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Zeng et al. (2005) proposed a general two-allele (G2A) model to model bi-allelic quantitative
trait loci (QTL). Comparing with the classical Fisher model, the G2A model can avoid using
redundant parameters and be fitted directly using standard least square (LS) approach. In
this study, we further extend the G2A model to general multi-allele (GMA) model. First,
we propose a one-locus GMA model for phase known genotypes based on modeling
the inheritance of paternal and maternal alleles. Next, we develop a one-locus GMA
model for phase unknown genotypes by treating it as a special case of the phase known
one-locus GMA model. Thirdly, we extend the one-locus GMA models to multiple loci. We
discuss how the genetic variance components can be analyzed using these GMA models
in equilibrium as well as disequilibrium populations. Finally, we apply the GMA model to a
published experimental data set.
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1. INTRODUCTION
Currently there are two types of statistical genetic models that are
commonly used in genetic analysis of quantitative traits. One is
the F∞ type models that concentrate on direct modeling of the
expected genotypic values at targeted quantitative trait loci (QTL)
or genetic markers and association testing for various allelic
effects and interactions (Fisher, 1918; Cheverud, 2000; Hansen
and Wagner, 2001; Wang, 2011). Another is Fisher’s analysis of
variance (ANOVA) models that focus on assessing variations con-
tributed by some genetic components (i.e., grouped allelic effects
or allelic interactions) at targeted QTL or genetic markers (Fisher,
1918; Cockerham, 1954, 1963; Kempthorne, 1969; Weir and
Cockerham, 1977; Wang and Zeng, 2006). A considerable amount
of discussion has been made about the distinction between these
two different types of genetic models (Zeng et al., 2005; Álvarez-
Castro and Carlborg, 2007; Yang and Álvarez-Castro, 2008; Wang
and Zeng, 2009). More recently, a comprehensive review of vari-
ous genetic models was also given in Álvarez-Castro (2012).

In genetic association studies, we are often interested in direct
comparison of the expected genotypic values at certain QTL or
marker loci. The F∞ models are appealing in this setting due
to their simplicity in interpretation of their model parameters,
which are often referred as the fixed genetic effects such as the
additive and dominance effects or the allelic effects and allelic
interactions in terms of the expected genotypic values. By apply-
ing the F∞ models, we can compare the expected genotypic values
via hypothesis tests on various fixed genetic effects. However, as
pointed out in Wang and Zeng (2009), the p-value based associa-
tion tests on these fixed genetic effects could highly depend upon
the regression model, the distribution assumption and the avail-
able sample size. Besides, a statistically significant genetic effect
with a small enough p-value may not necessarily imply a clinically
important finding. On the other hand, the Fisher type models

allow us to assess the genetic variations contributed by certain
genetic components to the overall variation of a quantitative trait.
By definition, these genetic variance components do not depend
on the sample size, and they can provide additional information
on better understanding the genetic etiology and assessing for
clinical importance. Nonetheless, both the F∞ and the Fisher type
models form basis in the analysis of quantitative traits. They pro-
vide different perspectives in assessing the genetic effects of QTL
or genetic markers.

The basic genetic model on assessing the genetic variance
components was first proposed by Fisher (1918). Cockerham
(1954, 1963) extended Fisher’s one-locus model to two bi-allelic
QTL with a particular focus on epistatic variance components.
Kempthorne (1954, 1957) further extended the two-locus model
to multiple alleles. Wang and Zeng (2006) also explored the
Fisher type multi-allele two-locus model on partition of the geno-
typic variance in the presence of linkage disequilibrium (LD).
With their model parameters referred as the average effect of
the gene substitution (see Falconer and Mackay, 1996) or the
average allelic effects and interactions (Wang and Zeng, 2009),
these classical Fisher type models often contain constraints on
their model parameters due to an over-parameterization of the
expected genotypic values. These constraints could make it dif-
ficult to fit this type of models using standard least square (LS)
regression approach. To avoid this problem, under a regression
model framework, Zeng et al. (2005) proposed a general two-
allele (G2A) model for variance component analysis on bi-allelic
QTL. The G2A model retains the nice property of the classical
Fisher’s model on orthogonal partition of the genotypic variance
in equilibrium populations. Meanwhile, without using redun-
dant parameters, the G2A model can be fitted directly using the
standard LS approach. Wang and Zeng (2009) further explored
the origin of the G2A model and clarified its theoretical basis
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on pertaining the orthogonal partition of the genotypic variance
in equilibrium populations. Álvarez-Castro and Carlborg (2007)
also proposed a different way for re-parameterization of the
expected genotypic values, which the authors referred as the nat-
ural and orthogonal interactions (NOIA) model. It appears that
the NOIA model first defines the genetic effects in terms of the
expected genotypic values, and then derives the design matrix for
the genetic effects via an inverse of the matrix. Though the matrix
formulation is helpful for facilitating the transformation between
different parameterizations, making inverse of the matrix to con-
struct the design matrix is difficult to implement analytically. For
multiple QTL, how to define various genetic effects in terms of
the expected genotypic values could also be a challenge espe-
cially when locus-by-locus interactions are involved. Besides, the
NOIA model assumes that the design matrix is of full rank, which
makes it unsuitable for reduced re-parameterization of the geno-
typic values. Currently, no NOIA model has been proposed for
reduced re-parameterization of the expected genotypic values, or
for multiple QTL in the presence of LD.

In this study, we further extend the G2A model to QTL with
multiple alleles and multiple loci. In bi-allelic case, only one addi-
tive effect and one dominance effect are needed at each locus,
and the locus-by-locus interactions can be easily included for
constructing a full re-parameterization of the genotypic values.
For one QTL with multiple alleles, how to define the dominance
effects for various allelic interactions is not straightforward espe-
cially when phases of its genotypes are unknown. The extension
to multiple loci is also cumbersome by the much more com-
plex structure of locus-by-locus interactions. How to present the
model and define various genetic variance components are not
trivial tasks. To construct one-locus general multi-allele (GMA)
model, we overcome the phase problem by appropriately merging
the paternal and maternal allelic effects and allelic interactions in
the phase-known situation. Typically, with phase unknown geno-
types at a locus, we may have to assume that the paternal and
maternal alleles have the same frequencies and contribute the
same genetic effects so that we could merge them without dis-
tinguishing their parental origins. With phase-known genotypes,
we can further break down the additive variance component into
paternal and maternal variance components. For multiple QTL
with multiple alleles, we develop concise expressions for con-
structing multi-locus GMA models and defining various genetic
components. Explicit formulas for calculating various genetic
variance components in equilibrium population are also derived.

The structure of this manuscript is organized as the following.
First, we consider one multi-allele QTL with phase known geno-
types. Following the same strategy as adopted in Wang and Zeng
(2009), we start by introducing indicator variables that describe
the inheritance of paternal and maternal alleles. Then we make
mean corrections on these indicator variables and build one-
locus GMA model based on the mean-corrected index variables.
Next, we consider one QTL with phase unknown genotypes. We
construct a one-locus GMA model for unphased genotypes by
appropriately combining the paternal and maternal allelic effects
in the phase known one-locus GMA model. We derive formulas
on partitioning the genotypic variance into the additive and dom-
inance variance components under Hardy-Weinberg equilibrium

(HWE) as well as in Hardy-Weinberg disequilibrium (HWD)
for both the phase-known and phase-unknown one-locus GMA
models. Thirdly, we extend the one-locus GMA models to mul-
tiple loci with either phase known or phase unknown genotypes.
Based on these multi-locus GMA models, we describe how the
various genetic components can be defined. An orthogonal par-
tition on the genotypic variance in an equilibrium population is
also presented in both the phase known and unknown cases. In
addition, we discuss how to construct the reduced multi-locus
GMA models in practice. The difference in using F∞ models and
GMA models to build reduced models for the expected geno-
typic values is explored. Finally, we apply the GMA model to a
published experimental data set.

2. METHODS AND RESULTS
The variation of a quantitative trait Y is usually assumed to be
contributed by both genetic and environmental effects. Let G
denote the true (unobservable) genotypic value from the joint
contribution of all the genetic factors to the quantitative trait
Y . Given genotypes at targeted QTL or genetic marker loci, we
focus on assessing the variations (i.e., variances) contributed by
the allelic effects and interactions of the QTL or marker loci to
the total genotypic variance VG.

2.1. ONE-LOCUS MODEL FOR PHASE KNOWN
First, let us consider a single QTL with multiple alleles A1, . . . , Am

(m ≥ 2). Suppose we know the parental origins of the alleles
for observed genotypes. Then we can distinguish the paternal
and maternal allelic effects separately. With m alleles, there are
in total m2 possible phased genotypes: (Ai, Aj), i, j = 1, . . . , m,
where Ai and Aj represent the paternal and maternal allele, respec-

tively. Let Gi
j = E[G|g = (Ai, Aj)] denote the expected genotypic

value for a phased genotype (Ai, Aj) in a study population. Then

there are totally m2 possible expected genotypic values Gi
j, i, j =

1, . . . , m. To model these expected genotypic values, Fisher’s
classical one-locus model is given by

Gi
j = μ + αi + αj + δi

j , i, j = 1, . . . , m, (1)

where αi (or αj) is the so-called average additive or main allelic

effect of a paternal (or maternal) allele Ai (or Aj), and δi
j is the

average allelic interaction between a paternal allele Ai and a mater-
nal allele Aj. The above model is a typical two-way ANOVA model
with the paternal and maternal gametes being treated as two inde-
pendent risk factors. Although the paternal and maternal gametes
often share (but do not have to) the same set of alleles A1, . . . , Am

at the QTL, it allows the paternal and maternal gametes to have
different allele frequencies and allelic effects at the QTL.

Let pi be the frequency of allele Ai on paternal gametes(∑m
i = 1 pi = 1

)
, and pj be the frequency of allele Aj on the mater-

nal gametes
(∑m

j = 1 pj = 1
)

. One nice feature of the Fisher model

above is that it can assess the additive and dominance vari-
ance components VA and VD, which are defined as variations
contributed by the additive allelic effects from the paternal and
maternal alleles and the allelic interactions between the pater-
nal or maternal alleles, respectively. For example, under HWE,
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it is well known that the total genotypic variance VG = ∑
i,j pipj

(Gi
j − μ)2 has an orthogonal partition VG = VA + VD, where

VA =
∑

i

pi(αi)2 +
∑

j

pj(αj)
2 , VD =

∑
i,j

pipj(δ
i
j )

2.

Note that there are in total m2 + 2m + 1 = (m + 1)2 parame-
ters being involved in Fisher model (1) including the intercept μ,
which is more than the total number m2 of the expected genotypic
values Gi

j, i, j = 1, . . . , m. As a result, not all the model parame-
ters are estimable. To avoid this problem, some constraints on the
model parameters are often required. It is usually assumed that all
the genetic effects are averaged to zero over any index; i.e.,

∑
i

piαi = 0,
∑

j

pjαj = 0,
∑

i

piδi
j = 0,

∑
j

pjδ
i
j = 0. (2)

With these constraints, Fisher (1918) showed that the least square
estimates (LSE) of the model parameters are given by

μ = E(G), αi = Gi
. − G ·

. , αj = G ·
j − G ·

. , δi
j = Gi

j − Gi
.

− G ·
j + G ·

.

where G ·
. = E(G), Gi

. = E[G|g = (Ai,−)] and G ·
j = E[G|g =

(−, Aj)]. In simple cases, we could estimate the model parame-
ters using these formulas. In general, however, those “irregular”
constraints in (2) make it difficult to fit model (1) using the stan-
dard LS approach via commonly used software such as SAS (SAS
Institute INC, Raleigh, NC), especially when we need to adjust for
certain environmental covariates.

Here we propose a way to get rid of the redundant param-
eters. Let us first introduce the following indicator variables
that describe the transmission inheritance of the paternal and
maternal alleles.

zPi (g) =
{

1, the paternal allele is Ai

0, the paternal allele is not Ai ,

zMj (g) =
{

1, the maternal allele is Aj

0, the maternal allele is not Aj ,

for i, j = 1, 2, . . . , m at the QTL. Next, using the same strategy as
adopted in Wang and Zeng (2006), we further make mean correc-
tions on these indicator variables zPi , zMj and define the following
mean-corrected index variables

xPi (g) = zPi (g) − E[zPi (g)]

=
{

1 − pi, the paternal allele is Ai

−pi, the paternal allele is not Ai ,

xMj (g) = zMj (g) − E[zMj (g)]

=
{

1 − pj, the maternal allele is Aj

−pj, the maternal allele is not Aj .

Then we can re-write the Fisher model (1) as

E(G|g) = μ +
m∑

i = 1

αixPi (g) +
m∑

j = 1

αjxMj (g)

+
∑

i,j

δi
j xPi (g)xMj (g), (3)

where E(G|g) denotes the expected genotypic value given a geno-
type g at the targeted QTL. As shown in Wang and Zeng (2006),
the above model is simply a different representation of the Fisher
model (1) with the same constraints being applied on the model
parameters. However, as the HWD measurements can be quanti-
fied as covariances between those mean-corrected index variables
xPi ’s and xMj ’s, this model expression can facilitate derivation on
examining the genetic variance components under HWD.

Now, we further exclude the redundant parameters in
model (3). For a diploid subject such as human being,
his or her genotype at a locus on a pair of homolo-
gous chromosomes consists of two alleles with one from
the father and the other one from the mother. Therefore,
we always have

∑m
i = 1 zPi (g) ≡ 1 and

∑m
j = 1 zMj (g) ≡ 1. Thus,

xPm = −∑m − 1
i = 1 xPi and xMm = −∑m−1

j = 1 xMj . So we can sim-

ply replace xPm by (−∑m − 1
i = 1 xPi ), and xMm by (−∑m − 1

j = 1 xMj ) in
model (3), which leads to the following revised Fisher model

E(G|g) = μ +
m − 1∑
i = 1

α∗ixPi (g) +
m − 1∑
j = 1

α∗jxMj (g)

+
m − 1∑
i = 1

m − 1∑
j = 1

δ∗i
∗j xPi (g)xMj (g). (4)

Model (4) provides a full re-parameterization of the m2 expected
genotypic values Gi

j, i, j = 1, . . . , m, without using redundant
parameters. We refer it as a revised one-locus Fisher model or a
general multi-allele (GMA) model. We also refer its model param-
eters α∗i (or α∗j) as the average (additive) allelic effect of the

paternal (or maternal) allele Ai (or Aj), and δ∗i
∗j the average allelic

interaction between the paternal allele Ai and maternal allele Aj,
with respect to the baseline allele Am. Here, we choose allele Am

as the baseline allele but it could be any other allele as well. It
is easy to show that, in terms of the parameters in the origi-
nal Fisher model (1), we have α∗i = αi − αm, α∗j = αj − αm and

δ∗i
∗j = δi

j − δm
j − δi

m + δm
m , for i, j = 1, . . . , m.

Model (4) retains most of the nice features of the orig-
inal Fisher model (1) on partition of the genotypic vari-
ance. Based on this model, we have the genetic additive
variance components VAP = Var(

∑m − 1
i = 1 α∗ixPi ) and VAM =

Var(
∑m − 1

j = 1 α∗jxMj ), which denote variations contributed by
the additive effects of the paternal and maternal alleles,
respectively. The genetic dominant variance component VD =
Var(

∑m − 1
i = 1

∑m − 1
j = 1 δ∗i

∗j xPi xMj ), which accounts for a variation
contributed by the interactions between paternal and maternal
alleles in addition to the additive variance components. Under
HWE, the paternal index variables {xPi , i = 1, . . . , m} are inde-
pendent of the maternal index variables {xMj , j = 1, . . . , m}.
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Therefore, we have μ = E(G) and an orthogonal partition on the
variance of the expected genotypic values: V(E(G|g)) = VAP +
VAM + VD, where

VAP =
m − 1∑
i = 1

pi(α∗i)2 −
(

m − 1∑
i = 1

piα∗i

)2

,

VAM =
m − 1∑
j = 1

pj(α∗j)
2 −

⎛
⎝m − 1∑

j = 1

pjα∗j

⎞
⎠

2

VD =
m − 1∑
i,j = 1

pipj(δ
∗i
∗j )

2 −
m − 1∑
i = 1

pi

⎛
⎝m − 1∑

j = 1

pjδ
∗i
∗j

⎞
⎠

2

−
m − 1∑
j = 1

pj

(
m − 1∑
i = 1

piδ∗i
∗j

)2

+
⎛
⎝m − 1∑

i,j = 1

pipjδ
∗i
∗j

⎞
⎠

2

.

In HWD, the disequilibrium measurements can be captured by
the covariances between the index variables xPi ’s and xMj ’s. In
this case, we no longer have an orthogonal partition on the vari-
ance of the genotypic values for the additive and dominance
variance components (see Appendix A). It should be pointed
out that although the model parameters defined in model (4)
depend upon the choice of the reference allele Am, the additive
and dominant variance components VAP , VAM , VD as well as their
covariance components do not depend on such a choice.

Note that the partition of the total genotypic variance VG

based on the Fisher model (1) assumes that the genotypic val-
ues are completely determined by the QTL. In general, beyond
the targeted QTL, the genotypic value G could also be affected by
other unobserved QTL. In this case, the total genotypic variance
VG = V(E(G|g)) + E(V(G|g)), where V(G|g) is a variation that
cannot be explained by the targeted QTL. So the Fisher model
(1), or its revised model (4), actually provides a partition on the
variance V(E(G|g)) of the expected genotypic values at the tar-
geted QTL instead of the total genotypic variance VG. In practice,
given a random sample from the study population, if we ignore
the genetic by environmental interaction, a quantitative trait can
typically be expressed in a linear regression model form as

yk = βzk + E(G|gk) + εk, k = 1, . . . , n,

where, for k = 1, . . . , n, gk is the observed QTL genotype of sub-
ject k, zk is a vector of subject k from some adjusted environmental
covariates with fixed effects β, and εk is a model residual con-
tributed by other environmental and genetic factors that cannot
be captured by zk and gk at the targeted QTL. Assuming that εk,
k = 1, . . . , n, are independent and identically distributed (i.i.d)
with a variance σ 2

ε , we have Vy = V(E(G|g)) + σ 2
ε . To further

partition V(E(G|g)) based on the QTL genotypes, we can first cal-
culate the allele frequencies and compute the values of the index
variables {xPi (gk), xMj (gk)} for each subject k = 1, . . . , n, in the
sample. Then, by treating these index variables as fixed covari-
ates, we can incorporate the GMA model (4) into the regression
model above and fit the model using the standard LS approach.

Based on the LSE α̂∗i, α̂∗j and δ̂∗i
∗j of the model parameters,

we can compute the additive and dominance genetic com-
ponents AP(k) = ∑m − 1

i = 1 α̂∗ixPi (gk), AM(k) = ∑m − 1
j = 1 α̂∗jxMj (gk)

and D(k) = ∑m − 1
i = 1

∑m − 1
j = 1 δ̂∗i

∗j xPi (gk)xMj (gk), for k = 1, . . . , n.
Finally, the genetic variance components VAP , VAM and VD can
be estimated as the sample variances of {AP(k), k = 1, . . . , n},
{AM(k), k = 1, . . . , n}, and {D(k), k = 1, . . . , n}, respectively.
Meanwhile, the genetic covariance components Cov(AP, AM),
Cov(AP, D), and Cov(AM, D) can be estimated through the
sample covariances

̂Cov(AP, AM) = 1

n

n∑
k = 1

(AP(k) − ĀP)(AM(k) − ĀM),

̂Cov(AP, D) = 1

n

n∑
k = 1

(AP(k) − ĀP)(D(k) − D̄),

̂Cov(AM, D) = 1

n

n∑
k = 1

(AM(k) − ĀM)(D(k) − D̄),

respectively, where ĀP = ∑n
k = 1 AP(k)/n, ĀM = ∑n

k = 1 AM(k)/n
and D̄ = ∑n

k = 1 D(k)/n.

2.2. ONE-LOCUS MODEL FOR PHASE UNKNOWN
In this subsection, we consider modeling a multi-allele QTL with
phase unknown genotypes—a more common situation in prac-
tice. As we cannot distinguish the parental origins of alleles in
QTL genotypes, as usual, we assume that the paternal and mater-
nal gametes share the same set of alleles with the same allele
frequencies. Let A1, . . . , Am (m ≥ 2) denote the alleles at a tar-
get QTL or marker locus with allele frequencies pi, i = 1, . . . , m.
Ignoring the phases, there are m possible homozygous genotypes
AiAi, i = 1 . . . , m, and m(m − 1)/2 possible heterozygous geno-
types AiAj, i �= j. We also assume that these alleles contribute the
same genetic effects regardless of their parental origins, which
implies that the expected genotypic values Gij = E(G|g = AiAj)
satisfy the symmetric property: Gij = Gji, for i �= j. So there are
totally m(m + 1)/2 possible distinctive expected genotypic val-
ues Gij, i, j = 1, . . . , m. In this case, by treating the paternal and
maternal gametes as two independent risk factors, the Fisher’s
ANOVA model for the expected genotypic values Gij can be
written as

Gij = μ + αi + αj + δij, i, j = 1, . . . , m, (5)

where αi is the average (additive) allelic effect of the paternal or
maternal allele Ai (i = 1, . . . , m), and δij is the average allelic
interaction between two alleles Ai and Aj (i, j, = 1, . . . , m). As
pointed out in Wang (2011), the above model is different from
the classical two-way ANOVA model in that the paternal and
the maternal gametes share the same set of alleles and have the
same allelic effects at the locus. To avoid the inestimability of
model parameters in model (5) due to over-parameterization, the
following constraints are often added on the model parameters
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∑
i

piαi = 0,
∑

i

piδij = 0.

From the symmetric property of Gij, we also assume δjk’s are
symmetric. Similarly, the above constraints together with the
symmetry property of δjk make it difficult to fit model (5) using
the standard LS approach.

Note that model (5) can be treated as a special case of model

(1) or (3) with αi = αi and δi
j = δ

j
i for i, j = 1, . . . , m. To con-

struct a similar GMA model for model (5), we can combine the

term α∗ixPi with α∗ixMi , and δ∗i
∗j xPi xMj with δ

∗j
∗ixPj xMi in model

(4). By denoting α∗i = α∗i as α∗
i for i = 1, . . . , m − 1, and δ

∗j
∗i =

δ∗i
∗j as δ∗

ij for i ≤ j, we obtain the following GMA model

E(G|g) = μ +
m − 1∑
i = 1

α∗
i wi(g) +

m − 1∑
i = 1

δ∗
iivii(g)

+
m − 1∑
j = 2

∑
i < j

δ∗
ijvij(g), (6)

where, for i = 1, . . . , m − 1,

wi(g) = xPi + xMi =
⎧⎨
⎩

2(1 − pi), if g = AiAi

1 − 2pi, if g = AiA
c
i

−2pi, if g = Ac
i Ac

i ,

vii(g) = xPi xMi =
⎧⎨
⎩

(1 − pi)2, if g = AiAi

−pi(1 − pi), if g = AiA
c
i

p2
i , if g = Ac

i Ac
i ,

and for i < j

vij(g) = xPi xMj + xPj xMi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − pi)(1 − pj) + pipj, if g = AiAj

−2pj(1 − pi), if g = AiAi

−pj(1 − 2pi), if g = AiA
c
ij

−2pi(1 − pj), if g = AjAj

−pi(1 − 2pj), if g = AjA
c
ij

2pipj, if g = Ac
ijA

c
ij .

Here Ac
ij denotes an allele which is different from Ai and Aj.

Note that the combined index variables wi(g), vii(g), and vij(g)
above are well defined on unphased genotypes, although xPi , xMj

are not. We refer them as genotype coding variables, and the
model parameter α∗

i as the average allelic effect of allele Ai

(i = 1, . . . , m), and δ∗
ij as the average allelic interaction between

two alleles Ai and Aj (i, j, = 1, . . . , m), with respect to the base-
line allele Am. In terms of the parameters in the original model
(5), we can show that α∗

i = αi − αm, for i = 1, . . . , m − 1; and
δ∗

ij = δij − δim − δjm + δmm, for i ≤ j, i, j = 1, . . . , m − 1.
Model (6) is an extension of the one-locus G2A model pro-

posed in Zeng et al. (2005) to one QTL with multiple alleles. Note
that no vij(g)’s for i < j are needed in the bi-allelic case. The com-
bined index variables vii(g), i = 1, . . . , m − 1, are also slightly
different from the ones defined in Zeng et al. (2005) by a scalar

of (−2) folds. Here we drop the scalar (−2) so that the coefficient
δ∗

ii can keep the same interpretation as δ∗i
∗i in model (4). In addi-

tion, the combined index variables vij (i < j) defined above are
not exactly the same as the ones we suggested in the discussion
section of Wang (2011). Based on the previously defined inheri-
tance indicator variables, we define w∗

i = zPi + zMi and v∗
ij(g) =

zPi zMj + zPj zMi for i < j. Then here we have vij = v∗
ij − (piw∗

j +
pjw∗

i ) + 2pipj, for i < j.
Still, model (6) retains the nice feature of the classical

Fisher’s model on partition of the genotypic variance. The

additive variance component VA = V
(∑m − 1

i = 1 α∗
i wi(g)

)
, which

is contributed by the additive effects of both paternal and
maternal alleles. The dominant variance component VD =
V
(∑m − 1

i = 1 δ∗
iivii(g) +∑

i < j δ
∗
ijvij(g)

)
, which is contributed by all

the interactions between paternal and maternal alleles. Under
HWE, we have μ = E(G) and an orthogonal partition on the
variance of the expected genotypic values V(E(G|g)) = VA + VD,
where

VA = 2
m − 1∑
i = 1

pi(α
∗
i )2 − 2

(
m − 1∑
i = 1

piα
∗
i

)2

,

VD =
m − 1∑
i,j = 1

pipj(δ
∗
ij)

2 − 2
m − 1∑
j = 1

pj

(
m − 1∑
i = 1

piδ
∗
ij

)2

+
⎛
⎝m − 1∑

i,j = 1

pipjδ
∗
ij

⎞
⎠

2

.

Here we define δ∗
ji = δ∗

ij , for i < j. In HWD, the desired orthogo-
nal partition on the variance of the expected genotypic values is
no longer held. But the model can still allow us to capture the dis-
equilibria via covariances between those index variables xPi ’s and
xMj ’s (see Appendix B).

As an example, let us consider a QTL with 3 alleles A1, A2, and
A3. By taking A3 as the baseline allele, model (6) leads to

E(G|g) = μ + α∗
1 w1(g) + α∗

2 w2(g) + δ∗
11v11(g) + δ∗

22v22(g)

+ δ∗
12v12(g). (7)

Or, in a matrix form, we have⎛
⎜⎜⎜⎜⎜⎝

G11

G12

G22

G13

G23

G33

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎝

1 2(1 − p1) −2p2 (1 − p1)2 p2
2 −2p2(1 − p1)

1 1 − 2p1 1 − 2p2 −p1(1 − p1) −p2(1 − p2) 1 − p1 − p2 + 2p1p2

1 −2p1 2(1 − p2) p2
1 (1 − p2)2 −2p1(1 − p2)

1 1 − 2p1 −2p2 −p1(1 − p1) p2
2 −p2(1 − 2p1)

1 −2p1 1 − 2p2 p2
1 −p2(1 − p2) −p1(1 − 2p2)

1 −2p1 −2p2 p2
1 p2

2 2p1p2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ

α∗
1

α∗
2

δ∗
11

δ∗
22

δ∗
12

⎞
⎟⎟⎟⎠

If we choose A1 (or A2) instead of A3 as the baseline allele,
we can obtain different re-parameterizations of the six expected
genotypic values. But they all give the same partition on the vari-
ance of the expected genotypic values. Álvarez-Castro and Yang
(2011) also presented a similar re-parameterization of the six
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expected genotypic values from their NOIA model. It appears
that their one-locus 3-allele NOIA model and the GMA model
(7) above are likely equivalent on partitioning the variance of the
six expected genotypic values, as we will see later in the Example
Subsection 2.4.

Similar to the phase-known case, we can estimate the additive,
dominance variance components and the covariance Cov(A, D)
from a random sample when the QTL genotypes are available.
First, we can compute the values of the combined index variables
wi(gk) and vij(gk) at the target QTL for each subject k = 1, . . . , n.
Next, we can incorporate model (6) into a regression model with
other possible adjusted covariates. By treating those combined
index variables as regular fixed covariates, we can fit the regres-
sion model using the standard LS approach. Then, based on
the fitted model, we compute the additive and dominance com-
ponents A(k) = ∑m − 1

i = 1 α̂∗
i wi(gk) and D(k) = ∑m − 1

i = 1 δ̂∗
iivii(gk) +∑

i < j δ̂
∗
ijvij(gk) for each subject k = 1, . . . , n, where α̂∗

i , δ̂∗
ii and

δ̂∗
ij are LSE of the model parameters. Finally, we can estimate

VA and VD as the sample variances of {A(k), k = 1, . . . , n}
and {D(k), k = 1, . . . , n}, respectively. Meanwhile, an estimate of
Cov(A, D) is given by the sample covariance between {A(k), k =
1, . . . , n} and {D(k), k = 1, . . . , n}.

2.3. MULTI-LOCUS MODELS
The one-locus GMA models can be extended to multiple loci.
Typically, for each locus k, we can create the mean-corrected index

variables x(k)
Pi

, x(k)
Mj

(or combined index variables wk,i, vk,ij for

phase-unknown genotypes) in the same way as in the one-locus
case. Then we can build a multi-locus GMA model by includ-
ing the within locus additive and dominance effects as well as the
locus-by-locus interactions (i.e., epistases). The proposed multi-
locus GMA model allows LD among multiple loci even though
the LD may affect the partition on the variance of the expected
genotypic values.

Consider L loci with alleles Ak1, . . . , Akmk at the k-
th locus for k = 1, . . . , L. With phase known, there are
totally m2

1 · · · m2
L possible expected genotypic values: Gs1···sL

t1···tL
=

E[G|g = (A1s1 · · · ALsL , A1t1 · · · ALtL )], where the joint genotype
(A1s1 · · · ALsL , A1t1 · · · ALtL ) is formed by the union of a pater-
nal gamete A1s1 · · · ALsL and a maternal gamete A1t1 · · · ALtL with
sk, tk ∈ {1, . . . , mk} for k = 1, . . . , L. Let pP

ksk
and pM

ktk
be the

frequencies of the paternal allele Aksk and maternal allele Aktk ,
respectively. At each locus k = 1, . . . , L, we define the mean-

corrected index variables x(k)
Psk

for paternal alleles Aksk (sk =
1, . . . , mk) and x(k)

Mtk
for maternal alleles Aktk (tk = 1, . . . , mk) in

the same way as in the one-locus case. Then, when we choose
A1m1 , . . . , ALmL as the baseline alleles, a fully parameterized L-
locus GMA model can be expressed as

E(G|g) =
1∑

i1 = 0

1∑
j1 = 0

· · ·
1∑

iL = 0

1∑
jL = 0

∑
{s1,if i1 = 1}

∑
{t1,if j1 = 1}

· · ·
∑

{sL,if iL = 1}∑
{tL,if jL = 1}

α
s∗1 ···s∗L
t∗1 ···t∗L ·

(
x(1)

Ps1

)i1 (
x(1)

Mt1

)j1 · · ·
(

x(L)
PsL

)iL (
x(L)

MtL

)jL
(8)

where the summation of sk (or tk) is from 1 up to (mk − 1) for
k = 1, . . . , L; sk (or tk) refers to a particular paternal allele Aksk

(or maternal allele Aktk ) at the k-th locus; and ik (or jk) is an
indicator variable for the presence or absence of a paternal (or
maternal) allele at locus k which is involved in a term. The coef-

ficient α
s∗1 ···s∗L
t∗1 ···t∗L in each term represents an average allelic effect of a

single paternal or maternal allele, or an allelic interaction from a
set of paternal and maternal alleles that are involved in this term
with respect to the baseline alleles A1m1 , . . . , ALmL . The super-

scripts (or subscripts) in α
s∗1 ···s∗L
t∗1 ···t∗L are defined as s∗k = ik · sk (or t∗k =

jk · tk), indicating which paternal (or maternal) allele at locus k is
involved in this term. If the term does not have any paternal (or
maternal) allele at locus k being involved, then we have s∗k = 0 (or

t∗k = 0). Note that naP = ∑L
k = 1 ik (or naM = ∑L

k = 1 jk) specifies
the total number of paternal (or maternal) alleles being involved
in a term. We refer the total number of both paternal and mater-
nal alleles that are involved in a term na = naP + naM as the order
of this term.

The multi-locus GMA model (8) provides a full re-
parameterization of the m2

1 · · · m2
L expected genotypic values

Gs1···sL
t1···tL

with phase-known genotypes without using redundant
parameters. Note that E(G|g) can also be partitioned into a sum
of the following genetic components

Ci1···iL
j1···jL =

∑
{s1,if i1 = 1}

∑
{t1,if j1 = 1}

· · ·
∑

{sL,if iL = 1}

∑
{tL,if jL = 1}

α
s∗1 ···s∗L
t∗1 ···t∗L ·

(
x(1)

Ps1

)i1 (
x(1)

Mt1

)j1 · · ·
(

x(L)
PsL

)iL (
x(L)

MtL

)jL
,

where i1, j1, . . . , iL, jL = 0, 1 are indicator variables, which spec-
ify the parental origins of the contributing alleles. In other words,
each genetic component consists of the terms with the same order
and having their alleles all coming from the same subset of loci
with the same parental origins but allowing varied allelic types.
The classical genetic variance components can then be defined as
variances of these genetic components. Note that the component
C0···0

0···0 is a constant, which corresponds to an intercept without
any alleles being involved. Therefore, for a L-locus GMA model
with phase known genotypes, there are in total (22L − 1) genetic

variance components V
(

Ci1···iL
j1···jL

)
, where i1, j1, . . . , iL, jL = 0, 1

but not all being zeros. Among them, there are L paternal and
L maternal variance components of order 1 with each having a
single paternal or maternal allele being involved, L dominance
variance components of order 2 with each having two alleles
within the same locus being involved, L(L − 1)/2 paternal by
paternal (or maternal by maternal) variance components of order
2 with two paternal (or maternal) alleles coming from different
loci, and L(L − 1) paternal by maternal variance components of
order 2 with one paternal and one maternal allele coming from
two different loci. For examples, the within-locus paternal, mater-
nal and dominance variance components at a locus k can be
written as

V
A(k)

P
= V

⎛
⎝mk − 1∑

sk = 1

α
0···sk···0
0···0···0 · x(k)

Psk

⎞
⎠ = V

(
C0···1···0

0···0···0
)
,
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V
A(k)

M
= V

⎛
⎝mk − 1∑

tk = 1

α0···0···0
0···tk···0 · x(k)

Mtk

⎞
⎠ = V

(
C0···0···0

0···1···0
)
,

VD(k) = V

⎛
⎝mk − 1∑

sk = 1

mk − 1∑
tk = 1

α
0···sk···0
0···tk···0 · x(k)

Psk
x(k)

Mtk

⎞
⎠ = V

(
C0···1···0

0···1···0
)
,

respectively (k = 1, . . . , L). For a pair of loci j �= k, the two-locus
paternal by paternal variance component is

V
A

(j)
P ×A(k)

P
= V

⎛
⎝mj − 1∑

sj = 1

mk − 1∑
sk = 1

α
0···sj···sk···0
0···0···0···0 · x

(j)
Psj

x(k)
Psk

⎞
⎠

= V
(
C0···1···1···0

0···0···0···0
)
,

and the two-locus paternal by maternal variance component is

V
A

(j)
P ×A(k)

M
= V

⎛
⎝mj − 1∑

sj = 1

mk − 1∑
tk = 1

α
0···sj···0···0
0···0···tk···0 · x

(j)
Psj

x(k)
Mtk

⎞
⎠

= V
(
C0···1···0···0

0···0···1···0
)
.

The variance component of epistases with the highest order is

VD(1)×···×D(L)

= V

⎛
⎝m1 − 1∑

s1 = 1

m1 − 1∑
t1 = 1

· · ·
mL − 1∑
sL = 1

mL − 1∑
tL = 1

α
s1···sL
t1···tL

x(1)
Ps1

x(1)
Mt1

· · · x(L)
PsL

x(L)
MtL

⎞
⎠

= V(C1···1
1···1),

which has 2L alleles being involved with two alleles per locus.
Based on these genetic components, we can partition the vari-

ance of the expected genotypic values into the variances and
covariances of the genetic components. Still, the coefficients

α
s∗1 ···s∗L
t∗1 ···t∗L are defined based on the baseline alleles A1m1 , . . . , ALmL .

But the variances and covariances of these genetic components
do not depend on the choice of the baseline alleles. Under HWE,

the within-locus paternal index variables {x(k)
Psk

, sk = 1, . . . , mk}
are independent of the maternal index variables {x(k)

Mtk
, tk =

1, . . . , mk} for each k = 1, . . . , L. With LE, the index variables

{x(j)
Psj

, x
(j)
Mtj

, sj, tj = 1, . . . , mj} at a locus j are also independent

of the index variables {x(k)
Psk

, x(k)
Mtk

, sk, tk = 1, . . . , mk} at a dif-
ferent locus k (k �= j). To achieve an orthogonal partition on
the variance of the expected genotypic values, we need to fur-

ther assume that all the paternal index variables {x(k)
Psk

, sk =
1, . . . , mk, k = 1, . . . , L} are independent of the maternal index

variables {x(k)
Mtk

, tk = 1, . . . , mk, k = 1, . . . , L} across all the loci;
i.e., the so-called gametic equilibrium (see Wang and Zeng, 2006).
Under both the gametic and linkage equilibria, each genetic

component has its mean E
(

Ci1···iL
j1···jL

)
= 0, and the covariances

between different genetic components are zeros. Thus, we have

E(G) = α0···0
0···0 and an orthogonal partition on the variance of the

expected genotypic values is given by

V(E(G|g)) =
1∑

i1 = 0

1∑
j1 = 0

· · ·
1∑

iL = 0

1∑
jL = 0

V
(

Ci1···iL
j1···jL

)
, (9)

where

V
(

Ci1···iL
j1···jL

)
=

∑
{s1,s′1,if i1 = 1}

(pP
1s1

1{s1 = s′1} − pP
1s1

pP
1s′1

)i1

∑
{t1,t′1,if j1 = 1}

(pM
1t1

1{t1 = t′1} − pM
1t1

pM
1t′1

) j1 · · ·

∑
{sL,s′L,if iL = 1}

(pP
LsL

1{sL = s′L} − pP
LsL

pP
Ls′L

)iL

∑
{tL,t′L,if jL = 1}

(pM
LtL

1{tL = t′L} − pM
LtL

pM
Lt′L

)jL · α
s∗1 ···s∗L
t∗1 ···t∗L α

s′∗1 ···s′∗L
t′∗1 ···t′∗L .

Similarly, we can construct multi-locus GMA models for
QTL with phase unknown genotypes. Without distin-
guishing the parental origin of the alleles, there are totally∏L

k = 1 mk(mk + 1)/2L possible expected genotypic val-
ues: Gs1t1···sLtL =E[G(g)|g = (A1s1 A1t1 , . . . , ALsL ALtL )], for
sk, tk = 1, . . . , mk and k = 1, . . . , L. We assume that the paternal
and maternal allele frequencies are the same and denoted by pksk .
We define the combined index variables wk,i(g) and vk,ij at each
locus k in the same way as the one-locus case for k = 1, . . . , L.
Then, when we choose A1m1 , . . . , ALmL as the baseline alleles,
a fully parameterized L-locus GMA model for QTL with phase
unknown genotypes can be expressed as

E(G|g) =
2∑

i1 = 0

· · ·
2∑

iL = 0

∑
{s1,if i1 = 1}

· · ·

∑
{sL,if iL = 1}

∑
{s1 ≤ t1,if i1 = 2}

· · ·
∑

{sL ≤ tL,if iL = 2}

αs∗1 ···s∗L ·
(

w
1{i1 = 1}
1,s1

· v
1{i1 = 2}
1,s1t1

)
· · ·
(

w
1{iL = 1}
L,sL

· v
1{iL = 2}
L,sLtL

)
, (10)

where 1{ik=j} is the Kronecker function which equals 1 when ik = j
and 0 otherwise, for k = 1, . . . , L and j = 1 or 2; the summation
of sk (or tk) is from 1 up to mk − 1 with sk (or tk) referring to
allele Aksk (or Aktk ) at a locus k (k = 1, . . . , L); and ik specifies how
many alleles at a locus k are involved in this term. If ik = 1, this
term has only one allele Aksk (either paternal or maternal) being
involved via wk,sk and we set s∗k = sk. If ik = 2, both the pater-
nal and maternal alleles Aksk and Aktk are involved via vk,sktk in
this term and we set s∗k = sktk regardless of the order of sk and
tk. When ik = 0, this term does not have any alleles at locus k

being involved and we have
(

w
1{ik = 1}
k,sk

· v
1{ik = 2}
k,sktk

)
= 1. The coeffi-

cient αs∗1 ···s∗L represents the average allelic effect of a single allele,
or an allelic interaction from all the alleles that are involved in this
term, with respect to the baseline alleles A1m1 , . . . , ALmL . We still
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refer the total number of alleles being involved in each term; i.e.,
na = ∑L

k = 1 ik, as the order of this term.
Based on the above model, we can define the genetic

components as

Ci1···iL =
∑

{s1,if i1 = 1}
· · ·

∑
{sL,if iL = 1}

∑
{s1 ≤ t1,if i1 = 2}

· · ·
∑

{sL ≤ tL,if iL = 2}

αs∗1 ···s∗L ·
(

w
1{i1 = 1}
1,s1

· v
1{i1 = 2}
1,s1t1

)
· · ·
(

w
1{iL = 1}
L,sL

· v
1{iL = 2}
L,sLtL

)
,

for i1, . . . , iL = 0, 1, 2, with each component being a summation
of the terms with their alleles all coming from the same subset
of loci and having the same number of alleles from each locus.
Excluding the one with i1 = · · · = iL = 0, which corresponds
to an intercept, there are in total 3L − 1 genetic variance com-
ponents V(Ci1···iL ) for i1, . . . , iL = 0, 1, 2. Among them, there
are L additive variance components with each having a single
paternal or maternal allele being involved, L dominance vari-
ance components with each having both paternal and maternal
alleles within the same locus being involved, L(L − 1)/2 additive
by additive variance components with two alleles coming from
different loci, etc. For examples, the within-locus additive and
dominance variance components at a locus k can be written as

VA(k) = V

⎛
⎝mk − 1∑

sk = 1

α0···sk···0 · wk,sk

⎞
⎠ = V(C0···1···0),

VD(k) = V

(∑
sk ≤ tk

α0···sktk···0 · vk,sktk

)
= V(C0···2···0),

respectively, for k = 1, . . . , L. For a pair of loci j �= k, the
two-locus additive by additive interaction is

VA(j)×A(k) = V

⎛
⎝mj − 1∑

sj = 1

mk − 1∑
sk = 1

α0···sj···sk···0 · wj,sj wk,sk

⎞
⎠

= V(C0···1···1···0).

The variance component of epistases with the highest order of 2L
is given by

VD(1)×···×D(L)

= V

(∑
s1 ≤ t1

· · ·
∑

sL ≤ tL

αs1t1,··· ,sLtL v1,s1t1 · · · vL,sLtL

)

= V(C2···2).

Under both the gametic and linkage equilibria, we have E(G) =
α0···0 and an orthogonal partition on the variance of the expected
genotypic values

V(E(G|g)) =
2∑

i1 = 0

· · ·
2∑

iL = 0

V(Ci1···iL ), (11)

where

V(Ci1···iL ) =
∑

{s1,s′1,if i1 = 1}

{
2
(

p1s1 1{s1 = s′1} − p1s1 p1s′1

)}1{i1 = 1} · · ·

∑
{sL,s′L,if iL = 1}

{
2
(

pLsL 1{sL = s′L} − pLsL pLs′L

)}1{iL = 1}

∑
{s1,s′1,t1,t′1,if i1 = 2}

{(
p1s1 1{s1 = s′1} − p1s1 p1s′1

)

(
p1t1 1{t1 = t′1} − p1t1 p1t′1

)}1{i1 = 2} · · ·
∑

{sL,s′L,tL,t′L,if iL = 2}

{(
pLsL 1{sL = s′L} − pLsL pLs′L

)

(
pLtL 1{tL = t′L} − pLtL pLt′L

)}1{iL = 2}
αs∗1 ···s∗Lαs∗1

′···s∗L ′ .

Here, when ik = 2, we have s∗k = sktk and s∗k
′ = s′kt′k. We also

define αs∗1 ···s∗L (or αs∗1
′···s∗L ′) to be the same if we switch the order

of sk and tk in s∗k (or s′k and t′k in s∗k
′) for k = 1, . . . , L. In the

presence of disequilibria, the desired orthogonal partition may
no longer hold. However, regardless of the equilibrium, the coef-
ficients αs∗1 ···s∗L in model (10) are defined based on the baseline
alleles A1m1 , . . . , ALmL , while the variances and covariances of the
genetic components do not depend on the choice of these baseline
alleles.

In practice, we do not have to rely on the derived formula to
estimate the genetic variance or covariance components. Similar
to the one-locus case, given the observed QTL genotypes for a
random sample from a study population, we can always incorpo-
rate model (8) or (10) into a regression model with other possible
adjusted covariates and fit the model using standard LS approach.
Then we can estimate various genetic variance components as
well as the covariances among different genetic components based
on the fitted model. A good fit of a fully parameterized GMA
model often requires that the expected genotypic values for all
possible joint genotypes of the QTL are estimable from the study
sample. If certain genotypes are not observable or rarely present
in subjects from the study sample, a situation which likely hap-
pens when the number of alleles or the number of QTL is large
with moderate or small sample size, the design matrix for the
genetic effects could become singular which implies that some
genetic variance components cannot be estimated reliably. But we
do not have to use fully parameterized GMA models to model the
expected genotypic values. In this case, we may want to build a
reduced GMA model that can provide a good approximation to
the expected genotypic values overall and meanwhile has a less
complicated model structure. The fact that two terms within the
same genetic component are unavoidably correlated suggests that
we should perhaps treat each genetic component as a whole and
keep or drop its terms all at once in building a GMA model. As
genetic components of lower orders tend to have bigger impact
on the expected genotypic values than the higher order ones, one
way to construct a reduced GMA model is perhaps to go through
a stepwise forward selection procedure by hierarchically adding
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the lowest order genetic component that can achieve a nominal
significance level (e.g., 5%) but has not yet been selected in the
model into the model one at a time. Here, the classical likelihood
ratio statistic can be used to assess each genetic component for
entering into or dropping from the model.

It has been known that the model building procedure is
often sensitive to potential confounding among the selected
variables. A GMA model uses the mean-corrected index vari-
ables x(k)

Psk
, x(k)

Mtk
(or their combined index variables wk,sk , vk,sktk

in the phase unknown case) as the basic units in construct-
ing all its model terms. At least in an equilibrium population,
these mean-corrected index variables can reduce the confounding
among different genetic components and make them uncorre-
lated. This orthogonality implies that each genetic component
can be assessed independently regardless of which components
are presented in the model. On the other hand, an F∞ model
can be thought of directly using the inheritance indicator vari-

ables z(k)
Psk

and z(k)
Mtk

(or their merged genotype coding variables

w∗
k,sk

(g) = z(k)
Psk

+ z(k)
Msk

and v∗
k,sktk

= z(k)
Psk

z(k)
Mtk

+ z(k)
Ptk

z(k)
Msk

in phase
unknown case) as the basic units in constructing its terms (Wang
and Zeng, 2009; Wang, 2011). Even in an equilibrium population,
an F∞ model could have its low-order terms being highly con-
founded with other high-order terms when they contain shared
alleles (see Zeng et al., 2005). As the result, in building a predic-
tive model based on F∞ models, the stepwise forward selection
procedure could be problematic because failing to include a sig-
nificant higher order term (or component) in a reduced F∞
model could make the assessment of some low-order terms (or
components) unreliable. On selecting significant QTL from a
set of loci without having the locus-by-locus interactions being
involved, the choice of using GMA or F∞ model in building a
reduced model for the expected genotypic values should not mat-
ter much because using mean-corrected index variables mainly
affects the intercept in this case. However, when we consider
including epistases for a given set of QTL, the GMA model
can appropriately use the orthogonal property among different
genetic components to dissect the confounding at least in equi-
librium populations, while it appears that the F∞ models cannot
make full use of the equilibrium information. When disequi-
libria are present, as Hardy-Weinberg equilibria are expected to
be held in most of the human genomic regions and LD mainly
present for closely linked loci, we would expect that most of
the genetic components in a GMA model are likely uncorre-
lated. Therefore, in most cases, using the GMA model could
still be preferable to using F∞ model in building reduced mod-
els for expected genotypic values especially when epistases are
involved.

2.4. EXAMPLE
As an example, we apply the GMA model to a published experi-
mental data set on the polymorphism at the human acid phos-
phatase locus (ACP1). The analysis of this data set was first
conducted by Greene et al. (2000), and recently re-analyzed as
an example in Álvarez-Castro and Yang (2011). The ACP1 gene
involves 3 alleles A, B, C. Two phenotypic traits are considered,
which measure the ACP1 enzyme activity (yac) and inhibition
(yin). The estimates of the expected genotypic values and the
genotype frequencies are summarized in Table 1.

From the genotype frequencies, we first estimate the allele fre-
quencies as pA = 0.3534, pB = 0.5818, and pC = 0.0647. Then,
for each trait, we fit a separate GMA model (7) to its expected
genotypic values by taking C as the baseline allele and creating
the combined index variables w1(g), w2(g), v11(g), v22(g), v12(g).
For ACP1 enzyme activity, we obtain LSE of the model parameters
as μ = 167.735, α∗

1 = −59.260, α∗
2 = −26.254, δ∗

11 = −4.800,
δ∗

22 = 3.700 and δ∗
12 = −2.000. For ACP1 enzyme inhibition, we

have μ = 39.386, α∗
1 = −16.149, α∗

2 = −19.714, δ∗
11 = −0.200,

δ∗
22 = 4.200, and δ∗

12 = 2.100.
Next, for each trait separately, we calculate A(gk) =

α∗
1 w1(gk) + α∗

2 w2(gk) and D(gk) = δ∗
11v11(gk) + δ∗

22v22(gk) +
δ∗

12v12(gk), k = 1, . . . , 6, for the six ACP1 genotypes. Based on
the genotype frequencies, we then calculate the genetic variance
components. For ACP1 enzyme activity, we obtain VA = 658.868,
VD = 0.973 and the covariance Cov(A, D) = −0.356.
The total variance of the expected genotypic values is
V(E(Gac|g)) = 659.129, and VA/V(E(Gac|g)) = 99.96%.
For ACP1 enzyme inhibition, we have VA = 44.920, VD = 0.146
and the covariance Cov(A, D) = −0.217. The total variance
of the expected genotypic values is V(E(Gin|g)) = 44.632,
and VA/V(E(Gin|g)) = 100.65%. Note that the partition
V(E(G|g)) = VA + VD + 2Cov(A, D), which is not orthogonal
for both traits due to a slight deviation from HWE at ACP1 locus
as we have observed from the genotype frequencies in Table 1.
It is also interesting to see that for ACP1 enzyme inhibition,
VA/V(E(Gin|g)) is bigger than 100% due to HWD and the fact
that VD + 2Cov(A, D) < 0.

Using the same allele frequencies but assuming HWE, we
would have slightly different genotype frequencies. Note that the
LSE of the model parameters keep the same and do not depend on
the genotype frequencies because they are completely determined
by the allele frequencies and the six expected genotypic values
when a fully-parameterized GMA is used. But the total variance
of the expected genotypic values and its variance components will
be different. For ACP1 enzyme activity, we obtain VA = 660.588,
VD = 0.971, Cov(A, D) = 0.006, V(E(Gac|g)) = 661.573

Table 1 | Expected genotypic values and observed genotype frequencies.

ACP1 genotypes

AA AB BB AC BC CC

ACP1 enzyme activity (Gac ) 122.4 153.9 188.3 183.6 212.3 240.0

ACP1 enzyme inhibition (Gin) 41.2 37.9 34.4 58.7 53.1 76.0

Genotype frequency 0.1242 0.4139 0.3349 0.0445 0.0799 0.0025
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and VA/V(E(Gac|g)) = 99.85%. For ACP1 enzyme inhibi-
tion, we have VA = 46.422, VD = 0.152, Cov(A, D) = 0.001,
V(E(Gin|g)) = 46.573 and VA/V(E(Gin|g)) = 99.68%. The
minor deviations from orthogonal partitions are likely due to
some numerical round-off and the fact that the summation of
the three allele frequencies is 0.9999 instead of exactly 1.

For this three-allele example, we also applied the NOIA model
using the formulas (10) and (11) provided in Álvarez-Castro and
Yang (2011), and in both HWE and HWD cases we obtained
exactly the same results as above based on our own calculation,
which however appear to be slightly different from what had been
reported in Álvarez-Castro and Yang (2011). For example, based
on the observed genotype frequencies, an estimate of VD = 1.15
for the trait of ACP1 enzyme inhibition was reported in Álvarez-
Castro and Yang (2011), which is noticeably larger than VD =
0.146 that we obtain above.

3. DISCUSSION
In the analysis of genetic variance components, a separation
of the variations contributed by the additive allelic effects and
allelic interactions is complicated by the fact that the observed
genotypes are often phase-unknown. In this study, by appro-
priately merging the paternal and maternal allelic effects and
allelic interactions in the phase-known situation, we propose a
way to construct one-locus and multi-locus GMA models on
analysis of genetic variance components for QTL with mul-
tiple alleles. In the same way as building a G2A model, we
construct a GMA model by first specifying its design matrix
for the genetic effects via some mean-corrected index vari-
ables. As these mean-corrected index variables are well defined
based on the observed genotypes and allele frequencies, they
can be treated as regular covariates for coding QTL geno-
types. These one-locus or multi-locus GMA models can then be
incorporated into standard regression models with other possi-
ble adjusted covariates and fitted using standard LS approach.
Based on the fitted models, we can further estimate the genetic
variance and covariance components through the sample vari-
ances and covariances of various genetic components. As we
have pointed out, these GMA models can be applied to equi-
librium populations as well as populations in Hardy-Weinberg
and/or linkage disequilibria. By using the full set or a low-
order subset of the index variables (or genetic components),
the GMA model allows us to make either full or reduced re-
parameterization of the genotypic values. When some loci have
phase known genotypes while other loci have phase unknown
genotypes (a possible hypothetical situation), a mixed GMA
model could also be constructed by adopting the same modeling
strategy.

Sometimes we may want to perform hypothesis tests on the
existence of certain genetic variance and covariance components.
Note that the GMA models have allele frequencies being involved
in their design matrices. As allele frequencies often need to be
estimated from the genotype data, they could contribute another
source of variation in the LSE (β̂) of the model parameters as
well as the genetic variance components. When the allele fre-
quencies can be accurately estimated, we could simply treat them
as fixed constants. When the residuals in a regression model do

not depend on the allele frequency estimates, based on the linear
model theory (see Ravishanker and Dey, 2002), β̂ are known to
be unbiased with its covariance matrix cov(β̂) = σ 2E[(X′X)−1],
where X is the design matrix of a GMA model. In this case,
we can assess the existence of variance components by per-
forming traditional hypothesis tests on β̂. In general, we could
also assess the existence of these genetic variance and covari-
ance components through a bootstrap procedure. By repeatedly
drawing random samples of the same size from the observed
random sample with replacement, we can estimate the genetic
variance and covariance components for each bootstrap sam-
ple and meanwhile assess the variances in estimates of these
genetic variance and covariance components and test for their
existence.

In genetic studies, QTL with missing genotypes is a com-
mon phenomenon. GMA model can be used to fit QTL with
missing genotypes. Rather than excluding patients with missing
QTL genotypes, we could treat “missing” as an allele although
this strategy may induce potential bias as we assume that all
the missing alleles have the same genetic effect. GMA mod-
els could also be applied incorporation with various imputa-
tion methods. In recent years, there has been a great deal of
interest in developing methodologies for QTL mapping using
recombinant intercrosses from multiple inbred lines. In this
case, the putative QTL often have their locations and genotypes
unknown. But the allele frequencies of QTL could probably
be inferred from the study design and the QTL genotypes
might be imputable from their neighboring genetic mark-
ers. How to apply GMA models to this type of experimental
crosses for QTL mapping could be a research topic for further
exploration.

In summary, the analysis of genetic variance components for
multi-allele QTL has been challenging due to complex allelic
interactions and locus-by-locus interactions. In this study, we
thoroughly explored the architecture of one-locus and multi-
locus GMA models with either phase known or unknown geno-
types. Particularly, we described in detail the architecture of
the multi-locus GMA model, and how the model terms can
be grouped into various genetic components. Under equilibria
populations, we also derived formulas for orthogonal partition
of the genetic variance components, which could be useful for
analytical assessment of the variance components. Comparing
to the classical Fisher model, the GMA models can estimate
the genetic variance and covariance components more conve-
niently via standard LS approach for either one or multiple QTL
with multiple alleles, in equilibrium as well as disequilibrium
populations.
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APPENDIX A. ONE-LOCUS MODEL FOR PHASE KNOWN – IN HARDY-WEINBERG DISEQUILIBRIUM
In HWD, we can represent the genotype frequencies as P(Ai,Aj) = pipj + Di

j, where Di
j measures the departure from HWE with con-

straints
∑m

i = 1 Di
j = 0 for j = 1, . . . , m, and

∑m
j = 1 Di

j = 0 for i = 1, . . . , m. Note that Di
j = P(Ai,Aj) − pipj = Cov(xPi , xMj ), we can

show that E(G) = μ +∑m − 1
i = 1

∑m − 1
j = 1 δ∗i

∗j D
i
j, and the variance of the expected genotypic values becomes

V(E(G|g)) = VAP + VAM + VD + 2Cov(AP, AM) + 2Cov(AP, D) + 2Cov(AM, D)

where AP = ∑m − 1
i = 1 α∗ixPi (g), AM = ∑m − 1

j = 1 α∗jxMj (g) and D = ∑m − 1
i = 1

∑m − 1
j = 1 δ∗i

∗j xPi (g)xMj (g). The formulas on calculating the addi-
tive variance components VAP and VAM are the same as in HWE case. But the formula for dominance variance component VD

becomes

VD =
m − 1∑
i,j = 1

pipj(δ
∗i
∗j )

2 −
m − 1∑
i = 1

pi

⎛
⎝m − 1∑

j = 1

pjδ
∗i
∗j

⎞
⎠

2

−
m − 1∑
j = 1

pj

(
m − 1∑
i = 1

piδ∗i
∗j

)2

+
⎛
⎝m − 1∑

i,j = 1

pipjδ
∗i
∗j

⎞
⎠

2

+
m − 1∑
i,j = 1

(δ∗i
∗j )

2Dij − 2
m − 1∑
i = 1

⎛
⎝m − 1∑

j = 1

pjδ
∗i
∗j

⎞
⎠
⎛
⎝m − 1∑

j = 1

Di
jδ

∗i
∗j

⎞
⎠− 2

m − 1∑
j = 1

(
m − 1∑
i = 1

piδ∗i
∗j

)(
m − 1∑
i = 1

Di
jδ

∗i
∗j

)

+ 2

⎛
⎝m − 1∑

i,j = 1

pipjδ
∗i
∗j

⎞
⎠
⎛
⎝m − 1∑
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Di
jδ
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⎞
⎠+ 2
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⎛
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⎞
⎠
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⎞
⎠−

⎛
⎝m − 1∑
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δ∗i
∗j D

i
j

⎞
⎠

2

For the covariances, we have

Cov(AP, AM) =
m − 1∑
i,j = 1

Di
jα

∗iα∗j

Cov(AP, D) =
m − 1∑
i,j = 1

Di
jα

∗iδ∗i
∗j −

(
m − 1∑
i = 1

piα∗i

)⎛⎝m − 1∑
j,s = 1

Ds
jδ

∗s
∗j

⎞
⎠−

m − 1∑
j = 1

(
m − 1∑
i = 1

α∗iDi
j

)(
m − 1∑
s = 1

psδ∗s
∗j

)

Cov(AM, D) =
m − 1∑
i,j = 1

Di
jα∗jδ

∗i
∗j −

⎛
⎝m − 1∑

j = 1

pjα∗j

⎞
⎠
⎛
⎝m − 1∑
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tδ
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⎞
⎠−
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⎛
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)

As the paternal and maternal alleles are correlated in HWD, we will likely have non-zero covariances among AP, AM and D.

APPENDIX B. ONE-LOCUS MODEL FOR PHASE UNKNOWN – IN HARDY-WEINBERG DISEQUILIBRIUM
In HWD, we can represent the genotype frequencies as PAiAi = p2

i + Dii for j = 1, . . . , m, and PAiAj = 2pipj + 2Dij for i �= j. Since

pi = PAiAi +∑
j �= i PAiAj/2, we have

∑m
i = 1 Dij = 0 for j = 1, . . . , m;

∑m
j = 1 Dij = 0 for i = 1, . . . , m; and Dij = Dji. As the dise-

quilibrium measures can be represented as Dij = Cov(xPi , xMj ) for i, j = 1, . . . , m, we can show that E(G) = μ +∑m − 1
i = 1 δ∗

iiDii +
2
∑m − 1

j = 2

∑
i < j δ

∗
ijDij, and the variance partition of the expected genotypic values V(E(G|g)) = VA + VD + 2Cov(A, D), where

VA = 2
m − 1∑
i = 1

pi(α
∗
i )2 − 2

(
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∗
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In HWD, the genotype frequencies can also be parameterized as PAiAi = p2
i + pi(1 − pi)f , and PAiAj = 2pipj(1 − f ) for i �= j (see Weir,

1996). This is a special case of the above parameterization with Dii = pi(1 − pi)f and Dij = −pipjf , for i �= j.
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