkage disequilibrium
of genes within and across chromosomes
(Fenger et al., 2011). Such linkage disequi-
librium arise as a consequence of preserv-
ing physiological processes regardless of
the physical structure of the genome. Thus,
inheritance is not a simple matter of pass-
ing on genetic material, but rather to com-
bine information harbored in the genome
into a viable organism. Information theo-
retic approaches in genetics may therefore
be more promising (how abstract it may
be) than traditional association methods,
although transformation of these theories
to biological structures may not be always
straightforward.

IS VALIDATION IN GENETICS
ACTUALLY POSSIBLE?
Validation is a standard requirements in
genetic association studies today. However,
validation of an association of a genetic
variant to a trait or disease is often not
or only sporadically obtained and for that
reason a gene may be dismissed as dis-
ease related (Ioannidis, 2007; Shriner and
Vaughan, 2011), or even to be pivotal
in a physiological process (Fenger et al.,
2011; Spijkers et al., 2011). It should hope-
fully be clear from the discussions above
that validation should be expected to be
an exception. A non-validated association
may simply indicate a local optimum in
the phenotypic landscape that happens to
be detected because the genotypes in a
population are permissive for expressing
an apparent main effect. It has indeed
been demonstrated that the lack of valida-
tion actually suggest more complex genetic
structures governs a trait (Greene et al.,
2009; Fenger et al., 2011), and includ-
ing epistasis in the analysis may eventual
confirm the importance of non-validated
associations.

In the end the importance of genetic
variations should be confirmed by cellu-
lar experiments. If possible, studies should
be done in the cells where the genes in
a network has its effect (which we often
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do not know). A gargantuan endeavor and
at the moment maybe wild-fetched, but
eventually any genetic variation has to be
substantiated in a real biological context -
not just as a statistical phenomenon.
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