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Introduction

Nervous system regulates homeostasis and adaptation to environmental changes of a whole organ-
ism, thus deregulation of nervous processes accelerates aging (Alcedo et al., 2013a,b). The aging
process in different models is associated with progressive degeneration of the nervous system (Lee
et al., 2000) and progression of age-related neurodegenerative diseases such as Alzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis (Boerrigter et al.,
1992; Coppede and Migliore, 2010). The neurodegeneration also characterizes the progeroid syn-
dromes, including Hutchinson-Gilford syndrome andWerner’s syndrome (Coppede and Migliore,

2010).
Drosophila melanogaster is a good model organism to study age-related neurodegenerative

changes (Lu and Vogel, 2009). Enrichment in mutants with neurodegeneration among flies with
shortened lifespan has been reported (Buchanan and Benzer, 1993; Kretzschmar et al., 1997). The
brain from old flies demonstrates the ultrastructural neurodegenerative changes such as reduction
in the number of synapses, defects in mitochondria, and increase in neuronal apoptosis (Had-
dadi et al., 2014). However, anti-aging interventionsmay postpone the neurodegeneration (Bgatova
et al., 2015).

Here we consider molecular genetic changes in the Drosophila aging brain and the bases for
applying the brain as a target for anti-aging intervention.

Aging of the Nervous System

The study of age-related gene transcriptional levels changes in Drosophila showed that in different
organs (including the brain) there are two critical time points—30 and 60 day of age (Zhan et al.,
2007). Comparing those points with Drosophila mortality curve it could be mentioned that the 30
day time point can be potentially attributed to the age when almost "linear" part of survival curve
is followed by the "exponential" part, reflecting more rapid decrease the amount of live flies. These
data are in good agreement with the shape of Gompertz curve, which describes the probability of
age-related mortality in Drosophila. Gompertz curve has two parameters: R describes background
mortality and α—exponential growth of mortality. At the initial 30 day of age Gompertz curve is
close to the linear dependence with the R slope, at later 60 day of age the curve decrease exponen-
tially. Our study of normal expression of D-GADD45 gene during aging showed that D-GADD45
brain expression is vanishing at critical point of 30 day old (Bgatova et al., 2015).
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What are the genes that change the expression level dur-
ing brain aging? As it is shown in (Girardot et al., 2006) the
main effect is down regulation of genes involved in synaptic
transmission at different levels divided into three subgroups.
The first one includes genes that play a role in neurotransmit-
ter metabolism such as the choline acetyltransferase (Cha) and
the dopamine N acetyltransferase (Dat) genes. In the second
subgroup many genes involved in various steps of neurotrans-
mitter secretion: priming for synaptic vesicle fusion (γ-SNAP,
unc13, comatose and tomosyn), fusion with presynaptic mem-
brane (Csp, Syx1A and rab3-GAP) and reformation of vesicles
through endocytosis (liquid facets, AP-50 and AP-2σ). The third
subgroup includes several neurotransmitter receptor ion chan-
nels. Among these channels, two nicotinic acetylcholine recep-
tors (nAcRβ96A and nAcRα18C) and three ionotropic gluta-
mate receptors (Nmdar1, GluCla, and CG11155) mediate excita-
tory synaptic transmission. Moreover, three inhibitory GABAer-
gic channels (Lcch3, GABA-B-R2, and Rdl) are also down reg-
ulated in aging Drosophila brain. Up regulated genes in aging
Drosophila brain mostly present signatures similar to those
observed in whole flies: genes associated with immune response
and amino acid metabolism are over-represented. Based upon
those whole genomic data it is possible to develop a set of Gal4
reporters that would permit to determine “biological” brain age
markers for a given individual and to understand are there a
“schedule” of aging at the gene level or is partially “stochastic”
process.

Nervous System as a Target for Anti-Aging
Interventions

Genetic manipulations with a single gene expression that extend
life span are important tools for discovering mechanisms under-
lying aging. Mutations in the Indy (I’mNotDeadYet) gene
dramatically extend the lifespan of the fruit fly, Drosophila
melanogaster (Rogina et al., 2000). In the past we had identified
an allele Indy-P115, which shows the same life span extension as
the first allele (Bulgakova et al., 2002, 2004). Since we had the
P(lArB) insertion, we studied the pattern of expression of the gene
in the larval tissue. It occurs that the larval brain has clear pattern
of expression and we put forward a hypothesis that Drosophila
brain can be the main target of aging.

Studies on other models confirm our assumption. For exam-
ple, mutations in daf-2 disrupting an insulin-like signaling path-
way dramatically extend the adult C. elegans life span (Guarente
and Kenyon, 2000). The study of cell-specificity of daf-2 action
reveals that the neurons are responsible for the effect (Wolkow
et al., 2000). The lit mutant mouse strain, which has a mutation
disrupting the hypothalamic GH releasing hormone (GHRH),
lives longer. Homozygous lit/lit mice live up to 25% longer than
wild-type mice (Flurkey et al., 2001).

The creation of Gene-Switch Gal4 drivers (Osterwalder et al.,
2001) now permits to identify the genes, whose ectopic activa-
tion/suppression can prolong Drosophila life span when overex-
pressed in adults. In particular Elav-GS driver directs conditional
RU486 expression in the nervous system. With this approach it

was shown, that overexpression of Cbs, Eip71CD, G6PD, GCLc,
hep, Jafrac1, p53, Sir2 and the silencing of CG9172, CG18809,
l(3)neo18, Naam in the adult brain leads to increased life span
(Table 1). It is also necessary to mention that similar data was
published for D-Gadd45 (Plyusnina et al., 2011). Those data gave
the heavy background to consider adult brain as the target of
aging. However, the range of the genes tested with the approach
is very small, so we like to analyze how large the range of such
genes can be. All the genes mentioned above showed not only
the life-span extension induced by Elav-GS driver, but similar
extensions were observed also with one of Act-GS-Gal4 or Tub-
GS-Gal4 drivers, showing ubiquitous over-expression also results
in the life extension. So in Table 1 we made an attempt to corre-
late the list of the genes already studied by Gene-Switch approach
with the level of their expression in development and tissues
(modENCODE Tissue Expression Data). It can be seen that 30
genes studied within the da-Gal4, tub-GS-Gal4, Act-GS-Gal4,
hs-Gal4 UAS-geneX system are heterogeneous group including
high and low expression genes. Among those only AGBE, CalpA,
Men, wdb demonstrate evident preponderance of head expres-
sion level. It is very probable that those genes, preferentially
expressed in the head, also affects adult life-span by targeting
the brain.

It was discovered cases when ubiquitous drivers: da-GS-
Gal4 and tub-GS-Gal4 can extend life-span when inducing
RNAi-geneX constructs (Table 1). Among those only CG17856,
ms(3)72Dt have very low level of expression in the head.

Recent investigations shown, that the nervous system may
be a target for ant-aging pharmacological interventions also.
For example, serotonin antagonists (272N18, mianserin, mir-
tazapine, methiothepin and cyproheptadine), some of which are
used clinically, extend the lifespan of adult C. elegans by 20–
33% (Petrascheck et al., 2007). Screening of a library of com-
pounds with knownmammalian pharmacology revealed 60 com-
pounds that increase longevity in C. elegans (Ye et al., 2014).
The 33 compounds increased resistance to oxidative stress, and
enhanced resistance to oxidative stress was associated primarily
with compounds that target receptors for biogenic amines, such
as dopamine or serotonin (Ye et al., 2014).

Conclusion

Now the thesis “Drosophila nervous system as a target of aging
and anti-aging interventions” has been proved for some cases.
On the one side of the nervous system is one of the targets of
aging process and the state of nervous system may be regarded
as a marker of aging. In this context, intervention aimed to
combat the aging should lead to postponement of neurodegen-
eration. On the other hand, many pharmacological and genetic
aging-suppressive interventions act through the nervous system.
Therefore, it can be considered as one of the targets of anti-aging
therapy. However, conditional expression approach reveals also
other essential targets. We think that now days, when a large
list of longevity genes already become known, it needs to put
some efforts for complete longevity targets determination for
every case. For example, current studies of the Indy mutations
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TABLE 1 | Tissue expression data of longevity genes in normal conditions.

GeneX Expression pattern according to modENCODE Tissue Expression Data References

da-Gal4, tub-Gal4, Act-Gal4, hs-Gal4 > UAS-GeneX

Atg8a Very high expression almost in all organs including nervous system Simonsen et al., 2008

AGBE Moderately high, high in the head. Expression is lower in the other organs Paik et al., 2012

CalpA Moderate expression in the head. Expression is lower in the other organs Paik et al., 2012

CG8155 Low expression in the head. Expression in other organs also low Paik et al., 2012

CG10383 Low expression in the head. Expression in other organs also low Paik et al., 2012

CG10916 Low expression in the head. Expression in other organs also low Paik et al., 2012

CG30427 Low expression in the head. Expression in other organs also low Paik et al., 2012

CG42663 Low expression in the head. Expression in other organs also low Paik et al., 2012

dFh Very low and low expression Runko et al., 2008

Dlc90F Moderately high, moderate expression in the head. Expression in other organs also high Paik et al., 2012

dPrx5 Very high in testis, high and moderately high in other organs except salivary gland and fat body Radyuk et al., 2009

dTsc1 High and moderately high in imaginal discs, ovary, and testis, moderate in almost all other organs Gao et al., 2002

GCLm High and very high expression in many organs, moderate expression in nervous system of larvae and pupae Orr et al., 2005

Hsp22 Low expression in the head. Expression in other organs stronger Kim et al., 2010

Hsp26 Low expression in the head. Expression in other organs stronger Wang et al., 2004

Hsp27 Low expression in the head. Expression in other organs stronger Wang et al., 2004

ImpL2 Moderately high, moderate expression in the head. Expression in other organs also high. Paik et al., 2012

Men High expression in the head. High expression in some other organs Paik et al., 2012

Nlaz High expression in the head. High expression in some other organs Hull-Thompson et al., 2009

Pcmt High expression in imaginal discs and testis, moderate expression in other organs including nervous system Chavous et al., 2001

PGRP-LF Weak expression everywhere Paik et al., 2012

Prx5 High and moderately high in the head. High in other organs Radyuk et al., 2009

S6k Moderate, moderately high in the head and other organs Kapahi et al., 2004

SIFaR Low expression everywhere except pupae nervous system Paik et al., 2012

Sin3A Moderate in the head and some other organs Paik et al., 2012

sm Moderately high, moderate in the head. Expression higher in some organs Paik et al., 2012

Sod2 High and very high in the head and other organs Curtis et al., 2007

Tor Low expression everywhere Kapahi et al., 2004

Trx-2 Moderately high, moderate in the head and other organs Seong et al., 2001

Tsc1 Moderate in the head and other organs Kapahi et al., 2004

wdb Moderately high, moderate in the head and some other organs Funakoshi et al., 2011

da-Gal4, tub-Gal4 > RNAi-GeneX

CG17856 Very low everywhere Copeland et al., 2009

ms(3)72Dt Very low everywhere Copeland et al., 2009

Elav-Gal4 > UAS-GeneX

Cbs Low everywhere Kabil et al., 2011

Eip71CD High, moderately high in the head and some other organs Chung et al., 2010

G6PD Moderate expression in testis and head of 20 day male, moderate and low expression in other organs. Expression

in nervous system of larvae and pupae—very low

Legan et al., 2008

GCLc High expression in digestive system and salivary glands Orr et al., 2005

Hep Moderate in the head and other organs Biteau et al., 2010

Jafrac1 Very high, high, and moderately high almost everywhere, exept salivary gland fat body Lee et al., 2009

p53 Very low everywhere Shen et al., 2009

Sir2 Moderate in the head and other organs Whitaker et al., 2013

Elav-Gal4 > RNAi-GeneX

CG9172 High, moderately high in the head and some other organs Copeland et al., 2009

CG18809 Moderately high, moderate in the head. Expression lower in other organs Copeland et al., 2009

l(3)neo18 Very high in the head and some other organs Copeland et al., 2009

Naam Very low in the head and other organs Balan et al., 2008
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extending life-span are concentrated on the gene function in the
gut (Rogina et al., 2014). However, for the most of the longevity
genes the target organs are poorly studied. We suggest that the
brain is one of the main aging targets.
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