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The Rand Flora is a well-known floristic pattern in which unrelated plant lineages

show similar disjunct distributions in the continental margins of Africa and adjacent

islands—Macaronesia-northwest Africa, Horn of Africa-Southern Arabia, Eastern Africa,

and Southern Africa. These lineages are now separated by environmental barriers such

as the arid regions of the Sahara and Kalahari Deserts or the tropical lowlands of Central

Africa. Alternative explanations for the Rand Flora pattern range from vicariance and

climate-driven extinction of a widespread pan-African flora to independent dispersal

events and speciation in situ. To provide a temporal framework for this pattern, we used

published data from nuclear and chloroplast DNA to estimate the age of disjunction of

17 lineages that span 12 families and nine orders of angiosperms. We further used these

estimates to infer diversification rates for Rand Flora disjunct clades in relation to their

higher-level encompassing lineages. Our results indicate that most disjunctions fall within

the Miocene and Pliocene periods, coinciding with the onset of a major aridification trend,

still ongoing, in Africa. Age of disjunctions seemed to be related to the climatic affinities of

each Rand Flora lineage, with sub-humid taxa dated earlier (e.g., Sideroxylon) and those

with more xeric affinities (e.g., Campylanthus) diverging later. We did not find support

for significant decreases in diversification rates in most groups, with the exception of

older subtropical lineages (e.g., Sideroxylon, Hypericum, or Canarina), but some lineages

(e.g., Cicer, Campylanthus) showed a long temporal gap between stem and crown

ages, suggestive of extinction. In all, the Rand Flora pattern seems to fit the definition of

biogeographic pseudocongruence, with the pattern arising at different times in response

to the increasing aridity of the African continent, with interspersed periods of humidity

allowing range expansions.

Keywords: Africa, historical biogeography, climate change, diversification rates, long-distance dispersal, Rand

Flora, vicariance

Introduction

Large-scale biodiversity patterns have intrigued naturalists since the eighteenth century (Forster,
1778; von Humboldt and Bonpland, 1805; Wallace, 1878; Fischer, 1960; Stevens, 1989;
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Lomolino et al., 2010). Recognizing that spatial variation in envi-
ronmental variables such as temperature or precipitation is insuf-
ficient to explain such patterns, more integrative explanations
that emphasize the role of both environmental and evolution-
ary factors have recently been advanced (Qian and Ricklefs, 2000;
Wiens and Donoghue, 2004; Jablonski et al., 2006). As Wiens
and Donoghue (2004) state “environmental variables cannot by
themselves increase or decrease local or regional species rich-
ness”; only evolutionary processes such as dispersal, speciation
and extinction can. Therefore, reconstructing rates of disper-
sal, speciation, and extinction across the component lineages
of a biota might help us understand how assembly took place
across space and through time (Pennington et al., 2004; Rick-
lefs, 2007; Wiens, 2011). Moreover, understanding patterns of
biotic assembly is a pressing goal in biodiversity research at a
time when nearly one tenth of species on Earth are projected
to disappear in the next hundred years (Maclean and Wilson,
2011).

Africa is a continent especially interesting to study patterns
of biotic assembly. On one hand, African tropical regions are
comparatively species-poorer than regions situated in the same
equatorial latitudes in the Neotropics and Southeast Asia (Lavin
et al., 2001; Couvreur, 2015), which has led to the continent
being referred to as the “odd man out” (Richards, 1973). On the
other, Africa offers some extraordinary examples of continent-
wide disjunctions. For example, tropical rainforests in Africa
appear in two main blocks, the West-Central Guineo-Congolian
region and the coastal and montane regions of East Africa,
now separated by a 1000 Km-wide arid corridor (Couvreur
et al., 2008). Another prime example is the so called Rand Flora
(RF), a biogeographic pattern in which unrelated plant lineages
show comparable disjunct distributions with sister taxa occur-
ring on now distantly located regions in the continental mar-
gins of Africa: Macaronesia-northwest Africa, Western African
mountains, Horn of Africa-South Arabia (including the Island
of Socotra), Eastern Africa (incl. Madagascar), and Southern
Africa (Christ, 1892; Lebrun, 1947, 1961; Quézel, 1978; Andrus
et al., 2004; Sanmartín et al., 2010; Figure 1). All RF lineages
share sub-humid to xerophilic affinities, so that the tropical
lowlands of Central Africa and the large Sahara and Arabian
deserts in the north or the Namib and Kalahari deserts in the
south presumably constitute effective climatic barriers to their
dispersal.

Swiss botanist K. H. H. Christ (1892) first referred to “cette
floremarginale de l’Afrique,” that is “thismarginal African flora,”
in a note addressing the role the so called ancient African flora
played on European floras, with emphasis on the Mediterranean
biome. Later, in his “Die Geographie der Farne” (i.e., “The
Geography of Ferns”; Christ, 1910), he very aptly named this
geographic pattern “Randflora” (see pp. 259–275), where the Ger-
manic word “Rand” stands for rim, edge, border, margin (see
Figure 1 inset), noting its similarities with Engler’s “afrikanisch-
makaronesische Element” (Engler, 1879, 1910; see pp. 76 in the
former and pp. 983–984 and 1010 in the latter), that is, an “Afro-
Macaronesian element” linking disjunct xerophilic taxa found in
the continental margins of Africa and its adjacent islands (e.g.,
Canary Islands, Cape Verde, etc.).

FIGURE 1 | Rand Flora disjunction pattern as evidenced by angiosperm

plant lineages analyzed for this study. The inset shows K.H.H. Christ’s

(1910) depiction of “cette flore marginale de l’Afrique” or “Randflora” (in orange

color), note their similar geographic limits. Taxa: Adenocarpus (Fabaceae),

Camptoloma (Scrophulariaceae), Campylanthus (Plantaginaceae), Canarina

(Platycodoneae, Campanulaceae), Cicer (Fabaceae), Colchicum

(Colchicaceae), Euphorbia subgen. Athymalus (sects. Anthacanthae and

Balsamis; Euphorbiaceae), Euphorbia subgen. Esula (sect. Aphyllis), Euphorbia

subgen. Esula (African clade of sect. Esula), Geranium subgen. Robertium

(Geraniaceae), Hypericum (Hypericaceae), Kleinia (Asteraceae), Plocama

(Rubiaceae), and Sideroxylon (Sideroxyleae, Sapotaceae).

Historical explanations for this pattern and, in particular, its
temporal framework, its exact boundaries, and the ecology of
the plants involved have varied through these past two cen-
turies. The early view (Engler, 1879, 1910; Christ, 1892, 1910)
was one of a pan-African flora found throughout the continent
that became restricted to its margins as a result of major cli-
mate changes (i.e., increasing aridification) throughout the Ter-
tiary (i.e., the Cenozoic Period, 66.0–2.58 Ma). Lebrun (1947;
see pp. 134–137), and later Monod (1971, p. 377) and Quézel
(1978, p. 511), interpreted Christ’s ancient African flora as a com-
plex ensemble that had experienced alternating expansions and
contractions through time, having had a chance to spread across
northern Africa during favorable moments in the Miocene and
needing to retract at the end of the Neogene (i.e., Pliocene):
a further increase in aridity at the beginning of Pleistocene
glaciations would have confined relictual or vicariant taxa to
Macaronesia, northwest Africa and Arabia. Axelrod and Raven
(1978) explained some of these disjunctions in relation to a more
ancient, widespread Paleogene flora of subtropical origin that
covered the entire African continent at the beginning of the
Cenozoic, and that was decimated by successive events of aridifi-
cation, of which the relict floras ofMacaronesia, the Cape Region,
and the Afromontane forests in eastern and western Africa would
be remnants. Bramwell (1985) explains this pattern in terms of
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pan-biogeographic “general tracks” that connect what would be
the remains of an ancient flora that extended across the Mediter-
ranean and Northern Africa in the Miocene, and whose vestiges
could be found in the Macaronesian laurisilva and a few enclaves
in the island of Socotra, the Ethiopian Highlands and southern
Yemen.

These authors share a vicariant perspective and presume RF
lineages were part of a widespread pan-African Tertiary flora
that became fragmented by the appearance of climatic barriers
(i.e., aridification), leaving relictual lineages with reduced distri-
butions at “refugia” in the margins of Africa (i.e., “continental”
islands). This “refugium” idea rests on the fact that many of
these RF regions—Macaronesia, the South African Cape region,
and the semi-arid regions of Eastern Africa and Southern Ara-
bia (e.g., Ethiopia, Yemen, Socotra)—harbor a large number of
endemic species, when compared to neighboring areas. More-
over, the “fragmentation-refugium” hypothesis implies the disap-
pearance, possibly by extinction, of RF lineages from part of their
distributional range (e.g., across the Sahara in central Northern
Africa), which is consonant with the “climatic vicariance” con-
cept (Wiens, 2004): an environmental change creates conditions
within a species’ geographic range that are outside the ances-
tral climatic tolerances; individuals are unable to persist and the
species’ geographic range becomes fragmented.

The alternative explanation is one of independent disper-
sal (immigration) events among geographically isolated regions
and subsequent speciation in situ. In this framework, divergence
events need not be congruent across lineages, since long-distance
dispersal (LDD) events are highly stochastic in nature (Nathan,
2006). Asides from transoceanic dispersal—which has been pos-
tulated in the case of Aeonium (Kim et al., 2008), Geranium
(Fiz et al., 2008), and other RF lineages (Andrus et al., 2004)
based on molecular phylogenetic evidence—, cross-continent
LDD dispersal is also possible: published examples favoring
cross-continent LDD include Senecio, with a disjunct distribution
between Macaronesia-Northern Africa and South Africa (Cole-
man et al., 2003; Pelser et al., 2012). Moreover, dispersal does not
necessarily imply long-distance migration events. In some cases,
dispersal across intermediate areas that act as “stepping stones”
or “land bridges” could have been possible. For example, the
presence of isolated mountain ranges (offering suitable habitats)
throughout the Sahara, such as the Tibesti and Hoggar massifs,
could have allowed this short or medium-range dispersal inCam-
panula (Alarcón et al., pers. comm.). Correspondingly, some RF
lineages might have used the Arabian Plate as a land bridge to
reach East Africa (Campanula, Roquet et al., 2009; Hypericum,
Meseguer et al., 2013), and others may have benefited from the
new habitats offered by the Pliocene uplift of the Eastern Arc
Mountains to migrate to or from South Africa (Meseguer et al.,
2013).

Discriminating between climate-driven vicariance vs. inde-
pendent dispersal events between geographically isolated regions
requires framing the evolution of disjunct lineages on a temporal
scale (Sanmartín, 2014). On the other hand, to unravel the ori-
gin of a biota or biome, a meta-analysis across dated phylogenies
of multiple non-nested clades is needed (Pennington et al., 2010;
Wiens, 2011; Couvreur, 2015). Sanmartín et al. (2010) carried

out a meta-analysis of 13 lineages to infer relative rates of his-
torical dispersal among RF regions (Macaronesia, Eastern Africa-
Southern Arabia, and Southern Africa) and found the highest rate
of biotic exchange between east and west Northern Africa, across
the Sahara. However, they did not integrate absolute estimates of
lineage divergences in their inference, since very few RF lineages
(e.g., Roquet et al., 2009) had been dated at the time.

In this study, we estimate time divergences for up to 13 plant
lineages (Table 1) displaying RF disjunct distributions (Figure 1),
and use published divergence times for four other lineages (see
Materials andMethods), in order to provide a much-needed tem-
poral framework for this pattern. An extensive description of
each of these lineages, geographic distributions and phylogenetic
relationships is provided in Supplementary Materials. We also
frame these disjunctions in the context of major climatic and geo-
logical events in the history of Africa (see summary below) and
estimate net diversification rates in an attempt to address the role
that evolutionary processes, such as climate-driven extinction,
may have played in the formation of the African RF pattern.

Materials and Methods

Study Area: African Climate through Time
To understand biogeographic patterns in the African flora, it is
necessary to briefly review the climatic and geological history that
might have influenced the evolution of African plant lineages.
Extensive reviews of African climatic and vegetation history can
be found in Axelrod and Raven (1978); van Zinderen Bakker
(1978); Maley (1996, 2000); Morley (2000); Jacobs et al. (2010),
Plana (2004), and Bonnefille (2011), among others.

During the Late Mesozoic, Africa was part of the super-
continent Gondwana, located in the southern hemisphere, and
enjoyed a relatively humid and temperate climate (Raven and
Axelrod, 1974). After breaking up from South America ca. 95Ma,
Africa started moving northwards toward the equatorial zone
(Figure 2A). The result was a general trend toward continen-
tal aridification in which different regions became arid or wet
at alternative times (Figure 2B, Senut et al., 2009). Paleocene
Africa (66–56 Ma) was mainly wet and warm, characterized by
a major diversification in the West African flora (Plana, 2004). A
global increase in temperatures in the Eocene (56–33.9 Ma) led
to increased aridity in Central Africa, with a rainforest-savannah
mosaic in the Congo region. This was followed by a global cool-
ing event at the Eocene-Oligocene boundary (33.9 Ma), which
led again to aridification and major extinction but did not change
biome composition (Axelrod and Raven, 1978).

The Early Miocene (23–16 Ma) was warm and humid, with
wide extension of rainforests, from the northern Sahara to parts
of Southern Africa. The Mid Miocene (16–11.6 Ma) was a period
of major changes in climate and topography. A combination of
factors, including the gradual uplift of Eastern Africa, the succes-
sive closure of the Tethys seaway in the north, and the expan-
sion of the East Antarctic ice sheet in the south (Trauth et al.,
2009), led to a general intensification of the aridification process,
though it was not homogeneous across the continent. Geologi-
cal and paleontological evidence suggest that now arid regions
(e.g., northern Africa, Horn of Africa, NamibDesert) were during
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TABLE 1 | Rand Flora disjunctions, encompassing (higher level) lineages, recent molecular phylogenetic studies, and molecular markers used in here.

Order Family Tribe (or

else)

Genus Subgenus Section (or

else)

Disjunction name Dataset

reference

Molecular marker

Nuclear Chloroplast

Fabales Fabaceae Genisteae Adenocarpus Ad. manii Cubas et al., 2010 ETS, ITS trnLF

Saxifragales Crassulaceae Aeonium

alliance

Aeonium Ae. leucoblepharum Mort et al., 2002,

2007

ITS –

Malpighiales Euphorbiaceae Euphorbia Athymalus Anthacanthae

Balsamis

Eu. omariana

Eu. balsamifera

Peirson et al.,

2013

ITS ndhF

Malpighiales Euphorbiaceae Esula Aphyllis Esula Eu. tuckeyana

Eu. usambarica

Eu. schimperiana

Barres et al.,

2011; Riina et al.,

2013

ITS ndhF

Asterales Campanulaceae Campanula Azorina (clade) Ca. jacobaea Alarcón et al.,

2013

– trnLF, petBD,

rpl32–trnL, trnSG

Lamiales Scrophulariaceae Buddlejoideae

(subfamily)

Camptoloma Cm. canariense

Cm. rotundifolium

Kornhall et al.,

2001; Oxelman

et al., 2005

– trnLF, ndhF, rps16

Lamiales Plantaginaceae Globularieae Campylanthus Cy. salsoloides Thiv et al., 2010 ITS atpB-rbcL

Asterales Campanulaceae Platycodoneae Canarina Cn. canariensis Mairal et al., 2015 ITS petBD, psbJ,

trnLF, trnSG

Fabales Fabaceae Vicioids

(clade)

Cicer Ci. canariense Javadi et al., 2007 ETS, ITS trnSG, matK,

trnAH, trnA-Leu

Liliales Colchicaceae Colchiceae Colchicum Co. schimperianum Manning et al.,

2007; del Hoyo

et al., 2009

– trnLF, atpB-rbcL,

rps16

Geraniales Geraniaceae Geranium Robertium G. robertianum Fiz et al., 2008 ITS –

Malpighiales Hypericaceae Hypericeae Hypericum Androsaemum

Campylosporus

H. scopulorum

H. quartinianum

Meseguer et al.,

2013

– trnLF, trnSG

Asterlaes Asteraceae Senecioneae Kleinia K. neriifolia Pelser et al., 2007 ITS trnLF

Gentianales Rubiaceae Putorieae Plocama Pl. pendula

Pl. crocyllis

Backlund et al.,

2007

– rps16, trnTF,

atpB-rbcL

Ericales Sapotaceae Sideroxyleae Sideroxylon S. spinosus Smedmark et al.,

2006; Smedmark

and Anderberg,

2007

– ndhF, trnH–psbA,

trnCD

GenBank numbers can be found in the references listed under column “Dataset reference.”

this period more humid than they are today, whereas other now
humid regions (e.g., Congo Basin) were much drier (Figure 2B).
Desertification started in the southwest (Namib Desert) around
17–16 Ma ago, and proceeded eastward and northward. In
Southern Africa, tropical to subtropical vegetation was replaced
by wooded savannah during the lowerMid-Miocene (Senut et al.,
2009). In Northern Africa, the earliest evidence of aridity in the
Sahara region is from the Late Miocene (11.6–5.3 Ma), ca. 7–6
Ma (Senut et al., 2009; Figure 2B). In Central Africa, a semi-
arid desert (“Miocene Congo Desert,” Figure 2B) occupied the
region until the Mid Miocene, 13–12 Ma ago, when the East-
ern African uplift and subsequent subsidence led to the estab-
lishment of the Congo River drainage and a general increase in
humidity (“tropicalization”). Also in the Late Miocene, ca. 7–
8 Ma, a new period of tectonic activity in Eastern Africa led
to the uplift of the Eastern Arc Mountains and the uplands
of West Central Africa (Cameroon volcanic line), which led to
increasing aridity and the expansion of savannahs and grass-
lands in these regions (Sepulchre et al., 2006). Uplifting reached
a maximum during the Plio-Pleistocene and led to the formation

of the Ethiopian Highlands and the desertification of low-lying
areas in the Horn of Africa (Senut et al., 2009). From the Late
Pliocene to the Holocene, the alternation of glacial-and inter-
glacial periods seems to have led to repeated contractions and
expansions of distributional ranges across both subtropical and
tropical taxa (Maley, 2000; Bonnefille, 2011). Some areas like the
Saharan massifs of Tibesti and Hoggar or the Ennedi Mountains
could have served as refuges during arid periods for subtropical
taxa (Osborne et al., 2008), whereas the uplands of Upper and
Lower Guinea and the east of the Congo Basin, the Albertine Rift,
or the Eastern ArcMountains could have played the same role for
tropical plant taxa (Maley, 1996; Figure 2B).

Taxon Sampling
We retrieved sequences from GenBank from existing studies
(Table 1) for the following 13 lineages exhibiting a distribution
congruent with the RF pattern (Andrus et al., 2004; Sanmartín
et al., 2010): Adenocarpus, Aeonium, Camptoloma, Campylan-
thus, Cicer, Colchicum, Euphorbia sects. Antachanthae, Aphyllis,
Balsamis, and Esula, Geranium, Kleinia, and Plocama (Figure 3).
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FIGURE 2 | (A) Tectonic fragmentation of the supercontinent Gondwana

through time, showing Africa’s drift northwards; and (B) main climatic events

in Africa during Neogene (adapted from Senut et al., 2009): (B-left) Early

Neogene Central Africa was more arid than North Africa, with a desert,

semiarid region in the Congo Basin. Desertification started in southwest

Africa in the Mid-Miocene, proceeding eastward and northward, and

finalizing with the formation of the Sahara Desert. Conversely, Central Africa

became tropical due to subsidence and Eastern African uplift. (B-right)

Schematic representation of present-day vegetation belts, showing position

of main deserts and rainforest refugia (Eastern Arc

Mountains/Guineo-Congolian region (the latter fragmented into smaller

refugia). Rand Flora lineages occupy the regions in the margin that are not

deserts or rainforests, rarely some find refuge in mountain areas of North

African Sahara (e.g., Tibesti and Hoggar Massifs).

We chose these lineages because sampling is nearly complete in
most cases with very few to nomissing taxa.Most of these RF taxa
have been sequenced for several markers from the nuclear and
chloroplast DNA regions. For each group we selected themarkers

with most sequences and tried representing both genomic com-
partments whenever possible. The sequences were aligned using
the Opalescent package (Opal v2.1.0; Wheeler and Kececioglu,
2007) in Mesquite v3.01 (Maddison and Maddison, 2014) and
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FIGURE 3 | Individual distributions and habit illustrations for 16

plant lineages exhibiting Rand Flora disjunctions. Estimated

divergence times within each lineage correspond to the disjunctions

represented in Figures 4, 5 and indicated in the MCC chronograms

shown in Figures S1–S16. Taxa names correspond to those in

Table 1.

manually adjusted in SE-AL v2.0a11 (Rambaut, 2002) using a
similarity criterion, as recommended by Simmons (2004). For
four other RF lineages—Campanula (Alarcón et al., 2013),Cana-
rina (Mairal et al., 2015), Hypericum (Meseguer et al., 2013),
and Sideroxylon (Stride et al., 2014)—we used recently pub-
lished time estimates by our research team (except for Siderox-
ylon, which nonetheless used a dating approach similar to
ours). Approximately 1600 sequences from ca. 675 taxa from 12

families and 9 orders of angiosperms were included in our study
(Table 1).

Estimating Absolute Divergence Times
Divergence times were estimated under a Bayesian framework
in BEAST v1.8 (Drummond et al., 2012). For each lineage, we
constructed a dataset including the markers listed in Table 1,
which were partitioned by genome (chloroplast vs. nuclear),
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whenever possible. The best-fitting substitution model for each
partition was selected using the Akaike Information Criterion
implemented in MrModeltest v2.2 (Nylander, 2004) and run in
PAUP∗ v4.0b (Swofford, 2002). The relaxed uncorrelated lognor-
mal clock model (UCLD, Drummond et al., 2006) and a Yule
speciation process as tree model were selected for all datasets
based on preliminary explorations. MCMC searches were run
5 × 107 generations and sampled and logged every 2500th gen-
eration. We used Tracer v1.6 (Rambaut et al., 2013) to determine
stationarity of the Markov chain and to verify that all parameters
had large enough effective sampling sizes (ESS>200). TreeAnno-
tator v1.8.0 (Drummond et al., 2012) and FigTree v. 1.4.2 (Ram-
baut, 2009) were used respectively to generate and visualize the
resulting maximum clade credibility (MCC) chronograms.

Calibration points for obtaining absolute divergence times
were based on either the fossil record or on published sec-
ondary calibration constraints (Table 2). The latter were obtained
from published dated phylogenies of datasets including our study
groups (e.g., the family to which the genus belongs), and were
assigned normal distribution priors (Ho and Phillips, 2009) in
the BEAST analysis that encompassed the mean and the 95%
highest posterior density (HPD) confidence interval (CI) from
these studies [except in the case of time constrains from Bell

et al. (2010), for which a lognormal distribution was used, since
posterior estimates for a normal prior were not available]. For
fossil calibration points we used a lognormal prior, since this
distribution better represents the stratigraphic uncertainty asso-
ciated to the fossil record (Ho and Phillips, 2009). The offset of
the lognormal distribution was set to the upper bound of the
stratigraphic period where the fossil was found, and the standard
deviation (SD) and mean were set so that the 95% CI encom-
passed the lower and upper bound of the period (e.g., for Late
Eocene Hypericum antiquum a lognormal distribution offset at
33.9 Myr, with mean = 1.0 and SD = 0.7, was used to cover the
length of the period where the fossil was found, that is 33.9–37.2
Ma). A summary of time constraints used for each dataset and
their provenance can be found in Table 2.

Diversification Analyses
We used divergence times estimated above to calculate abso-
lute diversification rates in the aforementioned lineages. There
have been numerous developments in macroevolutionary birth-
death models that allow a more accurate estimation of extinction
and speciation rates from dated molecular phylogenies, includ-
ing episodic time-variable models and trait-dependent diversifi-
cation models (Stadler, 2013; Morlon, 2014; Rabosky et al., 2014).

TABLE 2 | Time constraints and prior probability distributions imposed on constrained nodes to estimate divergence times in RF lineages.

Taxon set Node constrained Time constraint (Myr) Dating reference Figure/Table/P.

Distribution (offset) Mean SD

Adenocarpus ROOT: Genisteae Normal 19.5 3.8 Lavin et al., 2005 Table 2, node 32

Aeonium alliance ROOT: Aeonium alliance Normal 18.83 1.0 Kim et al., 2008 Figure 2C

E. subg. Athymalus Athymalus w/o E. antso Normal 10.78 2.0 Horn et al., 2014 Figure 2

sect. Anthacanthae CROWN: Athymalus Normal 24.56 5.0 Table 1

and sect. Balsamis Anthacanthae Normal 18.22 3.4 Table 1

MRCA Anthacanthae-Balsamis Normal 7.56 1.4 Figure 2

E. subg. Esula MRCA Aphyllis-Exiguae II Normal 10.36 2.3 Horn et al., 2014 Figure 2

sect. Aphyllis CROWN: Aphyllis Normal 7.37 2.0 Figure 2

E. subg. Esula MRCA Arvales-Esula Normal 10.98 2.4 Horn et al., 2014 Figure 2

sect. Esula CROWN: Esula Normal 8.6 2.4 Figure 2, node 5

(African clade) E. virgata clade Normal 5.4 1.4 Figure S2

Camptoloma MRCA Buddlejeae-Camptoloma Normal 20.0 6.0 Navarro-Pérez et al., 2013 Figure 2

Buddlejeae Normal 7.5 3.0 Figure 2

Campylanthus MRCA Digitalis-Plantago Lognormal (0.0) 38.0 0.2 Bell et al., 2010 Figure S11

MRCA Plantago-Aragoa* Lognormal (7.1) 1.5 1.0 Thiv et al., 2010 P. 610

Cicer CROWN: Cicer Normal 14.8 5.0 Lavin et al., 2005 Figure 3, node 80

Colchicum MRCA Gloriosa-Colchicum Normal 43.3 7.0 Chacón and Renner, 2014 Figure 3, node 128/Table 2

Geranium subg. Robertium MRCA Pelargonium-Geranium Normal 28.0 3.0 Fiz et al., 2008 Figure 3, node D

CROWN: Robertium§ Lognormal (7.25) 1.0 1.0 P. 329

Kleinia ROOT: Asteraceae† Lognormal (47.5) 10.0 0.75 Barres et al., 2013 P. 872

Lordhowea insularis Lognormal (0.0) 7.0 1.0 Pelser et al., 2010 Table 1

Plocama MRCA Putorieae-Paederieae Normal 34.4 5.5 Bremer and Eriksson, 2009 Table 1

At least one node (preferably toward the root) was constrained in each phylogeny (Figures S1–S16 show resulting chronograms explicitly stating any constrained nodes).
*Plantaginacearumpollis miocenicus (Late Miocene, 10.3 Ma; Nagy, 1963; Doláková et al., 2011).
§Geranium cf. lucidum (Late Miocene, 7.246 Ma ± 0.005; Van Campo, 1989).
†Raiguenrayun cura (Middle Eocene, 47.5 Ma; Barreda et al., 2012).
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However, these methods usually require both very large phy-
logenies (e.g., ≥100 tips) and a fairly complete sampling. We
here chose a simpler approach, the “method-of-moments” esti-
mator (Magallón and Sanderson, 2001), implemented in the R
package GEIGER (Harmon et al., 2008). This method uses clade
size (extant species number) and clade age (either crown or
stem) to estimate net diversification rates (r = speciation minus
extinction), under different values of background extinction or
turnover rate (ε = extinction/speciation = 0.0, 0.5, and 0.9).
Net diversification rates (bd.ms function in GEIGER) were here
estimated for all RF disjunctions and for a series of succes-
sively encompassing clades (e.g., section, genus, tribe, subfamily,
and so on) to detect possible rate shifts. Crown diversification
rates could not be estimated for clades containing only two taxa
because Magallón and Sanderson’s formula (r = [log(n)–log 2]/t
in its simplest version, that is, with no extinction; for ε > 0 see
formula number 7 in Magallón and Sanderson, 2001) results in
zero in this case. In an attempt to counter this problem, clades
containing two taxa were assigned a diversity value of 2.01, which
permitted the estimation of net diversification rates (r).

Additionally, the probability of obtaining a clade with the
same size and age as the RF disjunction, given the background
diversification rate of the encompassing clade/s and at increasing
extinction fractions (ε = 0, 0.5, and 0.9), was estimated with the
crown.p function in GEIGER. We also estimated the 95% confi-
dence interval of expected diversity through time (crown.limits
function, GEIGER, ε = 0, 0.5, and 0.9) for a clade that diver-
sifies with a rate equal to that of the family containing a RF
disjunction with the highest diversification rate (i.e., Asteraceae);
we thenmapped RF lineages according to their crown or stem age
and standing species diversity to assess which RF disjunct clades
are significantly less diverse than expected given their stem and
crown age in relation to the highest rate calculated for a RF family
(Magallón and Sanderson, 2001; Warren and Hawkins, 2006).

Results

Divergence Times
Up to 21 disjunctions were identified and divergence times were
estimated for 17 lineages exhibiting a geographic distribution
consistent with the RF pattern (Figures 3, 4 and Figures S1–S17).
These disjunctions represent two possible geographic splits: I)
Eastern Africa (including the Eastern Arc Mountains, the Horn
of Africa, and Southern Arabia) vs. Southern Africa (including
southern Angola and Namibia and the Cape Flora region up
to the Drakensberg Mountains), hereafter E-S, and II) West-
ern Africa (including Macaronesia and NW Africa south to the
Cameroon volcanic line) vs. Eastern Africa, (with or without S
Africa), hereafter W-E(&S).

From youngest to oldest, E-S disjunctions (Figure 4) occur in
Plocama (ca. 4 Ma between S African Pl. crocyllis on one side
and, among other E African-S Arabian species, Pl. yemenensis
and Pl. tinctoria on the other; Figure 3 and Figure S15), Camp-
toloma (ca. 4 Ma between E African Cm. lyperiiflorum and S
African Cm. rotundifolium; Figure 3 and Figure S4), Colchicum
(ca. 5Ma between EAfricanCo. schimperianum and SAfricanCo.

albanense and Co. longipes, Figure 3 and Figure S8), the African
clade of Euphorbia sect. Esula (ca. 7 Ma between S African and
E African taxa; Figure 3 and Figure S10), and E. sect. Anthacan-
thae (ca. 7.5 Ma separate subsects. Platycephalae and Florispinae;
Figure 3 and Figure S11).

Also from youngest to oldest,W-E disjunctions (Figure 4) can
be found in the Azorina clade of Campanula (ca. 1 Ma between
Cape Verdean Ca. jacobaea and Socotran Ca. balfouri; Figure 3
and Figure S3), in Hypericum sect. Campylosporus (ca. 1.5 Ma
within H. quartinianum; Figure 3 and Figure S13), in Aeonium
(1.7 Ma between E African Ae. leucoblepharum and a number
of Macaronesian species; Figure 3 and Figure S2), in Cicer (ca.
3.5 Ma between Canarian Ci. canariense and E African Ci. cunea-
tum; Figure 3 and Figure S7), in Adenocarpus (ca. 4 Ma between
E African Ad. mannii and a number of species in the Ad. com-
plicatus complex; Figure 3 and Figure S1), in Euphorbia sect.
Balsamis (ca. 4 Ma between W African Eu. balsamifera subsp.
balsamifera and E African-S Arabian Eu. balsamifera subsp. ade-
nensis; Figure 3 and Figure S11), in Camptoloma (ca. 5.5 Ma
between Canarian Cm. canariense, on one hand, and E African
Cm. lyperiiflorum and S African Cm. rotundifolium, on the other;
Figure 3 and Figure S4), Eu. sect. Aphyllis (ca. 5.5 Ma between
Cape Verdean Eu. tuckeyana and all E African and S African
species in this section; Figure 3 and Figure S9), Plocama (ca.
6 Ma between Canarian Pl. pendula and S African Pl. crocyllis
plus a number of E African/S Arabian Plocama species, Figure 3
and Figure S16), in Canarina (6.5 Ma between Canarian Cn.
canariensis and E African Cn. eminii; Figure 3 and Figure S6),
in Kleinia (ca. 7 Ma between the Macaronesian species, on one
hand, and a clade of several E African species, on the other;
Figure 3 and Figure S14), in Campylanthus (ca. 7.5 Ma between
the Macaronesian and the E African-S Arabian species in the
genus; Figure 3 and Figure S5), in Geranium subgen. Robertium
(ca. 11 Ma between all E African species in this subgenus and a
clade formed by W African taxa and a number of broadly dis-
tributed circum-Mediterranean and E Asian taxa; Figure 3 and
Figure S12), in the Androsaemum clade of Hypericum (ca. 17
Ma between Socotran H. scopulorum, H. tortuosum and Turkish
H. pamphylicum, on one hand, and a number of Macarone-
sian and W Mediterranean species, on the other; Figure 3 and
Figure S13), and in Sideroxylon (ca. 17 Ma between Moroccan S.
spinosus and E African S. mascatense; Figure 3 and Figure S16).

Absolute Diversification Rates
Figure 5 and Table S1 show results from net diversification rate
analyses. Most lineages fall within the 95% CI of expected diver-
sity under a no-extinction scenario (ε = 0) in the context of the
RF family showing the highest rate of diversification (i.e., Aster-
aceae). However, some RF disjunct clades were significantly less
diverse: W-E disjunctions in Sideroxylon (S. spinosus vs. S. mas-
catense), Canarina (C. canariensis vs. C. eminii), and Hypericum
(H. canariense clade vs. H. scopulorum and H. pamphylicum).
Other RF disjunct taxa were above the upper bound of the
95% CI: W-E(&S) disjunction in Euphorbia sect. Aphyllis (S),
Adenocarpus, Aeonium, and Campanula; and E-S disjunction
in Plocama. Otherwise, all taxa fell within the 95% CI with
increasing ε values 0.5 and 0.9, except for Sideroxylon.
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FIGURE 4 | Diagram showing estimated lineage divergence times

(mean and 95% HPD confidence intervals) for Rand Flora

disjunctions dated in this study and indicated in the MCC

chronograms depicted in Figures S1–S17. W-E(&S): divergence

times estimated between disjunct taxa distributed in

Macaronesia-NW-W Africa vs. Eastern Africa (a red S indicates

presence in Southern Africa); E-S: estimated divergence times between

disjunct taxa distributed in southern Arabia-Eastern Africa vs. southern

Africa. The red line above represents the change in global

temperatures over the Cenozoic as reflected by global-deep-sea

oxygen records compiled from Zachos et al. (2008); colored bars in

the right bottom corner indicate climatic conditions in five regions that

underwent major climate changes—either desertification or

tropicalization—during the Neogene (adapted from Senut et al., 2009).

Taxa names correspond to those in Table 1, plus two groups from

the literature: Pistacia lentiscus and Erica arborea (see Discussion).

Interestingly these trends are generally repeated in the more
encompassing lineages of the least diverse RF disjunct clades (e.g.,
Canarina, Hypericum, Sideroxylon). Notably, though Camp-
toloma has a low extant diversity given its age (three species
diverging in the last 6 Myr), the subfamily it belongs to, that is
Buddlejoideae, stands above the 95% CI for ε = 0 (Figure 5).
Something similar can be observed in the case of Kleinia,
which shows lower diversity than its encompassing lineage, tribe
Senecioneae. Another example of potential diversification shift,
though in the opposite direction, is that of Euphorbia, where
the genus is significantly less diverse than expected given its age
(for all ε values) but RF disjunct clades are species-richer than
expected (i.e., E. sect. Aphyllis), except for those that fall within
the 95% CI limits (e.g., E. sect. Balsamis, Figure 5).

When comparing crown vs. stem age it is noticeable that in
some RF disjunct clades crown and stem ages are far apart: Cicer
canariensis vs. Ci. cuneatum (crown age = 3.4 Ma, stem age =

12.2 Ma, with the stem age falling below the lower bound of 95%

CIs when ε = 0.0 and 0.9; Figure 5). Other examples include,
Camptoloma (crown age= 5.5 Ma, stem age = 10.2 Ma), Campy-
lanthus (crown age = 7.5 Ma, stem age = 20.0 Ma), and most
notably Sideroxylon (crown age = 17.4 Ma, stem age = 47.3 Ma,
Figure 5).

Discussion

Rand Flora Disjunctions through Time
Engler’s (1910) intuition on the Tertiary origins of the Afro-
Macaronesian floristic element, aka Christ’s (1910) Rand Flora,
very much hit the mark on the timing of its assembly. Our diver-
gence estimates for Rand Flora disjunctions span five successive
time frames (Figure 4): Burdigalian, Tortonian, and Messinian
Stages (within the Miocene), the Pliocene, and the Pleistocene.
The two earliest disjunctions happen on genera Sideroxylon and
Hypericum and date back to the Early Miocene (Burdigalian; 17.5
and 17.3 Ma, respectively), coinciding with the longest warming
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FIGURE 5 | RF lineages (names as in Table 1) are plotted according to

their standing diversity (n) and age of the node (circle, crown; star,

stem) corresponding to their disjunction (below). Successive

encompassing lineages (above) also plotted (squares indicate the clade,

section, subgenus the RF disjunct clade falls in; diamonds go one level above

indicating genus, tribe, subfamily). Ninety five percent confidence intervals

show expected diversity through time for a RF lineage that diversifies at the

highest rate estimated (i.e., Asteraceae) given three possible scenarios: no

extinction (ε = 0), turnover at equilibrium (ε = 0.5), and high extinction (ε = 0.9).

See Table S1 for associated net diversification rate estimates.

period of the Miocene (the Miocene Climatic Optimum; Zachos
et al., 2008) and with the start of desertification in south-central
Africa (Senut et al., 2009). Couvreur et al. (2008) also dated diver-
gences in Annonaceae back to this time period and explained
them in terms of a once-continuous Early Miocene rainforest
that became fragmented by decreasing moisture brought by the
closure of the Tethys Sea. The fact that Sideroxylon and Hyper-
icum exhibit less xeric affinities than other RF lineages, and that
their crown diversification dates back to the Paleogene (Meseguer
et al., 2013; Stride et al., 2014), suggests these taxa could be relicts
of an earlier megathermal flora (sensu Morley, 2000, 2003).

The next disjunction is that of Geranium subgen. Robertium
and it dates back to the Late Miocene (Tortonian, 11.0 Ma).
This disjunction follows a drastic decline in global temperatures
(Late Miocene cooling, 11.6–5.3 Ma; Beerling et al., 2012) and
coincides with the temporary closing of the Panama isthmus
in America and a moist “washhouse” climate period in Europe
(Böhme et al., 2008). This disjunction marks the separation of
Macaronesian (e.g., G. maderense) and circum-Mediterranean
taxa (e.g., G. robertianum), on one side, and E African species
(e.g., G. mascatense), on the other, leaving open the possibility
of a colonization of Macaronesia by a Mediterranean ancestor
(Figure 4 and Figure S12). Since the disjunction in Geranium
subgen. Robertium is linked to a more humid period, rather than
an increase on aridity, and because the possible Mediterranean
origin of its Macaronesian taxa, this lineage does not exactly
match the RF pattern.

Most other Neogene disjunctions seem to concentrate around
the Miocene-Pliocene border (Figure 4). Messinian disjunc-
tions can be observed in Camptoloma, Campylanthus, Canarina,
Euphorbia sects. Anthacanthae and Aphyllis, Kleinia, and Plo-
cama. Pliocene disjunctions are found in Adenocarpus, Camp-
toloma,Cicer,Colchicum, Euphorbia. sects. Balsamis andAphyllis,
and Plocama. These disjunctions follow two different geographic
splits, W-E(&S) Africa and E-S Africa. W-E(&S) disjunctions
present the widest temporal (as well as spatial) range. Besides
the lineages dated here, other examples can be found in the lit-
erature of this W-E(&S) disjunction, e.g., according to Xie et al.
(2014), in the Anacardiaceae Pistacia lentiscus and P. aethiopica
diverged 4.55 Ma (see Figure S17). E-S disjunctions link South
Africa and adjacent areas to the East African Rift Mountains, the
Ethiopian Highlands, and the Arabian Peninsula. The timing of
these E-S disjunctions (Mio-Pliocene) matches the uplift of the
Eastern Arc Mountains (Sepulchre et al., 2006). The absence of
W-S disjunctions is notable and probably results from African
aridification having started in the early Miocene (some 17–16
Ma) in the region where the current Namib Desert stands. This
aridification not only persisted through time in this area but also
intensified and resulted in the formation of the Kalahari Desert
(Senut et al., 2009), effectively limiting range expansions in this
direction (W-S), in the absence of successful colonization follow-
ing LDD. Even in the case of genus Colchicum (Figure S8), were
S African species appear closely related to NW African ones, W
Mediterranean species are always sister to E Mediterranean ones.
These leaves open the possibility of a colonization of NW Africa
(from S Africa) via E Africa and W Mediterranean populations
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with subsequent extinction in E Africa. An alternative coloniza-
tion from Central-West Asia into South Africa and NW Africa
seems unlikely given the phylogeny of this genus (Figure S8),
though proper biogeographic inference to test either possibil-
ity remains to be done. Indeed, Sanmartín et al. (2010) found a
higher frequency of biotic exchange between NW-E African ele-
ments than with either E-S African or W-S African ones, where
the latter elements were hardly connected, if at all, confirm-
ing our observations. We further argue that the magnitude of
observed biotic exchange follows the history of desertification in
Africa.

In all, the sequential timing of Neogene disjunctions in RF lin-
eages, which is nonetheless concentrated in certain time intervals
(e.g., Late Miocene-Pliocene), is in agreement with a scenario
of range expansions (dispersal) in favorable times (windows of
opportunity) and range contractions (extinction) as aridification
flared up. Extinction results in absence (of a population, species,
clade, or lineage) and thus leaves hard to track traces in phy-
logenies in the absence of fossil data (Meseguer et al., 2015).
If repeated cycles of speciation, dispersal, and extinction take
place in the same area over time, only taxa that optimize any
(or a combination) of these processes (e.g., increased speciation,
higher dispersal, lower extinction rates) will persist. It is to be
expected that more recent populations, species, clades, or lin-
eages show traces of these processes when compared to ancient
ones.

On the other hand, our net diversification rate estimates
(Figure 5) do no fully support an extinction explanation since,
in the context of the family with the highest diversification
rate among RF lineages, i.e., Asteraceae, most of the taxa fall
inside the 95% CI under a no-extinction scenario (ε = 0.0).
However, the method chosen to estimate net diversification
rates (Magallón and Sanderson, 2001), though more appro-
priate given phylogeny size and sampling effort, is still lim-
ited. Crown diversification rates cannot be estimated for clades
with 2 terminal taxa (see Materials and Methods), which is the
case for several RF lineages (e.g., Sideroxylon). Additionally, the
“method-of-moments” estimator performs well detecting declin-
ing diversity for old groups in exceedingly species-poor clades
(Magallón and Sanderson, 2001; Warren and Hawkins, 2006)
or young groups notably species-rich (recent radiations, Maga-
llón and Sanderson, 2001), but we observed that statistical power
is low to detect declines in diversity for young species-poor
groups (e.g., Camptoloma). Most RF disjunct clades dated com-
prise less than 10 species—e.g., Aeonium, Campanula, Camp-
toloma, Cicer, Colchicum, Euphorbia sect. Balsamis, Kleinia, and
Plocama—, limiting our ability to effectively detect the effects of
extinction.

Nonetheless, if we focus on crown ages, disjunct clades in
Canarina, Hypericum, and Sideroxylon are less diverse than
expected, and given that their encompassing lineages (Table 1,
Figure 5) also follow this trend, it would be safe to assume
these lineages have indeed experienced high levels of extinc-
tion through time. Likewise, if we were to focus on stem ages,
a few other groups fall below the no-extinction scenario (ε =
0.0), notably, Camptoloma, Campylanthus, and Cicer. Moreover,
these groups exhibit wide-spanning (often >10 Ma) stem-crown

intervals (see Sideroxylon or Cicer in Figure 5), an observa-
tion that has been tied to historically high extinction rates in
recent diversification studies (Antonelli and Sanmartín, 2011;
Nagalingum et al., 2011). This would further support the hypoth-
esis that lower diversification rates in RF lineages could be
explained in terms of increased extinction rather than a decrease
in speciation rates.

Additionally, and given the aforementioned limitations of
our diversification method of choice, it would also be safe to
conclude that, within Euphorbia, sects. Anthacanthae (sect. Bal-
samis included), sect. Esula, and sect. Aphyllis, present higher
diversity than expected (above the CI for ε = 0.0 in all
cases, and also above the CI for ε = 0.5 for the former
two clades), which is exceptional in the context of the genus,
since Euphorbia is significantly poorer than expected for all
ε values. Horn et al. (2014) also detected increased diversi-
fication rates in these sections of Euphorbia. Desertification-
tropicalization cycles in Africa (Senut et al., 2009) suggest
repeated reconnections between now disjunct RF regions since
the Neogene, which would have permitted biotic exchange in
favorable periods, whereas the isolation of these regions at unfa-
vorable times would have induced speciation through vicariance,
enhancing endemicity in these sub-humid/sub-xeric lineages.
Molecular dating in tropical trees from the genus Acridoca-
pus (Malpighiaceae; Davis et al., 2002) and the Annonaceae
family (Couvreur et al., 2008) shows a similar pattern of con-
nection phases between East African and Guineo-Congolian
rainforest regions since the Oligocene following major climate
shifts.

The youngest disjunctions, those of Aeonium, Campanula,
and Hypericum sect. Campylosporus, are Pleistocene in age
(Figure 4) and far too recent to result from the Neogene aridi-
fication of the African continent. Either rare LDD (i.e., Aeonium;
Kim et al., 2008) or stepping-stone dispersal events (i.e., Cam-
panula, Alarcón et al., pers. comm.), perhaps favored by Pleis-
tocene cool and drier glacial cycles, could explain these more
recent disjunct geographic patterns, as previously observed in
other African taxa, e.g.,Convolvulus (Carine, 2005),Moraea (Gal-
ley et al., 2007), or the tree heath (Erica arborea). Désamoré et al.
(2011) took notice of successive range expansions of Er. arborea
from an Eastern African center of diversity toward Northwest
Africa, Southwest Europe, and Macaronesia, first during the Late
Pliocene (ca. 3 Ma; Figure 4) and subsequently in the Pleistocene
(ca. 1 Ma).

Redefining the Rand Flora Pattern
In a recent review, Linder (2014) synthesized the individual his-
tories of numerous African lineages by recognizing five differ-
ent “floras,” which he defined as “groups of clades, which: (a)
are largely found in the same area, (b) have largely the same
extra-African geographical affinities, (c) share a diversification
history, and (d) have a common maximum age.” The “Rand
Flora” does not fit well this definition. This flora does group a
number of lineages that share the same geographic range (even
if discontinuous), but they have slightly different climatic toler-
ances, i.e., sub-humid to sub-xeric or xerophilic, and they do not
necessarily share the same extra-African geographical affinities.
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Some RF lineages fall within what Linder (2014) terms “tropic-
montane flora” (e.g., Hypericum, Canarina), others within the
“arid flora” (e.g., Kleinia, Campylanthus). Some RF lineages are
better connected with the Mediterranean Region (e.g., Adeno-
carpus), others with Asia and the Indo-Pacific Region (e.g., Plo-
cama). Moreover, RF taxa on either side of any given disjunction
(i.e., W-E or E-S) do no longer share a “diversification history,”
though they do share the same fate as other RF lineages with sim-
ilar distribution. In fact, the different ages estimated here for the
various RF disjunctions agree well with what has been termed
biogeographic pseudocongruence (Donoghue and Moore, 2003),
a phenomenon whereby two or more lineages display the same
biogeographic pattern but with different temporal origins (San-
martín, 2014). What is shared by all RF lineages is the nature
of the climatic (ecological) barriers separating the taxa at either
side of any given disjunction: arid regions such as the Sahara,
the Kalahari or the Namib deserts, or the tropical lowlands in
Central Africa. The congruence between RF disjunction ages and
successive major climatic events in Africa during the Neogene
(Figure 4) suggest that the ongoing aridification of the continent
(or the “tropicalization” of Central Africa) affected RF lineages
according to their different physiological (climatic) tolerances:
more sub-humid lineages diverged first (e.g., Sideroxylon), more
xeric later (e.g., Campylanthus).

One point of contention in the literature has been the lim-
its of the Rand Flora with respect to the “Arid Corridor” or
“Arid Track” (hereafter AC), a path repeatedly connecting south-
west to north-east arid regions in Africa (and henceforth to
central and southwest Asia) first proposed by Winterbottom
(1967) and later expanded by de Winter (1966, 1971) and Verd-
court (1969). Bellstedt et al. (2012) defined the AC pattern as
the disjunction occurring between Southern Africa and Eastern
African-Southern Arabian xeric floristic elements. Linder (2014)
considered the RF as an expansion of the AC to the west, in agree-
ment with Jürgens’ (1997) view. However, we consider that the
RF and AC patterns are different. AC elements have more xeric
preferences than the sub-humid to sub-xeric ones exhibited by
RF elements. AC elements often extend into deserts (e.g., Namib,
Kalahari, Sahara)—see studies by Beier et al. (2004) on Fagonia
(Zygophyllaceae), Bellstedt et al. (2012) on Zygophyllum (also
Zygophyllaceae), Carlson et al. (2012) on Scabiosa (Dipsacaceae),
or Bruyns et al. (2014) on Ceropegieae— and have broader, more
continuous distributions, plus they tend to be younger in age
(often Pleistocene, coincident with Quaternary glaciation cycles).
Our understanding is that this younger xeric AC elements move
in parallel to RF taxa webbing with them in areas favorable to
either, and thus confusing their limits. Something similar could
have happened with Afromontane elements migrating south to
north as the Eastern African mountains rose through the Mio-
Pliocene; these elements are not part of the RF (e.g., Iris,Moraea,
Galley et al., 2007).

In this study, we have provided a temporal framework for
the Rand Flora pattern and estimated net diversification rates
for 17 RF lineages. Our results provide some support to the
historical view of an ancient African flora, whose current dis-
junct distribution was probably modeled by the successive waves
of aridification events that have affected the African continent

starting in the Miocene, but whose origin predates the latest
events of Pleistocene climate change. These patterns were prob-
ably formed by a combination of climate-driven extinction and
vicariance within a formerly widespread distribution. Whether
these lineages all had a continuous, never interrupted, distri-
bution that occupied all the area that now lies in between the
extremes of the disjunction, or they had a somewhat narrower
distribution in the past and they expanded their range track-
ing their habitat across the landscape in response to changing
climate (e.g., along a corridor), is difficult to say with the cur-
rent evidence. Discerning between these hypotheses will require
the integration of phylogenetic, biogeographic and ecological
approaches to reconstruct the ancestral ranges and climatic pref-
erences of ancestral lineages (Mairal et al., 2015; Meseguer et al.,
2015). Compared to speciation, extinction has received far less
attention in studies focusing on the assembly of tropical bio-
tas. Disentangling extinction from other processes is particu-
larly difficult because the biodiversity we observe today is only
a small fraction of that of the past. The Rand Flora pattern might
offer a prime study model to understand the effects of climate-
driven extinction in the shaping of continent-wide biodiversity
patterns.
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Supplementary Materials include descriptions of study groups
with references, Table S1, and Figures S1–S17.

Table S1 | Net diversification rates (bd.ms) for all RF disjunct clades and

their encompassing lineages (bold = highest crown.p, red when n ≤ 2)

under three possible scenarios: no extinction (ε = 0), turnover at

equilibrium (ε = 0.5), and high extinction (ε = 0.9). Probability (crown.p) of

obtaining a clade with the same size and age as the RF disjunction, given the

background diversification rate of the encompassing clade/s and at increasing

extinction fractions (bold = highest crown.p, italics p < 0.05). Stem and Crown

ages in Myr.

Figures S1–S17 | BEAST MCC chronograms showing mean estimates and

95% high posterior density (HPD) confidence intervals for those nodes

receiving 50% support. Branch width is proportional to PP support. Red

colored taxa indicate Eastern African provenance; Macaronesia/western African

taxa and southern African taxa are colored in blue and green, respectively.

Calibration points are indicated with stars; RF disjunctions within each lineage

discussed in the text and represented in Figures 3–5 are indicated with arrows.
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