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In this study, we performed extensive semi-automated data collection from the primary
and secondary literature in an effort to characterize the expression of all membrane
proteins within the CD scheme on hematopoietic cells. Utilizing over 6000 data
points across 305 CD molecules on 206 cell types, we seek to give a preliminary
characterization of the “human hematopoietic CDome.” We encountered severe gaps
in the knowledge of CD protein expression, mostly resulting from incomplete and
unstructured data generation, which we argue inhibit both basic research as well as
therapies seeking to target membrane proteins. We detail these shortcomings and
propose strategies to overcome these issues. Analyzing the available data, we explore
the functional characteristics of the CD molecules both individually and across the groups
of hematopoietic cells on which they are expressed. We compare protein and mRNA data
for a subset of CD molecules, and explore cell functions in the context of CD protein
expression. We find that the presence and function of CD molecules serve as good
indicators for the overall function of the cells that express them, suggesting that increasing
our knowledge about the cellular CDome may serve to stratify cells on a more functional
level.
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INTRODUCTION
Proteins located in the cellular membrane are of particular inter-
est in both research and therapy. Some membrane proteins are
expressed throughout a cell’s lifetime and are as such “cell defin-
ing,” while others are dynamically expressed and displayed on cell
surfaces as a reflection of the current state or development of the
cell. It has been estimated that approximately 20–26% of all genes
encode surface proteins, many of which are currently under- or
un-characterized (Cunha et al., 2009; Fagerberg et al., 2010).

The presence or absence of specific membrane proteins reflect
both the internal state of the individual cell, as well as a cell’s
response to external stimuli (Cho and Stahelin, 2005). The extra-
cellular domains of these proteins are heavily involved in cellular
interactions, including cell-cell communication, and binding to
the extracellular matrix as well as to peptides and hormones
(Yamada, 1983; Plaut, 1987). For human blood cells especially,
membrane proteins direct a number of important biological pro-
cesses concerning development (Trowbridge and Thomas, 1994),
decisions to proliferate (Ullman et al., 1990), cell motility, adhe-
sion and homing (Carlos and Harlan, 1990; Luna and Hitt, 1992;
Zarbock et al., 2011), and importantly, the activation, attenuation
and inhibition of effector functions in immune cells (Bromley
et al., 2001; Leibson, 2004). As such, defining and characteriz-
ing the dynamic expression of the plethora of membrane proteins
across cell types in different states and diseases is fundamental for
understanding their biological function, as well as finding disease
biomarkers and drug targets.

Membrane proteins have also been used extensively to differ-
entiate hematopoietic cells. Using flow cytometry, immunohisto-
chemistry, mass spectrometry or mass cytometry to quantify the
proportion of cells that express defining membrane proteins, it is
possible to differentiate and thus quantify cell types within a cell
population.

A common way to identify these proteins, sometimes referred
to as surface markers, is by the cluster of differentiation (CD)
scheme. Originally proposed in 1982 to help differentiate leuko-
cytes and better classify monoclonal antibodies (Reinherz et al.,
1986), it has since been used to characterize many other cell types
(Zola et al., 2007). In the CD nomenclature, a surface marker
that is recognized by several (a cluster of) antibodies is assigned
a non-descriptive cluster of differentiation number. Since 1982, a
number of workshops have continued to expand the list of vali-
dated CD molecules. Currently, 363 different proteins have been
defined in the scheme, not including various subtypes of some
CD molecules (Matesanz-Isabel et al., 2011).

While the CD repertoire has grown, efforts to deepen our
knowledge of their expression across cell types and their inter-
actions have not been able to follow pace. Furthermore, little is
known about membrane proteins’ concerted and dynamic co-
expression patterns, making it difficult to take full advantage of
many newer surface markers, in both basic research and therapies.
For example, antibodies against CD52 were originally developed
to remove T cells from donor bone marrow to prevent graft-vs.-
host disease, but the marker was subsequently also found to be
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expressed on B cells (Hale et al., 1983), monocytes (Fabian et al.,
1993) and dendritic cells (Buggins et al., 2002). More recently, off-
target effects caused a deadly cytokine-storm in a patient treated
with chimeric antigen receptor T cells aimed at CD340+ colon
cancer cells, a target which was later found to be expressed on
lung epithelial cells as well (Morgan et al., 2010). In another study,
myelopoiesis was eradicated when researchers targeted CD123 on
an acute myeloid leukemia (AML) cells (Gill et al., 2014). These
cases exemplify the growing need for characterization of surface
proteins, not only across cell types, but also throughout their
developmental and disease states.

Traditionally, surface molecule expression is characterized at
low rates using immunohistochemistry or flow cytometry, but
in recent years new technologies such as mass spectrometry and
mass cytometry has enabled the measurement of many parame-
ters simultaneously. Recently mass-spectrometry have been used
to characterize the whole proteome at the tissue level (Kim
et al., 2014; Wilhelm et al., 2014), but at this point very little
work has been done on individual human cell types. Membrane
mass-spectrometry is disadvantaged by the fact that most surface
proteins are hydrophobic and therefore poorly soluble, making
analysis of this particular subset of proteins difficult (Sprenger
and Jensen, 2010). This was highlighted in a recent proteomic
study of the human tissue culture cell line U2OS, in which
the authors found an under-representation of membrane pro-
teins (Beck et al., 2011). Mass-cytometry is a novel hybrid
mass-spectrometer and flow-cytometer, that utilizes metal iso-
topes as reporters. These can be coupled to known antibodies
and because these isotypes can be detected without interference
between channels, a large number of antibodies can be used—
currently up to 44 per single cells (Bendall et al., 2012). The
technique has been used to characterize 24 normal hematopoi-
etic cell-types (Bendall et al., 2011), CD8+ cytotoxic T cells
(Newell et al., 2012), NK cells (Horowitz et al., 2013) and most
recently several B cell subsets (Bendall et al., 2014). At this point
mass cytometry has not been used to characterize diseased cell
types.

Another approach to characterizing the expression of surface
proteins at high-throughput rates is to predict protein expression
from gene expression data. In 2009, Gry et al. explored RNA and
protein expression profiles for 1066 genes in 23 human cell lines,
and found widely varying correlation. The mean correlation coef-
ficient was 0.3, although for a subset of genes involved in the
cytoskeleton, cellular maintenance and motility, a higher corre-
lation was obtained. The reason for this discrepancy is most likely
differences in transcription, translation, and mRNA and protein
degradation rates. For example, it has been shown that proteins
on average are five times as stable and 2800 times more abun-
dant than their mRNA counterparts (Schwanhäusser et al., 2011),
however little is known about the stability of membrane proteins
in general.

Taken together, antibodies targeting proteins within the CD
designation is still the most validated and most specific method
for characterizing the membrane proteome in both normal and
diseased hematopoietic cells. With current flow cytometry meth-
ods, normally only twelve markers can be assayed simultane-
ously (although it is technically feasible to measure up to 20

per cell), but vast amounts of these data have been generated
historically. A few incomplete or now defunct CD molecules
data resources have been reported (Díaz-Ramos et al., 2011),
but no central resource for CD molecule data beyond basic
gene information currently exists. Collecting, cleaning, organiz-
ing, and storing this data is undoubtedly a non-trivial task, but
nonetheless one that may prove immensely valuable to both basic
cell biology research by aiding functional classification of cells,
cell stratification, but also to cancer immunotherapy and other
therapeutics.

We here employ text mining techniques to extract a repre-
sentative dataset, consisting of 6153 data points of CD protein
expression across 206 hematopoietic cells, and utilizing these
data, we analyze their concerted functionality across cell types.

MATERIALS AND METHODS
CD MOLECULE PROTEIN AND mRNA EXPRESSION DATA FOR CDome
ANALYSES
All protein expression data used for analyses were extracted from
experimental results described in the primary scientific literature
accessed through PubMed. Additionally, data from secondary
sources such as reviews, books, and conference proceedings were
extracted.

All 279 known healthy and malignant human hematopoi-
etic cells named in WHO’s 2008 classification of hematopoietic
cancers (Swerdlow et al., 2008; Campo et al., 2011), in com-
bination with all 453 known CD molecules, subtypes and iso-
forms were queried in PubMed as follows: “[cell] AND [CD
molecule]” (Supplementary Figure 1). In addition to this search,
all known aliases for both cells and CD molecules were queried.
This resulted in a large number of hits, with only a minor frac-
tion containing relevant experimental data. To facilitate efficient
extraction of the relevant experimental data, we employed a text
mining-based approach to classification of article abstracts as
described in detail by Olsen et al. (2013). Initially, a small ran-
dom set of abstracts was manually classified as either containing
human CD molecule expression data or not. Of this set, we ran-
domly selected 200 positive and 200 negative abstracts, which
were then used to train a naive Bayes classifier. The classifier
was subsequently applied to the remaining abstracts and those
deemed positive for CD protein expression data were manually
examined and relevant data extracted.

Most of the useful data we extracted were generated using flow
cytometry of different varieties. In many instances, particularly in
data published pre-1990, quantitative expression of CD molecules
was not available. In these instances a binary “yes/no” designation
was assigned to the cell/CD molecule data entry.

mRNA expression data analyzed here was generated by
Novershtern et al. (2011) and downloaded through the
Differentiation Map (DMAP) Portal (http://www.broadinstitute.
org/dmap/). Novershtern and colleagues measured mRNA
expression in 38 purified populations of human hematopoietic
cells. Two of these cells (HSC CD133+ CD34dim and HSC CD38−
CD34+) are normally considered to be identical cells in humans
(Doulatov et al., 2012). Thus, in the following analyses we con-
sider these two cells as one cell, namely the “hematopoietic stem
cell.”
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CD MOLECULE PROTEIN AND mRNA EXPRESSION DATA FOR HALF-LIVE
COMPARISON
Analysis of CD protein mRNA and protein half-lives were based
on data generated by Schwanhäusser et al. (2011), who quanti-
fied absolute levels of mRNA and protein in 5500 genes and 6445
proteins, as well as their degradation velocity in the mouse fibrob-
last cell-line NIH3T3. Using the “AnnotationDbi” package (Pages
et al., 2008) for R version 3.1.0, all mouse CD proteins registered
in the UniProt database were extracted from the dataset. From
this dataset, we extracted the available 30 CD molecule genes for
which both mRNA and protein expression data was measured. To
test for robustness of the discovered values, a Monte Carlo anal-
ysis using 10,000 random samples of 30 random protein values
extracted from the same dataset was applied.

CLUSTERING ANALYSES
Clustering hematopoietic cells based on mRNA expression was
performed using hierarchical clustering (Johnson, 1967) on the
expression matrix of 37 cells and their expression of 35,459
mRNAs. Clustering based on CD molecule expression was like-
wise performed by hierarchical clustering on the same 37 cells
and their expression of 261 CD molecules. Clustering and den-
drograms were generated using the functions “hclust” and “den-
drogram” in the R package “stats.” Hierarchical clustering and
subsequent heat map representation was performed on the out-
put from the PubMed searches performed in order to map data
availability in the primary literature.

NETWORK REPRESENTATION
Network representation of cell similarity based on expression of
CD molecules were generated by parsing all collected data into a
Geography Markup Language (GML) format and imported into
Cytoscape (Saito et al., 2012). Nodes represent hematopoietic cells
and edges between nodes indicate protein level expression of a CD
molecule in common between the two cells. The thicker the edges,
the more CD molecules are expressed on both cells and thus pro-
vide a visual summary of the degree of commonality between the
examined hematopoietic cells.

GENE ENRICHMENT ANALYSIS OF CD MOLECULES
Two different background sets were used for the enrichment
analysis: one for the general surface marker analysis where all
the known human membrane proteins were used. These where
extracted from UniProt (n = 2884). For analysis of various CD
molecule subsets, we used all CD molecule genes including
subtypes (n = 453) as the background set. Of these, only 397
currently have a gene name assigned. The hematopoietic cell
types were divided into eight representative groups: B-cell lineage,
T-cell lineage, NK cells, dendritic cells, macrophages, granulo-
cytes, monocytes, and red blood cells & platelets (Supplementary
Table 1), from which we derived the union of CD molecules
expressed in the each subgroup and used these as gene sets in the
enrichments analysis. Furthermore, we created a number of CD
molecule subsets from the union of cell types found in the cluster
analysis (Supplementary Table 2).

For evaluating the collective annotation of all CD genes as
compared to the whole genome, GO::TermFinder, employing the

GOA GO Slim ontology, was used (Boyle et al., 2004). This pack-
age contained 196 of the 397 CD genes mentioned above. All
results are supplied in Supplementary Table 3.

The enrichment analysis was performed using GOrilla (Eden
et al., 2009), which employs a standard hypergeometric test to
estimate significantly enriched GO terms from a given subset
of genes compared to a given background. The gene-ontology
database in GOrilla is updated weekly (updated on Jul 12, 2014 for
these analyses) ensuring an up to date gene ontology annotation
of the input gene sets. We constrained our analyses only to include
GO-terms for Biological Processes in Humans. All p-values were
corrected for multiple testing to control the false discovery rate
(FDR) as described by Benjamini and Hochberg (1995).

RESULTS AND DISCUSSION
DATA COLLECTION
Almost 2 million PubMed searches were automatically performed
as a result of the combined searches of all known hematopoi-
etic cells and all known CD molecules, including aliases for both
cells and CD molecules. Naive Bayes classification yielded reason-
able performance for classification (accuracy = 0.78, sensitivity =
0.91, specificity = 0.65) and reduced the literature corpus to 1561
articles classified to contain the CD molecule expression data on
human hematopoietic cells. Data from the articles available to us
were manually extracted and resulted in 6153 data points con-
taining the expression of 305 CD molecules on 206 hematopoietic
cells from 1223 literature sources.

KNOWLEDGE GAPS IN THE IMMUNOPHENOTYPING OF BLOOD CELLS
To identify hematopoietic cells and CD molecules for which
data is currently lacking, we explored the primary literature
via PubMed, registering the number of hits each cell type in
combination with all CD molecules received. Not all searches
yielded hits, which serves as an indicator of the state of experi-
mental characterization of CD molecules on hematopoietic cells.
Figure 1 shows a clustered heat map of PubMed hits for each
cell (rows) and CD molecule (columns) search combination
(see Supplementary Figure 1 for a high resolution version of
the heat map with cells and CD molecules listed). The heat map
(color scale from light gray for 0 hits to green for 1000+ hits)
shows that only approximately 17% of all hematopoietic cell and
CD molecule combinations have been reported in the primary
literature. Only eight cell types had hits for 50 percent or more
CD proteins.

Among the best characterized hematopoietic cells are T
and B cell lineages, macrophages, plasma cells, stem- and
progenitor cells as well as a number of cancers such as acute
myeloid leukemia’s (AML) and mature B-cell cancers. Under-
or uncharacterized cells are mostly rare disease states including
subtypes of AML and B lymphoblastic leukemia/lymphoma
based on genetic rearrangements, which were only recently
introduced in WHO’s 2008 classification. Some eosinophil and
basophil subtypes as well as CD4+ T follicular helper cell were
surprisingly under-characterized. In total, 30 cell-types had no
information available at all. Still, the number of articles published
concerning the expression of a specific CD molecule on a specific
cell is not necessarily reflective of our knowledge of the given
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FIGURE 1 | Heat map of CD molecule expression data availability in

primary literature. PubMed was queried with combinations of each CD
molecule with each hematopoietic cell (including common aliases for
both). Light gray cells in the heat map correspond to 0 hits in PubMed

for the cell and CD molecule combination, the shades of blue
corresponds to 10–100 hits (light to dark), and green corresponds to
1000+ hits. See Supplementary Figure 1 for high-resolution figure with
row and column names.

Table 1 | Ten best characterized cell types, as judged by available CD

molecule data in the primary literature.

Name Articles Unique CD proteins

T cell 334904 358
B cell 94993 312
Macrophage 99213 310
Plasma cell 47418 297
Plasmacytoid dendritic cell 65196 292
Hematopoietic stem cell 44287 253
Erythrocyte 17614 251
Neutrophil 38079 241
Neutrophil band cell 32312 236
Common myeloid progenitor 9708 232

Numbers indicate found articles and surface markers.

cell. If no hits are found for a given cell/marker search, this could
mean one of two things: (1) nobody has measure the expression
of the marker on the cell yet, or (2) it could indicate that the
marker is actually not expressed on the given cell, as negative
results are rarely published. Tables 1, 2 highlights the best and
least characterized cell types.

Of the 490 CD molecules queried in PubMed, 88 molecules
yielded no hits at all when the search was combined with
hematopoietic cell types. Upon inspection of these 88 markers,
8 were found to be provisional markers that would make lit-
tle sense to screen for and 67 markers, while expressed in other
tissues, have not been reported to be expressed on hematopoi-
etic cells. A subset of 21 markers, although not reported to be

Table 2 | Ten least characterized cell types, as judged by available CD

molecule data in the primary literature.

Name Articles Unique CD

proteins

Myeloid proliferations related to Down syndrome 2 3
Pro-NK cell 2 3
Myeloid and lymphoid neoplasms associated
with PDGFRA rearrangement

9 3

Myelodysplastic syndrome, unclassified 3 4
Myelodysplastic/myeloproliferative neoplasm,
unclassifiable

3 4

Disseminated juvenile xanthogranuloma 5 4
B lymphoblastic leukemia/lymphoma with
recurrent genetic abnormalities

4 5

Myeloid and lymphoid neoplasms associated
with FGFR1 abnormalities

13 5

Basophil-mast cell progenitor 5 6
Refractory cytopenia with unilineage dysplasia 6 6

Numbers indicate found articles and surface markers.

expressed on hematopoietic cells in the primary literature, were
listed as expressed in the secondary literature, such as proceed-
ings, primarily from the Human Cell Differentiation Molecules
(HCDM) workshops (http://www.hcdm.org/), but also from lit-
erature reviews and educational books.

CD MOLECULE mRNA AND PROTEIN HALF-LIVES
If CD molecules are to be used for immunophenotyping or ther-
apy, it is essential to know the expression and half-lives of these
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proteins, and it is of general interest to know the expression and
half-life of the corresponding mRNAs. A number of studies have
attempted to correlate mRNA levels to protein expression, hop-
ing to model protein expression from high-throughput genomics
methods, but poor correlation (Gry et al., 2009) and difficulties
assessing membrane proteins (Sprenger and Jensen, 2010) ham-
per these attempts.

Exploring publicly available data, we therefore sought to eval-
uate the half-life of CD mRNA and protein. Unfortunately, very
little quantitative expression data for CD molecules was available
even in the largest dataset available with over 6000 mRNA and
protein pairs measured (Schwanhäusser et al., 2011). Expression
for 30 CD mRNA and protein pairs were found in total and these
were compared with the global mRNA and protein half-lives.
While the average global mRNA and protein half-life was 9 and
46 h, respectively, CD mRNA and proteins half-lives were on aver-
age 18 and 16 h for the 30 CD mRNAs and proteins, respectively
(Figure 2). Although a small subset was used, a Monte Carlo sim-
ulation indicated that this subset could not have arisen randomly
from the data used (Supplementary Figure 2).

This indicates that for CD molecules, there is a closer relation-
ship between mRNA and protein levels over time, and that CD
proteins have a much shorter half-life than the majority of cellu-
lar proteins. Cellular proteins are removed either by degradation,
which is an active process, or by dilution which occurs when cells
divide (Eden et al., 2011). Since dilution is a global event, affect-
ing all proteins, one possible explanation for the shorter half-life
of CD proteins could be that these proteins are under more active
regulation in the cells.

DEFINING THE BIOLOGICAL FUNCTIONS OF CD MOLECULES
We also examined up-regulated biological functions of the
CDome as compared to the whole genome. We compared the

FIGURE 2 | Histogram of protein and mRNA half-lives in mammalian

cells, based on Schwanhäusser et al. (2011). A subset of CD molecules
for which data was available show faster turnover of membrane proteins
(bottom 2 panels), when compared to all analyzed proteins (top 2 panels).

enriched biological processes undertaken by genes within the
CDome, and correlated this to the genome-wide use of these
processes by identifying GO terms statistically over-represented
in our subset compared to the genome. Not surprisingly, CD
genes were significantly more involved in responses to stimuli
(80 vs. 29%), regulation of cell behavior (73 vs. 40%), cell com-
munication (62 vs. 22%) and cell differentiation (23 vs. 11%)
(Supplementary Table 3).

In order to examine if CD molecules differ from other sur-
face proteins, we compared GO terms for CD proteins to GO
terms for all 2884 known membrane proteins currently annotated
in UniProt. We found 78 enriched GO-terms (p-value < 10−10,
FDR < 10−9), most within the superfamilies of “immune sys-
tem process,” “biological regulation” and “response to stimulus.”
Most enriched processes were those involved in cell proliferation,
leukocyte activation, response to cytokines and cellular insults, as
well as regulation thereof. We then enumerated the total num-
ber of CD proteins involved in each of the biological processes,
and compared those with all other membrane proteins (Figure 3).
The proteins of the CDome were found to be involved in sig-
nal transduction, immune response and adhesion processes to a
much higher degree than other surface proteins.

Taken together these results confirm that the CDome rep-
resents a broad class of biological functions, including those
expected to be enriched in hematological cells, but also in a num-
ber of broader “housekeeping” cellular processes such as adhe-
sion, cell signaling and proliferation. This implies that the CDome
can be used broadly to assess the functional state of blood cells.

ANALYSIS OF FUNCTIONS OF CD MOLECULE SETS EXPRESSED ON
SPECIFIC SUBSETS
Data completeness remains a major obstacle for accurate analysis
and, as described above, not all hematological cell-types are well
characterized with regards to their expression of CD molecules.
To test whether we could accurately describe cell types based
solely on their CDome, we grouped 104 non-disease blood cells

FIGURE 3 | Functional characterization of CD proteins, compared to all

other UniProtKB annotated surface proteins based on GO terms.

Proteins within the CDome were found to be involved in signal
transduction, immune response and adhesion processes to a higher degree
than other surface proteins.
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Table 3 | Enriched GO term’s based on the expression patterns of CD proteins can be used to differentiate cellular subtypes within the

hematopoietic system.

Subset type Unique CD proteins GO-term summary

Description P-value FDR

B-cell lineage 69 Cellular process 2.67E-06 9.75E-03

Regulation of inflammatory response 4.06E-06 7.42E-03

Biological regulation 6.18E-05 7.54E-02

Positive regulation of immune system process 9.68E-05 8.85E-02

T-cell lineage 49 Leukocyte migration 5.10E-07 1.87E-03

Regulation of inflammatory response 1.25E-06 2.29E-03

Cellular response to stimulus 1.54E-06 1.88E-03

Locomotion 1.15E-05 4.67E-03

Cell surface receptor signaling pathway 4.31E-06 3.15E-03

NK cells 20 None

Dendritic cells 44 Response to molecule of bacterial origin 1.26E-06 4.61E-03

Response to lipopolysaccharide 4.09E-06 7.48E-03

Regulation of I-kappaB kinase/NF-kappaB signaling 7.95E-05 7.27E-02

Macrophages 35 None

Granolocytes 29 Leukocyte migration 5.14E-06 1.88E-02

Response to chemical 4.34E-05 7.94E-02

Response to external stimulus 5.07E-05 6.17E-02

Monocytes 76 Cellular response to biotic stimulus 7.07E-06 2.58E-02

Cellular response to molecule of bacterial origin 7.07E-06 1.29E-02

Response to external stimulus 7.50E-06 9.14E-03

Response to lipopolysaccharide 1.20E-05 8.77E-03

Red blood cells & platelets 14 Platelet activation 4.38E-08 1.60E-04

Coagulation 7.44E-06 4.54E-03

Hemostasis 7.44E-06 3.89E-03

Cell adhesion 1.85E-04 6.14E-02

Regulation of response to wounding 2.76E-04 7.76E-02

into the following categories: B-cells, T-cells, NK cells, dendritic
cells, macrophages, granulocytes, monocytes and red blood cells
(Supplementary Table 1). During our data collection process, we
found data for 42 different CD molecules for each group on aver-
age. Using these data we performed a GSEA, comparing the CD
molecules expressed on the cells of each category with all known
membrane proteins as the background set. In Table 3, we have
highlighted the functions found to be enriched in each group. For
NK cells and macrophages, it was not possible to find enriched
processes, but in the other groups a number of functions known
to be specific for these cell types resulted. This suggests that the
CD molecule expression data we have collected, serve as an indi-
cator of hematopoietic cells function in general, and is of a quality
that allows for further analyses.

CLUSTERING HEMATOPOIETIC CELLS BY CD mRNA AND PROTEIN
EXPRESSION
Lastly, we clustered healthy cell types according to expression of
305 CD molecules, and compared the results to those achieved by

clustering by expression of approximately 35,000 mRNAs from
individual hematopoietic cells (Novershtern et al., 2011). The
hierarchical clustering of the cells by mRNA expression revealed
seven distinct clusters (Figure 4A), which resembled groups
one would expect following current concepts of hematopoiesis
(Doulatov et al., 2012).

Similarly, we performed hierarchical clustering of the cells
by CD molecule expression, which also revealed seven clusters
(Figure 4B, Supplementary Table 2). These clusters, however,
were quite different from the mRNA expression clusters. Using
GSEA, we compared the individual clusters against all membrane
proteins, and found a high overlap between the biological func-
tions represented in each cluster (Supplementary Table 4). To
explore this further, we constructed a cell-cell interaction network
based on CD protein expression (Figure 5). Most cells appear
to have at least one CD protein in common, while some of
the more distinct clusters (for example, cluster 7 consisting of
CD4+ naive T cells, CD4+ central memory T cells, CD8+ cen-
tral memory T cell, CD8+ effector memory T cells, and NK T

Frontiers in Genetics | Bioinformatics and Computational Biology September 2014 | Volume 5 | Article 331 | 6

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Barnkob et al. Characterizing the human hematopoietic CDome

FIGURE 4 | Dendrogram of the clusters resulting from hierarchical clustering of 37 non-diseased hematopoietic cells by (A) expression of ∼35,000

mRNAs and (B) expression of 305 CD protein.

cells, highlighted in bright green on Figures 4B, 5) are heavily
connected and have expression of a large number of CD pro-
teins in common. While the protein cluster found could be a
consequence of real biological differences at the protein level, at
this point, it may also be attributed to incomplete CD expression
data.

CONCLUSIONS
Detailed knowledge about the membrane proteome is needed if
we are to take full advantage of new therapies such as mono-
clonal antibodies and immunotherapy. There are two key issues
with CD protein data availability, and consequently thorough
characterization of the CDome: (1) technical obstacles to high
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FIGURE 5 | CD molecule commonality graph on selected hematopoietic

cells. Nodes correspond to cells. Colors correspond to the hierarchical
clustering based on CD molecule expression (Figure 4B). Edges signify one

or more markers expressed on both cells. Edge thickness corresponds to the
number of markers in common (the thicker the edge, the more markers in
common between the two cells).

throughput measurements of membrane proteins, and (2) the
lack of an appropriate data resource for storing and accessing
existing experimental data. To compensate for this, we collected
6153 CD protein expression data points from 1223 literature
sources covering over 67% (305 of 453) of all CD molecules
and more than 73% (206 of 279) of all hematopoietic cells. Data
incompleteness may be attributed to the unstructured ad hoc data
generation, the lack of standardized data storage, the fact that
not all CD proteins are expressed on hematopoietic cells and that
emerging and rare forms of cancer are still poorly described in
the primary literature. To take full advantage of membrane pro-
teins such as those within the CDome, increased effort should be
invested in characterizing the surface proteome of cells—both in
generating data in the wet lab by utilizing either mass cytometry
or membrane mass spectometry, and cleaning, organizing, and
storing data computationally.

Exploring mRNA and protein half-lives of a small set of CD
molecules, we find indications that the half lives of CD mRNA and
proteins correlate better than mRNA and proteins in general, due
to a much shorter half-life of CD proteins. This indicates that CD
protein expression is regulated more actively than intra-cellular
proteins in general, underlining the need to characterize CD pro-
tein expression broadly across hematopoietic cells to facilitate
efficient use of CD proteins for therapeutics.

We find that CD molecule functions are mainly associated
with immunological processes, but also cover a range of cellu-
lar functions used by all cells. This is perhaps not surprising, as
CD molecules have historically been used to primarily charac-
terize cells within the immune system, but it may also indicate
that CD protein expression may provide more specific functional
classification of cells than expression of large set of differentially
expressed genes (or all genes), which is often used in ontology
studies.

To further investigate this notion, we clustered 37 hematopoi-
etic cells by mRNA expression data, which yielded seven dis-
tinct clusters corresponding to what is commonly expected from
hematopoiesis. Interestingly, when clustering the same cells by
CD protein expression, we find that they cluster into seven
quite different clusters. These clusters could perhaps give new
insights functional groupings of cells, however more protein
expression data is needed and a clustering on all hematopoi-
etic cell types should be performed to further shape this
hypothesis.

Overall, this article demonstrates that in order to drive
advances within therapeutic hematology and aid basic research
with cell stratification, a concerted effort must be made to better
characterize the membrane proteome of cell types, and a cen-
tral data resource for surface protein expression on cellular level
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should be established. Our analyses show that CD molecules are
excellent therapy targets as they are well-characterized and con-
trol important biological function in blood cells, but also that a
more systematic characterizing and organization of the cellular
CDome should be retroactively established to accelerate further
advances in the field.
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