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Lactation is a dynamic process, which evolved to meet dietary demands of growing

offspring. At the same time, the mother’s metabolism changes to meet the high

requirements of nutrient supply to the offspring. Through strong artificial selection, the

strain of milk production on dairy cows is often associated with impaired health and

fertility. This led to the incorporation of functional traits into breeding aims to counteract

this negative association. Potentially, distributing the total quantity of milk per lactation

cycle more equally over time could reduce the peak of physiological strain and improve

health and fertility. During lactation many factors affect the production of milk: food intake;

digestion, absorption, and transportation of nutrients; blood glucose levels; activity of

cells in the mammary gland, liver, and adipose tissue; synthesis of proteins and fat in

the secretory cells; and the metabolic and regulatory pathways that provide fatty acids,

amino acids, and carbohydrates. Whilst the endocrine regulation and physiology of the

dynamic process of milk production seems to be understood, the genetics that underlie

these dynamics are still to be uncovered. Modeling of longitudinal traits and estimating

the change in additive genetic variation over time has shown that the genetic contribution

to the expression of a trait depends on the considered time-point. Such time-dependent

studies could contribute to the discovery of missing heritability. Only very few studies

have estimated exact gene and marker effects at different time-points during lactation.

The most prominent gene affecting milk yield and milk fat, DGAT1, exhibits its main

effects after peak production, whilst the casein genes have larger effects in early lactation.

Understanding the physiological dynamics and elucidating the time-dependent genetic

effects behind dynamically expressed traits will contribute to selection decisions to further

improve productive and healthy breeding populations.

Keywords: time-dependent, longitudinal, lactation curve, breeding value, genome-wide association, genomic

selection, genomic prediction

Introduction

Lactation is an orchestrated process aimed at providing nutrition and immune protection to the
offspring; however, the mother must also retain sufficient resources to ensure her own survival.
Thus, the quantity and composition of milk produced is strongly dependent on the developmental
stage of the offspring and the maintenance requirements of the mother. As such, milk production
is a classic exemplar of a time-dependent dynamic process.

The domestication of animals inevitably led to selective breeding for increased productiv-
ity. The uninterrupted increasing global demand for dairy products necessitated a concurrent
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increase in milk production. Thus, in order to meet market
requirements, the dairy sector implemented selective breeding
programs which have led to a doubling in the amount of milk
produced per cow over the last 50 years, such that total milk pro-
duction is increasing despite a decline in dairy cattle populations
(Food and Agriculture Organization of the United Nations, FAO,
20121). Recently, this has included the implementation advanced
breeding programs and the development of tools to utilize genetic
and genomic information (Goddard and Hayes, 2007; Seefried
et al., 2010). However, increasing the milk production per cow
has detrimental effects on animal health and fertility (Ingvartsen
et al., 2003; Oltenacu and Broom, 2010). Consequently, breeding
goals were adjusted to incorporate health and fertility traits into
breeding indices (Osteras et al., 2007; Boichard and Brochard,
2012).

These breeding indices have enabled dairy farmers to breed for
milk production and functional traits without requiring know-
ledge on how these practices impact upon the dynamics of milk
production or change the expression of underlying genes. How-
ever, the continuous development of genetic and genomic tools,
as well as computational capacities, will allow breeders of the
future to base their decisions not only on phenotypically observ-
able traits or indirect genetic marker information but also on the
direct causative genetic variants.

As with many other complex traits important in livestock pro-
duction, milk production is influenced by many genetic loci that
act directly, interact with each other and/or interact with the
environment (Lemay et al., 2009). This makes the study of quan-
titative traits challenging, especially when time-dependent com-
ponents are considered. This review details the most important
regulators of milk production and their underlying genes in the
context of the dynamics of a lactation cycle, and summarizes the
effortsmade to identify genetic loci affecting the dynamics ofmilk
production during lactation.

Conflict between Production and
Functional Traits

The milk production of a cow follows a dynamic curve
(Figure 1A; Stanton et al., 1992). After an initial rapid increase
in milk yield during early lactation, milk yield (as well as protein
and fat content) peak around 6 weeks into lactation, after which
production slowly decreases until the end of lactation. Dairy cows
experience an energy deficiency during early and peak lactation
(Figure 1B; Collard et al., 2000) due to the high energy require-
ments formilk production not beingmet because of physiological
limitations which constrain food intake (i.e., bulk capacity; Allen,
1996) and mobilization of bodily energy resources. This energy
deficit has been proposed to have detrimental effects on health
and fertility which have been reviewed and discussed by Olte-
nacu and Broom (2010), and negative genetic correlations have
been reported between milk production and a variety of func-
tional traits (Zimmermann and Sommer, 1973; Dekkers et al.,
1998; Ingvartsen et al., 2003; Muir et al., 2004). However, it has

1http://faostat.fao.org/site/569/DesktopDefault.aspx?PageID=569#ancor

to be noted that total milk yield and the energy balance dur-
ing early lactation seem to be independent, as correlations have
been reported to be very low (Spurlock et al., 2012). Further, the
negative impact of lactation on fertility may serve a functional
purpose to provide optimal birth spacing for the survival of off-
spring. Therefore, there may be other endogenous factors yet to
be discovered that negatively affect health and fertility traits.

From a nutritionist’s point of view it might be necessary to
reduce, rather than to increase, peak milk yield in order to
decrease the energy deficiency experienced during early and peak
lactation, and thereby improve health and fertility traits. How-
ever, this is in direct conflict with the desire to increase overall
milk production. Therefore, an alternative method of increasing
overall milk production might be via increasing production per-
sistency. A better production persistency raises the overall gain
per lactation due to an increased persistency affecting the longest
part of the lactation (i.e., late lactation; Dekkers et al., 1998;
Inchaisri et al., 2011). However, there are some reports indicating
that a high persistency may also be antagonistic to the animal’s
health, and thus also needs to be considered in regards to find-
ing an optimal persistency and lactation duration (Harder et al.,
2006; Appuhamy et al., 2009).

Production persistency is most often defined as a lesser
decrease in milk production after the peak, i.e., a flatter shape
of the lactation curve compared to another animal or the heard
average. Such calculations can be based on the difference of
peak yield to a 305d measurement, on test-day deviations, or on
parameters of lactation curve models (Gengler, 1996). As per-
sistency is negatively correlated to yields, some studies prefer to
calculate persistency as a linear regression of test-day deviations
on days in milk to achieve a yield independent estimate (Cole
and VanRaden, 2006; Cole and Null, 2009). By employing such
an estimate, it would enable a breeder to select on milk yield
and persistency independently; however, currently only very few
breeding companies provide such estimates to their clients.

One problem with persistent production is the requirement
to dry-off a cow between lactations. However, if the production
system does not require yearly calving, the duration of the lacta-
tions can be chosen according to daily yield. Subsequently, with
increased lactation duration, the time point of insemination has
to be postponed. Assuming that the peak production remains
around 6 weeks into the lactation cycle, a later time point for
insemination has the added benefit that a new pregnancy begins
after the energy deficit caused by the high peak production. Thus,
fertility issues potentially arising from an energy deficit will be
reduced. Regardless of lactation duration, the general recommen-
dation for days dry is still 45–70 days (Kuhn et al., 2006, 2007;
Sawa et al., 2012). The potential implications of increased lac-
tation duration on generation intervals and fewer replacement
animals could be counteracted through the utilization of sexed
semen to increase the ratio of female calves.

Current methods in animal breeding apply an index of
traits weighted according to their economic importance as
well as heritability in the breeding goal. Further, phenotypic
and genetic correlations between traits within the index are
included, on the one hand to increase accuracy on lowly herita-
ble traits, and on the other hand to account for potential negative
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FIGURE 1 | (A) Milk production and (B) energy supply and

requirements during the lactation cycle of 340 days. (A) The

curve represents the milk yield per day of lactation and reaches

a peak production around lactation days 40–50. Shortly before

lactation and until peak production the udder and the alveolar

system are highly developed. In later lactation the alveolar

system regresses continuously until the end of lactation and into

involution. (B) The blue curve represents the energy that is

needed for milk production and maintenance of vital body

functions. The energy needed for milk production is highest

when milk production reaches a peak. At the same time the

energy taken in through food (purple curve) cannot cover the

energy requirements for milk production which leads to a loss

in body energy stores (black curve). This imbalance in energy

homeostasis changes with the decline of milk production in late

lactation.

correlations (Dekkers, 2007).Whilst milk production is still the
most important trait in most countries, conformation, udder
health, and fertility have been added to balance the negative cor-
relation between a high production and the animal’s welfare and
longevity (VanRaden, 2004; Miglior et al., 2005). However, the
exact impact of such breeding indices on the shape of the lac-
tation curve or the dynamic gene effects remains unknown. In
the following section, we look at the physiological interplay that
forms the lactation cycle as this is the basis of understanding
which genetic factors are ultimately involved.

Physiology of a Dynamic Milk Production

Mammogenesis
The development of the mammary gland is the primary fac-
tor affecting milk production. A well-developed mammary gland
with many fully differentiated secretory cells, good blood supply,
and strong connective tissue will be highly productive over a long
time.

The mammary gland forms a rudimentary duct tree dur-
ing fetal development in response to maternal hormones (Wat-
son and Khaled, 2008). From birth until puberty, mammary
gland growth is due to the formation of a fat-pad rather than
the development of specialized mammary gland tissue (McNally
and Martin, 2011). At puberty the initiation of the estrus
cycle, via follicle-stimulating hormones and luteinizing hormone,
stimulates the ovaries to synthesize and release estrogen and
progesterone. The concurrent elevations in both estrogen and
progesterone orchestrate the main growth of the mammary
gland during pregnancy by ductal growth and lobular formation
which leads to the formation of lobule-alveoli (Hennighausen
and Robinson, 2005; Bloise et al., 2010; Koos, 2011). Alveoli are
an accumulation of secretory cells grouped around a hollow cen-
ter, the lumen, where the milk is stored (Figure 2). Thus, as

pregnancy progresses, the adipose cells of the mammary gland
are gradually replaced by specialized mammary gland tissue.
Mammary gland growth continues during early lactation until
peak lactation, after which the mammary gland shrinks due to
the rate of secretory cell loss exceeding the rate of cell division
(Figure 1A; Capuco and Akers, 1999).

Hormones and growth factors are important in determining
how many secretory cells develop, and thus how much milk can
be produced in the mammary gland (Watson and Khaled, 2008;
McNally and Martin, 2011). By slowing down the process of hor-
monal stimulation of secretory cell proliferation during late preg-
nancy and early lactation, and favoring an extended time during
which new cells are produced, the peak milk production could
be reduced and a better persistency achieved. This may also be
achieved by slowing down the rate of cell death which is also
regulated through a cascade of hormones and growth factors
(Sureshbabu et al., 2011; Watson et al., 2011).

Milk Secretion
A second crucial point for milk production concerns the quan-
tity and quality of the secreted milk. Milk is an emulsion of
fat and water containing dissolved carbohydrates, proteins, vita-
mins, and minerals that all have to be produced in or trans-
ported to the mammary gland. During lactation, quantitative
milk yield is primarily regulated by lactose within the alveoli.
Alveolar lactose influences the osmotic pressure between blood
and alveoli and thereby the amount of water drawn into the alve-
oli (Figure 2; Zhao and Keating, 2007). Some of the substances
in milk such as minerals, vitamins, or immune-globulins pass
the cell membranes directly from the blood into the lumen via
transporter proteins (Figure 2; Neville and Watters, 1983). The
activity of these transporter proteins is increased when milk pro-
duction starts to enhance the uptake of water into the secretory
cells of the mammary gland (Figure 3; Zhao and Keating, 2007;
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FIGURE 2 | The process of milk secretion in the udder of a cow

(partially adapted from Wattiaux, 1996). Milk is secreted in the alveoli

system of the mammary gland. Several substances can pass the cell

membrane from the blood stream (water, minerals, vitamins,

immune-globulins), whilst others need transporters and are produced in the

secretory cells (proteins, fat, lactose).

Anantamongkol et al., 2010; Wickramasinghe et al., 2012). Sub-
stances such as lactose, proteins and fat have to be synthesized
in the secretory cells from components such as glucose, amino
acids, triglycerides, or fatty acids that stem from the dietary
nutrients or body resources such as adipose tissues or skeletal
muscles (Figures 2, 3; Burgoyne and Duncan, 1998; Zhao and
Keating, 2007; Bionaz and Loor, 2008b). Lactose is synthesized
from blood glucose and galactose (synthesized from glucose) by
a lactose synthase enzyme composed of galactosyltransferase and
α-lactalbumin in the golgi complex of mammary secretory cells
(Figure 2). The amount of glucose in the blood is regulated by
energy intake, insulin and leptin (Figure 3; Li et al., 2010).

Proteins and fat are important for qualitative milk yield
in terms of organoleptic properties of the milk and down-
stream industries such as cheese and butter production (Bailey
et al., 2005; Bauman et al., 2006). Caseins, α-lactalbumin and β-
lactoglobulin represent the main fraction of milk proteins. They
are synthesized mainly from amino acids broken down from
digested food and transported through the blood stream to the
secretory cells (Burgoyne and Duncan, 1998). Milk fat is com-
posed of triglycerides, long- and short-chain fatty acids which are
partly synthesized in the liver or in secretory cells of the mam-
mary gland from short-chain dietary lipids that are obtained from
the rumen, and partly from mobilized fats from bodily fat depots
(Figure 2; Bionaz and Loor, 2008b).

Lactation is coupled with changes in the activity of genes
in the mammary gland but also in other organs. In the liver,
fat and glucose synthesis is highly increased from pregnancy

to early lactation to provide fatty acids and blood glucose for
milk production (Figure 3; Bell and Bauman, 1997; Casey et al.,
2009), whereas fat synthesis is decreased in adipose tissue and the
expression of transporter genes for the uptake of blood glucose
into somatic cells is reduced to ensure that nutrients are available
for milk production (Bell and Bauman, 1997; Casey et al., 2009).

In conclusion, to understand the genetics behind a lactation
cycle, a number of gene pathways need to be considered. These
include genes regulating food intake and blood glucose levels; the
digestion, absorption, and transportation of nutrients; the activ-
ity of the secretory cells in the mammary gland, liver, and adipose
tissue; the synthesis of proteins and fat in the secretory cells; and
the pathways which provide triglycerides, fatty and amino acids,
transporter proteins, and transcription factors.

Genetics of Milk Production
The establishment of the Bos taurus genome assembly (Bovine
HapMap et al., 2009), along with proteome and gene expression
studies, have made it possible to estimate the number of genes
involved in milk production, from mammogenesis to milk secre-
tion. Between 6000 and 19,000 genes distributed across all 29
bovine autosomes and the X-chromosome have been reported to
be differentially expressed during the lactation cycle, though not
exclusively in the mammary gland (Lemay et al., 2009; Wickra-
masinghe et al., 2012). Thus, the genes predicted to be involved
(directly or indirectly) in the regulation of milk production,
account for between 25 and 75% of all predicted cattle genes (Bos
taurus UMD 3.1-Primary Assembly, Zimin et al., 2009). Most
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FIGURE 3 | Chronology of gene expression and physiological processes during a lactation cycle. DIM, days in milk.

genes contribute to pathways that directly affect economically
important traits such as milk yield and composition. A multitude
of genome-wide association studies (GWAS) using high density
SNP chip data have previously been conducted to narrow down
regions and identify causative genes that affect milk production
traits (Cole et al., 2011; Strucken et al., 2012a; Buitenhuis et al.,
2014; Raven et al., 2014). Whilst regions and potential genes with
effects onmilk production traits have been reported for almost all
bovine chromosomes, repeatedly occurring genes are located on
chromosomes 27, 6, 20, and 14 (Lemay et al., 2009).

Only around a dozen candidate genes have been consistently
identified between studies and described more extensively with
regards to their association with the main milk production traits
(Table 1). The pathways through which these genes affect milk
production traits depict the variety of processes that have to
be considered (Figure 4). Genes like the BDNF, FTO, or IGF1
impact upon food intake and thus nutrient and energy avail-
ability (Mullen et al., 2011; Zielke et al., 2011, 2013; Waters
et al., 2012). Other genes such as GHR, PRLR, or SPP1 affect
growth, proliferation, and apoptosis of cells (Viitala et al., 2006;
Khatib et al., 2007; Banos et al., 2008; Lu et al., 2011a; Rahmatalla
et al., 2011), whilst DGAT1 and AGPAT6 are involved directly
in triglyceride synthesis (Winter et al., 2002; Bionaz and Loor,
2008a; Strucken et al., 2010a; He et al., 2011). Of further note
are the casein genes which encode the major fraction of milk
proteins (Velmala et al., 1995). Figure 4 provides an overview
of those candidate genes and the pathways through which they
affect milk production traits. To our knowledge, no genes affect-
ing mammogenesis have been directly linked to milk produc-
tion. Recently, Raven et al. (2014) included traits of the mam-
mary system in a GWAS study which identified five regions on
four different chromosomes with significant effects; however, a

clear description of the phenotype (the mammary system) was
lacking.

Only little is known in regards to time-dependent genetic
effects causing a dynamic curve in dairy cattle but the next section
summarizes the efforts and results made in this field.

Dynamic Genes in Animal Breeding
Systems

Dynamic Association Studies
Whether a single marker for a candidate gene is used or thou-
sands of indirect markers for a GWAS, finding associations
between markers and a trait that displays dynamic expression
over time can be difficult. The simplest solution may be to esti-
mate associations over various time-points, i.e., treat each mea-
surement as a separate phenotype. Automated milking systems
could provide an accurate measurement of milk production for
each day of lactation. However, this approach would mean that
several hundred phenotypes would have to be analyzed. Further,
whilst such measurements would provide daily milk yield, persis-
tency cannot be estimated from a single time point. Ergo, daily
measurements should not be treated as separate phenotypes.
Therefore, appropriate phenotypic and genetic correlations have
to be incorporated or repeated measurement analyses performed.
Whilst daily measurements provide a highly accurate descrip-
tion of lactation performance, it might be computationally too
time-consuming to be practically applied. Further, milking sys-
tems have still not penetrated the entire dairy sector and analyses
solely relying on daily measurements would require additional
methods to include animals with missing records. Most countries
with national evaluation networks record milk production once
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TABLE 1 | Major genes involved in milk production.

Gene Chr. Position (bp)* Trait References

LEPR (leptin receptor) 3 80,071,689–80,147,000 Milk yield

Milk fat

Banos et al., 2008

LEP (leptin) 4 93,249,874–93,266,624 Milk yield

Milk fat

Banos et al., 2008;

Clempson et al., 2011

IGF1 (insulin like growth factor 1) 5 66,532,879–66,604,699 Milk yield

Milk fat

Mullen et al., 2011; Waters

et al., 2012

ABCG2 (ATP-binding cassette, sub-family G,

member 2)

6 37,959,536–38,030,585 Milk protein

Milk fat

Cohen-Zinder et al., 2005;

Ron et al., 2006

OPN (osteopontin) 6 38,120,578–38,127,541 Milk yield

Milk protein

Milk fat

Leonard et al., 2005; Khatib

et al., 2007

PPARGC1A (peroxisome proliferator-activated

receptor gamma, coactivator 1 alpha)

6 44,854,113–44,960,533 Milk yield

Milk fat

Khatib et al., 2007

Casein-Cluster (CSN1S1, CSN2, CSN1S2, CSN3) 6 87,141,556–87,392,750 Milk protein Velmala et al., 1995; Kress

et al., 2011

DGAT1(diacylglycerol O-acyltransferase 1) 14 1,795,425–1,804,838 Milk yield

Milk fat

Winter et al., 2002;

Strucken et al., 2010a

BDNF (brain-derived neurotrophic factor) 15 59,164,519–59,200,908 Milk fat Zielke et al., 2011

FTO (fat mass and obesity associated) 18 22,118,201–22,541,540 Milk fat

Milk protein

Zielke et al., 2013

GHR (growth hormone receptor) 20 31,890,736–32,064,200 Milk yield

Milk protein

Milk fat

Viitala et al., 2006; Banos

et al., 2008; Rahmatalla

et al., 2011

PRLR (prolactin receptor) 20 39,073,246–39,137,480 Milk yield

Milk protein

Milk fat

Bole-Feysot et al., 1998;

Viitala et al., 2006; Lu et al.,

2011b

PRL (prolactin) 23 35,105,135–35,113,750 Milk yield

Milk protein

Milk fat

Bole-Feysot et al., 1998

AGPAT6 (1-acylglycerol-3-phosphate

O-acyltransferase 6)

27 36,212,352–36,228,987 Milk yield

Milk fat

Bionaz and Loor, 2008a; He

et al., 2011

*Btau_4.6.1.-Primary Assembly.

a month. Assuming the lactation period of a cow lasts for 340
days, one record a month sums up to approximately 11 test-days.
Because crucial changes such as peak yield occur roughly 6 weeks
into the lactation cycle, one analysis every month could still give
a fairly thorough picture of the lactation performance. How-
ever, analyzing 50k or 800k markers (the marker number of the
most commonly used SNP-chip in dairy cattle at present) for
thousands of animals would still take time.

Instead of using the measurements of the actual test-days,
fewer parameters can be sufficient to describe an entire lacta-
tion. The profile ofmilk production, and its components, over the
course of a single lactation has been described by various math-
ematical and biological functions (Pollott, 2004; Silvestre et al.,
2009). Thus, using these mathematical lactation curve models
provides a means of reducing the amount of time-points to a
minimum of three curve parameters. These parameters describe
the production curve through its properties such as slopes, apex
(maximum), and level of production.

Such approaches are known as functional modeling in human
genetics where it is mostly applied to map dynamic loci affect-
ing disease traits using growth curves such as cubic splines (Hou
et al., 2008; Li et al., 2009; Yang et al., 2009). In livestock research,

a similar approach is known as the modeling of longitudinal or
dynamic traits (Rodriguez-Zas et al., 2002; Suchocki and Szyda,
2011). In most livestock studies, the change in additive genetic
variation over time was analyzed mainly for body weight and
milk yield in dairy cattle, sheep, and goats (Lund et al., 2008;
Roldan et al., 2008; Forni et al., 2009; Hadjipavlou and Bishop,
2009; Strucken et al., 2011). However, most of these studies used
either no marker information or only a few markers on selected
chromosomes to conduct their analyses.

The few results of time-dependent association studies in live-
stock reflect reported dynamic expressions of genes involved in
milk production (Bionaz and Loor, 2008a; Verbyla and Verbyla,
2009) or add a time component to known but static effects of
candidate genes such as the DGAT1 gene or the region around
the casein genes. The described effects of the DGAT1 gene, with
antagonistic impacts on milk yield and fat content, were shown
to be detectable only after lactation day 40 (Strucken et al.,
2011). This late effect points to a possible utilization of DGAT1
in changing the persistency of milk production. Markers around
the casein genes had strongest effects in early lactation (Strucken
et al., 2012b), which is confirmed by the higher protein con-
tent in colostrum milk. Furthermore, investigations of the genes
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FIGURE 4 | Simplified pathways for major genes involved in milk

production. Green boxes are genes, orange circles are the pathways the

genes are involved in, blue boxes are the milk production traits that are

affected (information is assembled from KEGG Pathway Database,

17.11.2014; http://www.genome.jp/kegg/pathway.html and literature review;

for gene names, see Table 1).

surrounding trait-associated markers showed that a substantial
number of genes with stronger effects in early lactation are
involved in immune response and not directly inmilk production
(Strucken et al., 2012b). Even though those genes have no direct
effect on milk production, immune-related genes could influence
the productivity of the animal by supporting udder health in a
time of high activity (Wheeler et al., 2012; Chaneton et al., 2013)
and through effects on food intake (Greer et al., 2008; Laurenson
et al., 2011). This adds another group of genes that have to be
considered when genetic influences on milk production traits are
analyzed.

In general, the highest variation in associated loci were
reported for early and late lactation, suggesting that those time
periods provide the best opportunity for alteration through
breeding schemes. This would also serve the idea of decreas-
ing peak production through a slower increase in early lacta-
tion and increase the persistency of production in late lacta-
tion. Furthermore, by analyzing marker associations over time,

we are more likely to find genetic markers with small effects
over the whole lactation but strong effects at a specific time-
point as they are not masked by major candidate genes such as
DGAT1. Thus, time-dependent analyses could aid in detecting the
missing genetic variance that explains the observed phenotypic
variation.

Finally, differences in genetic effects were not only found for
different lactation stages but also between lactations, especially
between the first and later lactations (Strucken et al., 2012a).
These differences between the first and later lactations are also
observed in phenotypic production curves (Schmidt et al., 1988).
Even though most cows are in puberty and have reached a suf-
ficient weight and size to support a pregnancy at the age of first
mating, first parity cows are still growing and themammary gland
undergoes the required changes to produce milk for the first time
(Taylor et al., 2003, 2004). Therefore, this ongoing development
during the first parity is most likely the reason for the lower
performance compared to later lactations.
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Applications
In animal breeding, the ability of an animal to improve a trait
in the next generation can be summarized using an estimated
breeding value (EBV). The current standard for breeding value
estimation is to include the animal’s own performance records as
well as the records of relatives, assuming that related individuals
share a certain amount of genes with each other. In milk produc-
tion, obviously a bull does not produce milk, and therefore its
EBV is entirely dependent on milk production records of female
relatives.

Because milk production is routinely recorded once a month
inmost countries, EBVs are based on thesemonthly test-day data.
To account for the fluctuation of milk yield throughout a lac-
tation, test-day models have been developed through the incor-
poration of appropriate lactation curve models (Misztal et al.,
2000; Schaeffer et al., 2000; Swalve, 2000). Whilst some countries
provide separate EBVs for persistency, most production EBVs
are averaged over 305 days of lactation or even an average over
several lactations. Therefore, the final selection decision is still
based on a static value that makes it impossible to tell whether
the animal had a high peak production or a good persistency.
Though it should be easy for the national breeding evaluation
centers to provide breeding values for certain time-periods (esti-
mation equations implement lactation curve model), this would
also increase the information output that needs to be handled and
might even complicate the decision process about which animal
should be used for mating.

One possible solution could be to include the shape of the pro-
duction curve into the selection index and set a standard curve
based on how much milk a cow can produce without inducing
an energy deficiency under natural feeding conditions, and how
much milk a cow should produce to be still profitable for the
farmer. Based on such a standard curve, breeding values could
be weighted according to their deviation from the standard curve
resulting in a single EBV per animal.

A similar approach could be applied for genomically estimated
breeding values (gEBVs) where the information of the genome-
wide markers along with the production records of all relatives
are included. gEBVs seem to be the way forward as they use the
genetic constitution of the animal itself, and thus, what is actually
inherited from generation to generation (Goddard and Hayes,
2007; Hayes et al., 2009; Hayes and Goddard, 2010). Neverthe-
less, gEBVs would require knowledge of either an optimal stan-
dard curve or the exact time-dependent genetic effects. Knowing
the genetic effect of a marker enables us to simply genotype a
selection candidate and sum up its genetic effects to calculate a
gEBV, provided that the animals that were used to estimate the
genetic effects are closely related to the selection candidate. If
the actual causal mutation is known then family relations can be
neglected.

Most of the reviewed studies on time-dependent genetic
effects, applied a GWAS approach where the effects of each
marker were estimated independently from all other markers.

However, it is assumed that a quantitative trait such as milk pro-
duction is shaped through the activity of many genes that might
affect and even depend on each other. Thus,marker effects should

not be estimated independently of all other markers in a study.
A method which includes all markers at the same time has been
termed Snp-BLUP, which is an extension of the original BLUP
(best linear unbiased prediction) equation used to estimate the
EBV of an animal (Goddard, 2009; Koivula et al., 2012).

Information obtained through dynamic GWAS or Snp-BLUP
would make it possible to weight each marker according to its
effects on the dynamic expression of the trait at different time-
points, and thus provide a gEBV that includes the shape of
the production curve. With the reducing cost of sequencing,
causal genomic variantsmay be discovered and ultimately used in
animal breeding to perform the most accurate selection possible.

Concluding Remarks

Milk production is a dynamic process and factors influencing
this process occur as early as the fetal development. Whilst many
physiological aspects of a dynamic milk production have been
discovered, research on time-dependent genetic effects is still a
wide open field. The animal breeding industry considers dynamic
milk production by incorporating appropriate lactation curve
models into their breeding value estimates to improve accuracy.
Further, through an index of traits, breeders attempt to tackle the
detrimental effects of a high milk production on other functional
traits. However, if we assume that some of the negative issues aris-
ing from a high milk production can be overcome by altering
the shape of the production curve, the impact of such an index
on the actual dynamics of the lactation cycle are poorly under-
stood. Since genetic and genomic tools are constantly developing
with whole genome sequencing already being applied, our under-
standing of genes, their interactions and pathways will improve
and direct causative mutations might be the target of future
animal breeding programs. Understanding the time-dependent
effects of genes and their variants is therefore an important field
to study. Finally, whilst the dynamic of milk production is an
obvious example, other time-dependent traits such as growth
and weight gain, marbling, or onset of puberty could also ben-
efit from a deeper understanding of the underlying dynamic of
gene effects.
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