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The PIMMS (Pragmatic Insertional Mutation Mapping System) pipeline has been
developed for simple conditionally essential genome discovery experiments in bacteria.
Capable of using raw sequence data files alongside a FASTA sequence of the
reference genome and GFF file, PIMMS will generate a tabulated output of each coding
sequence with corresponding mapped insertions accompanied with normalized results
enabling streamlined analysis. This allows for a quick assay of the genome to identify
conditionally essential genes on a standard desktop computer prioritizing results for
further investigation.

Availability: The PIMMS script, manual and accompanying test data is freely available at
https://github.com/ADAC-UoN/PIMMS
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Introduction

Identification of essential genes using random mutagenesis has been used in numerous bacteria
to identify genes that are conditionally essential; making random mutagenesis mapping a valuable
tool to couple microbial genotype with phenotype. With the advent of next generation sequenc-
ing, various approaches for mapping the essential genome have been developed such as INSeq
(Goodman et al., 2009), Tn-Seq (van Opijnen et al., 2009), HITS (Gawronski et al., 2009), and
TraDIS (Langridge et al., 2009). These methods are capable of producing vast amounts of data,
however, their analysis can be a daunting task for those not familiar with bioinformatics or data
management. In order to make this experimental approach more accessible to a wider audience,
a complete analysis package is required which can be utilized by those with minimal bioinformat-
ics knowledge. Currently, there are no commercial software packages available that can deal with
the complex nature of the data generated from Tn-mapping. Web-based tools do exist such as
ESSENTIALS (Zomer et al., 2012), however, such tools which retain data on-line may not be a
suitable platform for all end-users. Pragmatic Insertional, Mutation Mapping System (PIMMS) has
been developed to analyze sequencing data from any random mutagenesis experiment. PIMMS
is written in the perl programming language and will work on unix based systems with only the
addition of freely available tools: a standard sequence aligner, perl packages Getopt::Long and
Statistics:Descriptive, fastx toolkit, and R for graphical visualizations.
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The PIMMS Pipeline

The PIMMS pipeline comprises four modules; mapping, pro-
cess.sam, counts, and compare (Figure 1). Examples shown are
from data-sets resulting from experiments conducted as part of a
PIMMS development project. Consequently, the results and bio-
logical interpretation of these are not discussed here but will be
presented elsewhere (Blanchard et al., in preparation). For full
description of parameter options and a description of output
types and directory structure please see the PIMMS handbook
available at https://github.com/ADAC-UoN/PIMMS.
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FIGURE 1 | Schematic of the Pragmatic Insertional Mutation Mapping
System (PIMMS) pipeline.

PIMMS Mapping

A simple and universal approach for sample enrichment for Tn-
mapping is through inverse PCR from the inserted element or
transposon into flanking genomic DNA. The initial problem to
overcome when dealing with these data is that the resulting
sequence reads will consist of components from both transposon
and chromosome, meaning that the raw sequence will not map
faithfully to the target genome. Therefore, the first step is to sep-
arate these and create a file containing only the part of the read
that follows from the end of the transposon fragment. Control of
PIMMS mapping is primarily by the PIMMS.commands.txt file
which must contain motifs (corresponding to the Tn termini)
to be matched in the sequence reads and can additionally con-
tain aligner commands (an example command.txt file is provided
when downloaded from GitHub). The decision to have this com-
mands file rather than ask for this information on the command
line was to avoid potential typographical errors when entering
the sequence motif on the command line. Sequence data entered
into the PIMMS pipeline does not require any pre-processing,
but rather uses raw fastq files. Reads that contain either of the
motifs (including those on the reverse strand as reverse comple-
ment motifs are automatically generated) are identified and the
sequence immediately following the motif and its correspond-
ing quality score are extracted to a new fastq file (Figure 2). The
user can specify a minimum and maximum length of potential
genome sequence. As a default we retain sequences of minimum
20, maximum 50 bp. Keeping the maximum length relatively
short avoids problems of re-entering the transposon where the
PCR product was generated from a small circular template. To
avoid double counting of insertion positions where both ends
of a single insertion are sequenced, a single read is discarded if
reads are from a paired end sequence experiment and extracted
reads remain as paired after processing. If single end reads are
used as input then this step is not considered. As a result, a com-
bined single end read fastq file is aligned to the reference genome
using the parameters provided in the PIMMS.command.txt file.
The current version (version 1.9), allows automatic use of bowtie2
(Langmead and Salzberg, 2012) or BWA (Li and Durbin, 2009).
Other aligners could also be used if given as a command in the
PIMMS.command.txt. Any non-standard aligner will be queried
by PIMMS prior to running. By default, BWA with options
“mem -t 2” is used. BWA is recommended as this produced

A
@M01661:22:000000000-2472%:1
CA}-.ACAGCGACA.‘-.'I‘A.#’I‘\.:—.\.:x1\. TTT
+

FIGURE 2 | Process of read motif matching and trimming. (A) Reads in
fastg format are scanned for motifs which are designated by the user to
correspond to the end of the transposon element used in mutant library

AA?1A1>111>1E1AL3A3BGGL3DF1EAFFGHHEGFHHEBDFGDGFGGEF2Z2AR2FFDAB2ZD2A2FEGGEFCFGD22F1C12FFG

HGEHHERDFGDGEGGFF22AR2FFDAR2DZAZFEGGEFCFGD22F1C12FFG

construction, matched motif shown as box. (B) The sequence following the
motif, which will potentially include the bacterial genome sequence, is retained
along with the corresponding phred quality scores.
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FIGURE 3 | Comparison of read aligners, cumulative number of alignment scores. Alignment scores were 0, 10, 30, and 50 for BWA and
unique positions mapped from five pools of mutant Streptococcus 0, =10, and —30 for Bowtie2. Whilst Bowtie2 uses negative numbers, for
uberis sampled at increasing sequence depth. (A) Bowtie2 (version each aligner higher alignment scores represent higher confidence
2.2.1) with parameters —end-to-end —very-sensitive. (B) BWA mem (version alignments (BWA = 50 and Bowtie2 = O are highest stringencies). Size of
0.7.10) with default parameters. Columns of the plot show changes with circles represents the mean number of reads mapping to each unique
mismatches (0, 3, or 5 mismatches per read), and rows changes in position with increasing read depth.
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FIGURE 4 | Overlap of predicted insertion positions between BWA and
Bowtie2. For a single pool with an estimated number of possible mutations of
16,000 mutants estimated by colony counts, positions of predicted mutations
were compared. Blue = Bowtie2, Purple = BWA. (A) All mutation positions.
(B) Mutation positions with a minimum depth of >1.

the most robust results in our test datasets. (See PIMMS pro-
cess.sam for discussion). The resulting output is a mapped reads
file in SAM format' and plots of percent nucleotide distribu-
tion at each read position and read quality quartile plots of
raw and processed reads (those that match a motif and post
trimming).

Uhttp://samtools.github.io/hts-specs/

PIMMS process.sam

Whilst we generally use the PIMMS process.sam module to
process reads directly following PIMMS mapping, the PIMMS
pipeline can be initiated at this step following any read map-
ping that produces a standard SAM formatted output. Each read
in the SAM file is assessed for number of mismatches between
read and reference sequence (using the “MD” tag of the SAM
file) and alignment score (using the “AS” tag of the SAM file).
Reads with mismatches greater than that chosen by the user or
alignment scores less than requested are ignored. For those that
exceed user’s criteria the position of the initial base of the align-
ment (that immediately adjacent to the insertional element) is
recorded. At this processing step, insertion positions can also be
collapsed if they are exactly a given distance apart. This is impor-
tant as the transposon system pGhost9::1SS1 used to develop
this protocol incorporates an exact 8 bp repeat during inser-
tion. The process.sam generates a simple text file of insertion
coordinates and read depth at each unique insertion position in
addition a log file of all parameter choices and run statistics is
generated.

The impact of choice of aligner and mismatch plus align-
ment score parameters was determined for five pools of mutant
libraries generated in the bacterium Streptococcus uberis strain
0140] (ATCC BAA-854/0140], Ward et al., 2009). Using the
PIMMS mapping module BWA mem (version 0.7.10) with
default parameters and Bowtie2 (version 2.2.1) with parame-
ters —end-to-end -very-sensitive were used to map reads and
results were assessed using PIMMS process.sam. For both align-
ers the mismatches allowed were 0, 3, and 5 (PIMMS.pl pro-
cess.sam options —mis 0, 3, or 5). Whilst fixed integers (number
of mismatched bases in a read) were used here, PIMMS.pl pro-
cess.sam does allow for filtering on a maximum number of
mismatches as a proportion of the read length for example -
mis 0.1 allows 10% of bases for each read to mismatch (see
PIMMS handbook or help). Alignment scores were 0, 10, 30,
and 50 for BWA (PIMMS.pl process.sam options — a 0, 10,
30, and 50) and 0, —10, and —30 for Bowtie2 (PIMMS.pl pro-
cess.sam options — a 0, negl0, and neg30). Whilst Bowtie2 uses
negative numbers for low stringency for each aligner higher
alignment scores represent higher confidence alignments. We
observed that the alignment score has the dominant effect
on both aligners. When this is set to the most stringent fil-
ter (BWA = 50, Bowtie2 = 0) the number of mismatches
has little or no effect (Figure 3). This is likely due to the
fact that alignments at this high stringency will have no mis-
matches by definition. Colonies were harvested from growth
conditions selective for genomic integration of the mutagen and
each was estimated to contain between 10,000 and 20,000 indi-
viduals. Due to the methods of production of such mutants
the number of colonies is likely to correspond to a similar
number of unique mutations within the pool, based on a sin-
gle insertion event of the transposon occurring per bacterial
colony harvested. Comparison of the low stringency setting
with expected unique insertion detection identified multiple mis-
matching alignments, whilst at high stringency settings (mis-
match = 0, align score = 50) BWA reproduced results within
the range expected from original colony counts of library pools.
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FIGURE 5 | Example summary plots of normalized insertions mapped
(NIM) and normalized reads mapped (NRM) scores generated by PIMMS
counts. (A) Histogram of NRM = (total number of reads/length of gene in Kb)
/total mapped read count/10°. This provides a number of reads mapped that is
comparable between genes and experiments. (B) Histogram of NIM = (total
unique insertions mapped/length of gene in Kb) /total insertions mapped/10°.
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This provides a number of insertions per gene that is comparable between
genes and experiments. The distribution of NRM and NIM is skewed and
highlights that many genes have a low NRM and NIM. The log transformation of
these (C,D) provides an approximate normal distribution that allows comparison
of NRM and NIM between experiments. The ratio and difference of these is
compared in PIMMS compare module.

In addition when the unique insertion positions were compared
between aligners, BWA positions were almost entirely contained
within predictions of Bowtie2 (Figure 4). The removal of posi-
tions with a single sequence read at a position dramatically
reduces the Bowtie2 unique positions. Suggesting that the major-
ity of disagreement was due to insertions with low read depth
in Bowtie2. Whilst data for a single pool of mutants is shown,
the same trend is seen across all experiments we have con-
ducted. We therefore have engineered PIMMS to default to BWA
aligner and we recommend use of filters alignment score = 50
and mismatch = 0, (PIMMS -m process.sam —a 50 —mis 0).
We also recommend filtering of positions where only a single
read is mapped. This is achieved with the coverage (-cov) option
of PIMMS counts module (see PIMMS counts PIMMS Counts
below).

PIMMS Counts

The PIMMS counts script requires a GFF file to match annota-
tion to the insertion positions depth file generated by PIMMS
process.sam. This is then used to generate tabulated output files
(named x summary.table) of unique insertions, read depths at
a position, normalized insertions per kb, the percentile posi-
tion of the first and last insert within the coding sequence and

normalized read values (NRM and NIM). NRM - Normalized
Reads Mapped (total number of reads/length of gene in Kb)/(total
mapped read count/10°) and NIM - Normalized Insertions
Mapped (total unique insertions mapped/Length of gene in
Kb)/(total insertions mapped/10°®) provide an indication of the
disruption of a given gene in comparison to others within
the population and also takes into account the variability of
the number of mapped sequence reads for each experiment.
Summary figures of the distribution of NIM and NRM are gen-
erated (Figure 5) and plots of per position NIM together with a
smoothed average plus expected insertion ratio allowing a sim-
ple visualization of “hot” or “cold” spots of insertions within the
genome (Figure 6). In addition the distribution of the centile
positions of insertions are generated (Figure 7). From our expe-
rience at a global level, there is little bias toward insertion in the
start or end of protein coding genes within Streptococcus uberis.
Underlying data for the generation of the plots are retained as text
files so that additional plotting or investigation can be conducted
by the user. To create a usable GFF2 file from an available EMBL
file we recommend using seqret’.

Zemboss.sourceforge.net/apps/release/6.6/emboss/apps/seqret.html
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FIGURE 6 | Example Nlindex plots for single mutant pool. Circles
represent the Nlindex (observed count per position — expected count per
position), where expected count per position determined as total mapped
reads/unique mapped positions. If observed = expected Nlindex would = 0.
Green line is the smoothed summary of points. Red dotted line is the
expected count per position.
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FIGURE 7 | Example histogram of centile positions of all insertions

within all genes. Whilst a very slight increase is seen toward the end of
genes, this is clearly not a significant bias.

PIMMS Compare

The compare module allows processing of data obtained from
phenotypic studies. Following use of the counts module, PIMMS
compare, compares two pools termed “input” and “output” to

TraDIS
PIMMS

FIGURE 8 | Overlap between identified essential genes detected by
TraDIS (see Langridge et al., 2009 for data) and PIMMS. Genes were
classified as essential if logo-LR < —2 (TraDIS) or NIM < 2 (PIMMS).

identify common and unique mutation events between exper-
imental conditions. Three output tables are produced (input
only, output only, and shared positions). Tables consist of
insertion position normalized observed and expected num-
ber of reads and associated gene information. For the shared
positions an indication of the magnitude of deviation from
an expected norm is determined. Within an experiment the
natural logarithm (base e) transformed proportion ratio (the
share of reads mapped at a location) approximates a nor-
mal distribution. Using the mean (shared mean) and stan-
dard deviation (shared sd) of this population, for each inser-
tion the input/output proportion ratio (Proportion ratio) the
Zscore is calculated as: Zscore = [(log(Proportion ratio)) -
(shared mean)]/(shared sd). To provide an approximation of
statistical importance, Zscores > SD equivalent to a p-value
of 0.001, 0.01, 0.05 are flagged as |Zscore| > = 3.291,
Flag = “**” (~ p-value = 0.001), if 3.291 > |Zscore|
> = 2.579, Flag = “**” (~p-value = 0.01), if 2.579 > |Zscore|
> =1.960, Flag = “*” (~p-value = 0.05) and if | Zscore| < 1.960,
Flag ="

Analysis of Existing Data using PIMMS

To compare the performance and utility of PIMMS, sequence
reads generated as part of the study of essential genes in
Salmonella typhi (Langridge et al., 2009) were analyzed. The data
set ERR004088 available from the sequence read archive® com-
prises 14,201,779 single end reads. Using the TraDIS method
Langridge et al. (2009) reported mapping of 370,000 inser-
tions at a mean inter-insertion distance of 13 bp (Langridge

Shttp://www.ncbi.nlm.nih.gov/sra/?term=ERR004088
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FIGURE 9 | Boxplots of (A) total reads mapped to gene, (B) total reads mapped normalized by read length of gene, and (C) NIM. In each plot the group
“Overlap” corresponds to genes identified as essential by TraDIS and PIMMS (271 genes), “TraDIS” corresponds to genes identified by TraDIS only (83 genes) and
“PIMMS” corresponds to genes identified by PIMMS only (20 genes).

et al., 2009). Using PIMMS with the default mapper (BWA -
mem) and fragment retention sizes of -minimum 20 —maximum
50. Resulted in 8,580,710 reads matching the transposon motif
TAAGAGACAG. Following filtering for alignment quality (0
mismatches and alignment score of >20 [PIMMS -m process.sam
-¢ N -mis 0 -a 20]) 1,898,673 reads confidently mapped in a total
of 321,514 unique insertion positions with mean inter-insertion
distance of 14.9 bp comparable to the original TraDIS experi-
ment. Using the Langridge et al. (2009) definition of essentiality
(logz-LR < —2) or PIMMS NIM <2, showed largely consistent
results between PIMMS and TraDIS (Figure 8). The 83 genes
identified as essential by TraDIS only may possibly represent mis-
alignment during the PIMMS procedure, as the sequence length
from Langridge et al. (2009)is short (50 bp single end) com-
pared to the standard 2 x 250 bp paired end sequencing of
the PIMMS approach. To overcome this the PIMMS alignment

stringency had to be reduced from our recommended 50 to
20. This may lead to some short reads being inappropriately
mapped, however, many of the genes identified as essential by
Langridge et al. (2009) show high numbers of raw or normal-
ized insertions suggesting non-essentiality (Figure 9). Twenty
genes are identified by PIMMS only. Fourteen of these are
transfer-RNAs possibly not considered by Langridge et al. (2009)
Two S. typhi genes, t0860, and t2722 encode hypothetical pro-
teins. Others, t3477 (50S ribosomal subunit protein L1), t3650
(ATP synthase subunit B), t0803 (his operon leader peptide),
and t0095 (survival protein SurA precursor) encoded proteins
of known function. Evidence for these being truly essential can
only be confirmed by experimental validation, but a homolog
of SurA is essential for growth in Escherichia coli (Tormo et al.,
1990) suggesting it may hold a similar role in S. Typhi and
many of the ribosomal subunit proteins are detected as essential
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by both TraDIS and PIMMS. This suggests that genes iden-
tified by PIMMS are worthy of inclusion as possible essential
genes.

Conclusion

Currently the major software available for analysis of transpo-
son mediated mutagenesis data and identification of essential
genes is ESSENTIALS (Zomer et al., 2012). However, use of
this web-based tool may be limited if data cannot be transferred
and stored on-line. Whilst a standalone version of ESSENTIALS
can be obtained from the developer, this version requires mod-
ifications which may be beyond the abilities of a novice user.
ESSENTIALS uses FASTX toolkit* to identify and trim transpo-
son sequence and PASS (Campagna et al., 2009) to align trimmed
sequences. Essential genes are then identified by comparison of
mapped counts using EdgeR (Robinson et al., 2010). The power
of EdgeR when multiple replicates are available is well established,
however, where reduced replicates are available or where greater
user control of choice of aligner and parameters of aligner and

4 http://hannonlab.cshl.edu/fastx_toolkit/
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mapping stringency are required PIMMS provides a compelling
alternative.

In comparison to TraDIS, PIMMS is a truly pragmatic choice.
Whilst the results are largely comparable, TraDIS requires com-
plex preparation of sequence data including PCR library prepa-
ration with custom Illumina primers. PIMMS relies on gen-
eration of libraries using standard protocols following inverse
PCR or even restriction fragment digestion (Blanchard et al,,
unpublished). In addition the PIMMS processing pipeline is
quick, taking less than 10 min on a desktop computer (i7-3820
CPU @ 3.60 GHz, running Ubuntu 14.04) to complete all step of
transposon matching, mapping and results processing. Therefore,
PIMMS analysis pipeline provides a convenient, robust, and
importantly reproducible toolkit to explore and prioritize output
from vast amounts of sequencing data required to map transpo-
son generated insertions within a population, without the need
for complex data manipulation by multiple tools.
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