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Post-transcriptional regulation of
BRCA1 through its coding sequence
by the miR-15/107 group of miRNAs
Kevin Quann, Yi Jing and Isidore Rigoutsos*

Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression
that act by degrading their RNA targets or by repressing the translation of messenger
RNAs (mRNAs). Initially thought to primarily target the 3′ untranslated region (3′UTR) of
mRNAs, miRNAs have since been shown to also target the 5′UTR and coding sequence
(CDS). In this work, we focus on the post-transcriptional regulation of the BRCA1 gene,
a major tumor suppressor and regulator of double-stranded break DNA repair and show
that its mRNA is targeted by many members of the miR-15/107 group at a site located
within the CDS. Ectopic expression of these miRNAs across a panel of nine cell lines
demonstrated widespread suppression of BRCA1 mRNA levels. Additionally, by cloning
a putative target site from BRCA1’s amino acid CDS into a luciferase reporter plasmid
we confirmed the direct interaction of these miRNAs with this BRCA1 target. We also
examined the relationship between ectopic expression of these targeting miRNAs and
BRCA1 protein levels in immortalized pancreatic epithelium (hTERT-HPNE), colorectal
adenocarcinoma (HCT-116) and pancreatic adenocarcinoma (MIA PaCa-2) cell lines and
found protein abundance to be variably regulated in a cell-type specific manner that
was not necessarily concordant with mRNA transcript availability. Our findings reveal
a previously unrecognized aspect of BRCA1’s miRNA-mediated post-transcriptional
regulation, namely the targeting of its amino acid coding region by the miR-15/107
group of miRNAs. The resulting regulation is apparently complex and cell-specific, an
observation that may have implications for BRCA1-mediated DNA repair across tissue
types.

Keywords: microRNAs, miRNAs, non-coding RNA, BRCA1, post-transcriptional regulation, DNA damage repair

Introduction

MicroRNAs (miRNAs) are short non-coding RNAs, approximately 20–24 nts in length, which are
widely regarded as key post-transcriptional regulators of gene expression. As part of the RNA-
induced silencing complex (RISC) that comprises the Argonaute (Ago) proteins, miRNAs act on
their targets through RNA degradation or inhibition of mRNA translation (He and Hannon, 2004;
Filipowicz et al., 2008). To date, most of the studied miRNA target sites, also known as MREs,

Abbreviations: CDS, coding sequence; DDR, DNA damage response; HDR, homology directed repair; miRNA, microRNA;
MRE, miRNA recognition element; mRNA, messenger RNA; nt, nucleotide; nts, nucleotides; PARP, poly ADP-ribose
polymerase; qRT-PCR, quantitative reverse-transcription polymerase chain reaction; RBP, RNA binding protein; RISC, RNA
induced silencing complex; SNP, single nucleotide polymorphism; UTR, untranslated region.

Frontiers in Genetics | www.frontiersin.org 1 July 2015 | Volume 6 | Article 242

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://dx.doi.org/10.3389/fgene.2015.00242
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3389/fgene.2015.00242
http://journal.frontiersin.org/article/10.3389/fgene.2015.00242/abstract
http://loop.frontiersin.org/people/243806
http://loop.frontiersin.org/people/254956
http://loop.frontiersin.org/people/174861
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Quann et al. miR-15/107 miRNAs target the CDS of BRCA1

have been within the 3′UTR of target mRNA transcripts and
characterized by miRNA-MRE heteroduplexes with Watson–
Crick base pairing within the seed region, which comprises nts
2–7 from the 5′ end of the miRNA. The targeting of 3′UTR
regions and the formation ofWatson–Crick base pairs in the seed
region are the hallmarks of what has been known as the standard
model of miRNA targeting (Brodersen and Voinnet, 2009).

Early work by us and others has led to the identification
of many functional MREs that are located within the CDS of
mRNAs. Since then, the topic of CDS targeting by miRNAs has
been attracting increasing attention in several disease contexts
(Duursma et al., 2008; Forman et al., 2008; Lal et al., 2008; Shen
et al., 2008b; Tay et al., 2008; Rigoutsos, 2009). In addition to
CDS targets, several groups including ours have also reported
miRNA targets in the 5′UTR of mRNAs (Lee et al., 2009; Grey
et al., 2010; Zhou and Rigoutsos, 2014). Several of these non-
3′UTR targets as well as many 3′UTR targets happened to contain
various combinations of bulges and G:U wobbles in the seed
region, instead of the Watson–Crick base pairs of the standard
model (Ha et al., 1996; Lal et al., 2008; Tay et al., 2008; Chi et al.,
2012; Loeb et al., 2012). The possibility that miRNA targeting
beyond the 3′UTR could be frequent has since been emphasized
with the advent of HITS-CLIP, PAR-CLIP, CLASH, and related
methods that helped generate evidence to this effect in multiple
cell types (Chi et al., 2009; Hafner et al., 2010; Helwak et al., 2013;
Clark et al., 2014).

BRCA1 is a critical regulator of genomic integrity through
its function as a mediator of homology directed repair (HDR)
of double-stranded DNA breaks. As part of the DNA damage
response (DDR), this process is essential for the maintenance
of error-free chromosomal content during cell division and
safeguards tissues from the accumulation of oncogenic or
otherwise pathogenic mutations (Roy et al., 2012; Rosen, 2013).
Recent therapeutic strategies aimed at inhibiting DNA repair
pathways have met with success for BRCA1-deficient tumors due
to effects of synthetic lethality (Helleday et al., 2008). Several
BRCA1 studies to date have uncovered miRNA targets within the
3′UTR of the mRNA, however, we are not aware of any reports of
miRNA targets in the BRCA1 coding region (Chang and Sharan,
2012).

The miR-15/107 group is a large family that comprises 10
miRNAs: miR-103a, miR-107, miR-15a, miR-15b, miR-16, miR-
195, miR-424, miR-497, miR-503, and miR-646 (Finnerty et al.,
2010). All 10 miRNAs share a common seed-region sequence
(AGCAGC): miR-103 and miR-107 are an exception in that in
these two miRNAs AGCAGC spans positions 1–6, instead of 2–7.
The members of the group are conserved across chordate species,
with miR-195, miR-424, miR-503, andmiR-646 being exclusive to
mammals (Kozomara and Griffiths-Jones, 2014). MiRNAs from
this group are expressed in a wide variety of tissues and given
that many of their validated targets are involved in cell cycle,
metabolism, and angiogenesis, it follows that dysregulation of
these miRNAs is a hallmark of many disease states (Aqeilan
et al., 2010; Finnerty et al., 2010; Li et al., 2011; Furuta et al.,
2013). In fact, every cell type studied to date is known to express
one or more of the group’s miRNAs (Finnerty et al., 2010)
further highlighting this miRNA group’s ubiquitous regulation

of many cellular biochemical processes. Interestingly, recent
experimental profiling of miR-103 and miR-107 revealed their
frequent participation in targeting interactions with the CDS of
mRNAs (Nelson et al., 2011).

In this report, we describe and analyze the direct molecular
coupling between miRNAs of the miR-15/107 group and BRCA1
and in particular, focus on an MRE that is located in the coding
region of BRCA1 mRNA. Given the extensive length of the
BRCA1 transcript it is reasonable to assume that unrecognized
MREs may exist in it and in particular in its long coding region.
Along these lines, we sought to investigate the potential for
this gene to be regulated by members of the ubiquitous miR-
15/107 group through previously unrecognized non-standard
interactions across a variety of tissues. Moreover, we examined
the potential for tissue-specific variation secondary to complex
miRNA–mRNA target networks using panels of cancerous and
non-cancerous cell lines as model systems.

Materials and Methods

Cell Culture and Reagents
Human cell lines hTERT-HPNE, MCF7, MDA-MB-231,
MDA-MB-468, HT-29, HCT-116, MIA PaCa-2, and PANC-1
were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). 293T cells were obtained from
Thermo-Fisher Scientific (Pittsburgh, PA, USA). 293T, hTERT-
HPNE, MCF7, MDA-MB-231, MDA-MB-468, MIA PaCa-2,
and PANC-1 cells were propagated in DMEM (Mediatech,
Manassas, VA, USA) supplemented with 10% FBS and 1%
penicillin/streptomycin (Life Technologies, Carlsbad, CA, USA).
HT-29 and HCT-116 cells were propagated in McCoy’s 5A
medium (Sigma–Aldrich, St. Louis, MO, USA) supplemented
with 10% FBS and 1% penicillin/streptomycin. Precursor mature
miRNAs to hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-103a-3p,
hsa-miR-107-5p, hsa-miR-195-5p, hsa-miR-424-5p, hsa-miR-
497-5p, hsa-miR-503-5p, and anti-miRs anti-miR-15a-5p,
anti-miR-16-5p, anti-miR-103a-3p, anti-miR-107-5p, anti-miR-
195-5p, anti-miR-424-5p, anti-miR-497-5p, anti-miR-503-5p,
and negative controls for miR-precursors and anti-miRs were
obtained from Life Technologies.

Transient Transfection of miRNA Precursors
and Antisense miRNA Plasmids
Cells were plated in 6-well plates at a density of 0.5 × 106
and transfected 24 h later with either 50 nM of miRNA
precursor or 1 μg of psi-Check2 plasmid containing antisense
miRNA sequences inserted into the multiple cloning site
using Lipofectamine RNAiMax or Lipofectamine 2000
reagent, respectively, as per manufacturer’s instructions (Life
Technologies). Forty-eight hours following transfection, cells
were harvested for downstream analysis.

Quantitative Reverse Transcriptase PCR
Total RNA was obtained from cells using Trizol reagent
and reverse-transcribed to cDNA using oligo(dT) primers
and Superscript III reverse transcriptase as per manufacturer’s
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instructions (Life Technologies). TaqMan qRT-PCR probes for
BRCA1 and ACTB were used in conjunction with 10 ng of
template cDNA in Fast Advanced Master Mix according to
manufacturer’s instructions (Life Technologies). All samples
were amplified on an Applied Biosystems Step One Plus
thermocycler (Life Technologies). Relative gene expression levels
were calculated by the ��CT method, with normalization to
ACTB.

Luciferase Validation of miRNA Targets
Oligonucleotides corresponding to the predicted target site or
antisense miRNA sequences were synthesized and included
flanking XhoI and NotI restriction sites (Life Technologies).
After annealing to respective antisense oligonucleotides, target
fragments were double-digested with the appropriate restriction
enzymes (New England Biolabs, Ipswich, MA, USA) and
cloned into the 3′UTR of Renilla luciferase within the psi-
Check2 dual luciferase reporter plasmid (Promega, Madison,
WI, USA). 293T cells were plated at a concentration of 5,000
cells per well in 96-well plates and transfected the following
day with 100 ng of psi-Check2 reporter plasmid and 50 nM
of miRNA precursor per well using Lipofectamine 2000 as
per manufacturer’s instructions (Life Technologies). Forty-eight
hours following transfection luciferase levels were measured
using a Dual Luciferase Reporter Kit (Promega). For analysis,
target Renilla luciferase activity was normalized to control firefly
luciferase values.

Western Immunoblotting
Cells harvested 72 h post transfection were resuspended in RIPA
lysis buffer (10 mM Tris-Cl, 1 mM EDTA, 1% Triton X-100,
0.1% sodium deoxycholate, 0.1% SDS, 140 mMNaCl) containing
protease inhibitors (Thermo Fisher, Waltham, MA, USA)
and cleared of cellular debris by centrifugation at 10,000 × g
for 10 min. Lysate protein concentrations were obtained by
BCA assay (Thermo Fisher) with equal amounts subjected
to SDS-PAGE and electrophoretic transfer to nitrocellulose
membranes. All membranes were blocked in TBST with 5%
BSA prior to overnight incubation with primary antibody,
washing, and subsequent incubation with appropriate HRP-
conjugated secondary antibody. All membranes were developed
using ECL chemiluminescent reagents (Thermo Fisher) and
exposed on an ImageQuant LAS4000 imaging system (GE
Healthcare). Primary antibodies include anti-BRCA1 (D54A8,
Cell Signaling, Danvers, MA, USA) and anti-β-actin (8H10D10,
Cell Signaling). Secondary antibodies include HRP-goat-
anti-mouse (Cell Signaling) and HRP-Goat-anti-rabbit (Life
Technologies).

Statistical Analyses
All data derived from qRT-PCR and luciferase expression
experiments are expressed as mean ± SD with a sample
size of n = 3 for each group. Statistical analyses between
experimental and control groups were performed with unpaired
two-tailed Student’s t-test assuming equal variances (degrees of
freedom = ncontrol + nexperimental – 2 = 4). Statistical significance
was assumed at P < 0.05.

Results

The miR-15/107 Group is Predicted to Target
the Coding Sequence of BRCA1 mRNA
BRCA1, a critical gene responsible for the maintenance of
genomic integrity that is commonly inactivated or dysregulated
in a number neoplastic processes, possesses a long CDS. At
more than 5.5 kb (78% of the mRNA length), the amino acid
coding region of BRCA1’s mRNAs places it among the top 2%
of all protein-coding transcripts by CDS size (Figures 1A,B). We
reasoned that such a long CDS might harbor miRNA targets that
would not be predicted by focusing on standard, 3′UTR-centered
interactions. Among candidate post-transcriptional regulators of
BRCA1 mRNA abundance, we focused on the miR-15/107 group
for three reasons: most of the group’s members are conserved
in primates and rodents; the targets of two of its members,
miR-103 and miR-107, have been shown to be enriched in
coding region MREs and every known cell type expresses at
least one of the group’s members (Nelson et al., 2011). Using
the rna22 target prediction algorithm (Miranda et al., 2006)
we sought candidate target MREs for the miR-15/107 group
and identified regions along the full-length transcript of BRCA1
(ENST000000357654) that contained at least one MRE specific to
a miR-15/107 miRNA. One predicted target site within the CDS
which features the codon sequences for three consecutive alanine
residues (GCTGCTGCT) just upstream of BRCA1’s conserved
BRCT1 regions. This putative site is very well conserved in
primates and several non-primate mammals (Supplementary
Figure S1) and was predicted to form several heteroduplexes
with the miRNAs of the miR-15/107 group characterized by
Watson–Crick base-pairing in the seed-region (Figure 1C).

The miR-15/107 Group Negatively Regulates
BRCA1 mRNA Abundance
Given the ubiquitous presence of miR-15/107 miRNAs in cells
we sought to evaluate how well their interaction with BRCA1
persists across model cell lines. We selected nine BRCA1-
competent model cell lines for this purpose and transiently
transfected them with the respective miRNA precursors. The
nine cell lines were: 293T (embryonic kidney epithelium),
hTERT-HPNE (normal immortalized pancreatic epithelium)
MCF7 (ER+ breast carcinoma), MDA-MB-231 and MDA-
MB-468 (metastatic breast carcinoma), HT-29 and HCT-116
(invasive colorectal cancer), and MIA PaCa-2 and PANC-
1 (pancreatic adenocarcinoma). We selected a panel of 8
out of 10 miR-15/107 miRNAs that, based on the literature,
were the most representative of this group and found to be
widely expressed in many tissues: miR-15a, miR-16, miR-103a,
miR-107, miR-195, miR-424, miR-497, and miR-503 (Landgraf
et al., 2007). Using quantitative real-time PCR, we observed
that 48 h post-transfection, miR-15/107 precursors were able
to suppress BRCA1 transcript in a cell-dependent manner
(Figure 2). MCF7 and HCT-116 cells responded the most
consistently and robustly across the eight tested miR-15/107
precursors, with an average BRCA1 mRNA suppression at 35%
of control transfected cells (P < 0.001). HT-29 cell demonstrated
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FIGURE 1 | Putative miR-15/107 targets within the BRCA1 CDS. (A) Schematic representation of protein-coding BRCA1 transcript. (B) Density function and
cumulative distribution of CDS length across all human coding mRNAs. (C) The rna22-predicted target site for the miR-15/107 group together with the
corresponding miRNA:mRNA heteroduplexes.

consistent suppression of BRCA1 levels to an average of
58% following treatment with miRNA precursors followed by
MIA PaCa-2 cells, in which BRCA1 mRNA abundance was
reduced to an average of 71% of control levels upon treatment
(P < 0.01). Interestingly, hTERT-HPNE cells demonstrated
the most variability in response to treatment with miR-15/107
precursors: miR-15a, miR-103a, miR-107, miR-424, and miR-497
effectively suppressed BRCA1 transcript levels to 20% compared
to control transfections. On the other hand, miR-16, miR-
195, and miR-503 produced comparably little suppression of
BRCA1 in hTERT-HPNE cells. 293T, MDA-MB-231, and MDA-
MB-468 cells consistently demonstrated weak suppression of
BRCA1 mRNA levels to an average of 86%, 84%, and 96%,
respectively, across miRNAs. Curiously, PANC-1 cells treated
with miR-15/107 miRNAs frequently exhibited an increase in
BRCA1 transcript levels with only miR-103a, miR-107, and

miR-503 producing significant reductions in BRCA1 mRNA
(P < 0.05). Although the majority of cell lines tested displayed
significant decreases in BRCA1mRNA levels following treatment
with miR-15/107 miRNAs suggestive of a specific interaction,
there was nonetheless appreciable variability across cell lines,
perhaps as a result of cell-specific miRNA processing and off-
target interactions. In all instances, a control siRNA directed
against BRCA1 reduced transcript availability to<20% of control
(Figure 2, P < 0.001).

The miR-15/107 Group Targets an MRE in
BRCA1’s Coding Region
Wenext performed luciferase target validation studies (Figure 3).
The rna22 predicted site for the miR-15/107 group located within
the BRCA1 CDS was cloned into the 3′UTR of Renilla luciferase
and co-transfected with 50 nM of miR-15/107 precursors in
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FIGURE 2 | Suppression of BRCA1 mRNA by miR-15/107 miRNAs. Cell lines transfected with miR-15/107 miRNA precursors show a significant decrease in
the amount of available BRCA1 transcript 48 h post-transfection as detected by qRT-PCR. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 compared to control scramble miR
by Student’s t-test, n = 3 in each group.

FIGURE 3 | Characterization of a novel miR-15/107 target site within the
BRCA1 CDS. The putative binding site for the miR-15/107 group in BRCA1’s
CDS was cloned into a luciferase reporter vector along with a corresponding

construct containing mutations within the putative miRNA ‘seed’ recognition
sites to confirm specificity. ∗P < 0.05, ∗∗P < 0.01 compared to control
scramble target sequence by Student’s t-test, n = 3 in each group.

293T cells. Forty-eight hours later, all testedmiR-15/107members
demonstrated significant reduction in luciferase activity in
comparison to a scrambled control miRNA precursor when co-
transfected with the wild-type target site (∼50%, P < 0.001).

Interestingly, when this target sequence was mutated to abolish
putative miR-15/107 seed interactions within the triple-alanine
codon region (Mut BRCA1 MRE), luciferase activity was rescued
in all but the miR-103a, miR-107, and miR-503 groups suggesting
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that these three miRNAs may exert their effects at this MRE in
the absence of Watson–Crick pairing within the seed region as
has been shown previously for members of this miRNA group
(Nelson et al., 2011).

Sequestration of miR-15/107 miRNAs
Increases BRCA1 Transcript Availability
We next carried out transfections with luciferase reporter
plasmids containing antisense miRNA sequences as well as
plasmids containing the predicted wild-type (WT) miR-15/107
BRCA1 MRE sequence inserted into the 3′UTR of Renilla
luciferase and enumerated endogenous BRCA1 mRNA levels
by qRT-PCR (Figure 4). For this purpose, we selected hTERT-
HPNE, HCT-116, and MIA PaCa-2 cells as they demonstrated
a spectrum of responses to the miR-15/107 group at the
BRCA1 mRNA level ranging from moderate (MIA PaCa-2) to
variable (hTERT-HPNE) to strong (HCT-116). Unexpectedly,
we observed a consistent (albeit weak) suppression of BRCA1
levels in hTERT-HPNE cells upon transfection with the anti-
miR plasmids. On the other hand, transfection with the WT
MRE increased BRCA1 levels as expected. This suggests that
surrogate miRNAs may exist that act upon this site in hTERT-
HPNE cells and do not belong to the miR-15/107 group, or,
that a complex regulatory program is in effect within these cells
that involves BRCA1, the miR-15/107 group, and presumably
other post-transcriptional regulators. Unlike hTERT-HPNE cells,
HCT-116 cells exhibited a consistent increase of BRCA1 levels
following transfection with the anti-miR plasmids and the WT
MRE, as expected. The greatest rescue effect was observed inMIA
PaCa-2 cells following transfection with as-miR-195, as-miR-424,

and as-miR-503, in which BRCA1 levels increased between 1.7
and 2.1-fold above control transfected cells (Figure 4, P < 0.001).

The Impact of the miR-15/107 Group on BRCA1
Protein Abundance is Specific to Cell Type
To examine the effects of themiR-15/107 group on the abundance
of BRCA1 protein we performed western immunoblotting
analysis of hTERT-HPNE, HCT-116, and MIA PaCa-2 cell
lines transfected with miR-15/107 group members and their
respective anti-miR precursors. As explained above, we selected
these cell lines because they demonstrated a spectrum of
responses to the miR-15/107 group at the mRNA level (moderate:
MIA PaCa-2; variable: hTERT-HPNE; strong: HCT-116). We
observed that in hTERT-HPNE and HCT-116 cells, treatment
with miRNA precursors produced little in the way of BRCA1
protein suppression compared to their respective controls.
Instead, we found appreciable increases in BRCA1 protein in
these two cell lines after treatment with anti-miRs, suggesting
that in these tissues there is more room for dynamic increase
of BRCA1 protein following removal of miR-15/107 group
members, possibly as a result of constitutive saturation of BRCA1
MRE sites by these miRNAs (Figure 5). Following transfection
with miR-15/107 precursors, we found that MIA PaCa-2 cells
demonstrated much stronger suppression of BRCA1 at the
protein level compared to the suppression at the mRNA level;
MIA PaCa-2 cells also showed the strongest recovery upon
treatment with the anti-miRs (Figure 5). Across all cell lines
examined, miRNA and anti-miR precursors, as well as BRCA1
siRNA controls appeared to affect the presence of detectable
BRCA1 protein species in a subtle, yet differential manner

FIGURE 4 | Sequestration of miR-15/107 miRNAs impacts BRCA1 mRNA. Cells transfected with luciferase reporter plasmids containing antisense (as) miRNA
sequences or predicted wild type (WT) BRCA1 miR-15/107 MRE demonstrate varying levels of BRCA1 expression rescue. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001
compared to control by Student’s t-test, n = 3 in each group.
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FIGURE 5 | Translational suppression of BRCA1 by miR-15/107 miRNAs. Western immunoblots from hTERT-HPNE, HCT-116, and MIA PaCa-2 cells
demonstrate relative levels of BRCA1 protein expression at 72 h post-transfection with control scramble miRNA and anti-miR precursors, miRNA and anti-miR
precursors, or siBRCA1 control.

according to their molecular weight. Although we did not
pursue these observations further, we anticipate these differences
could be due to a variety of possible sources that include
one or more of the following: variations in basal expression
profiles of BRCA1 mRNA splice variants, proteolytic activity
and/or post-translational modification patterns across cell lines,
possibly secondary to direct or indirect interactions of these
RNAs.

Discussion

Here we describe a novel target site located within a protein-
coding region of the BRCA1 transcript that is common to the
majority of its functional splice variants. Interestingly, this target
site is conserved in higher order mammals, with only primates
displaying complete sequence homology (Supplementary Figure
S1; Cunningham et al., 2015). This target site is located outside
of known protein coding domains that are associated with
BRCA1 loss of function in human cancers when mutated,
which in turn suggests the possibility of additional mechanisms
through which activity of this crucial regulator of genomic
integrity may be suppressed in human disease (Fackenthal and
Olopade, 2007). Interestingly, members of the miR-15/107 group
of miRNAs are known to be dysregulated in a number of
neoplastic disorders, many of which, such as breast, ovarian,
and prostate cancers, also demonstrate loss of BRCA1 function
(Bhattacharya et al., 2009; Li et al., 2011; Musumeci et al.,
2011; Polytarchou et al., 2012; Wang et al., 2013). Importantly,
while the miR-15/107 group has been implicated in a number
of cellular processes commonly disrupted in disease, namely,
regulation of cell cycle, metabolism, angiogenesis, and response
to cell stress (Finnerty et al., 2010), this reports highlights an
additional role for this ubiquitously expressed family of miRNAs

in the regulation of DNA damage repair pathways. Similarly,
other groups have recently reported that these miRNAs post-
transcriptionally regulate other critical DNA repair genes such as
RAD51 (Huang et al., 2013).

Although there have been reports of post-transcriptional
regulation of BRCA1 by other miRNAs, such as miR-182, miR-
146, miR-638, and miR-17, these were all shown to exert their
effects through standard interactions within the 3′UTR (Shen
et al., 2008a, 2009; Garcia et al., 2011; Moskwa et al., 2011;
Li et al., 2012). Of note, miR-15a and miR-16 have also been
ascribed to regulate BRCA1 through a target site within the
3′UTR as treatment with anti-miRs specific to miR-15a and miR-
16 results in the increased expression in a luciferase reporter
system containing this target site (Zhu et al., 2009). Therefore, it
stands to reason that there are likely many other points through
which miRNAs of the miR-15/107 group or other miRNAs
can regulate BRCA1 expression at the post-transcriptional level.
This study, however, highlights the potential for regulation of
BRCA1 by non-standard miRNA interactions occurring within
the coding region. Further, while forced expression of miR-
15/107 members resulted in suppression of BRCA1 transcript
levels <80% in five different cell line models, it appears that
this effect is moderated primarily by those miRNAs with the
conserved AGCAGC motif located within their 5′ seed region,
as mutation of the predicted seed recognition sequence within
the BRCA1 MRE resulted in rescue of luciferase activity when
co-transfected with these miRNAs. In contrast to this, miR-103a
and miR-107, which contain an AGCAGC motif in the first six
nts at their 5′ end, did not demonstrate appreciative rescue upon
mutation of the putative seed recognition sequence in the BRCA1
MRE, consistent with previous reports that these miRNAs may
engage in “seed-less” target selection through interactions with
their 3′ end (Nelson et al., 2011). It stands that miR-503 may also
be participating in “seed-less” interactions at this site as luciferase
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suppression was still observed following mutation of the putative
seed recognition sequence in a similar manner.

Generally, we did not observe clear associations between
BRCA1 protein levels and transcript availability following
treatment with miRNA precursors of the miR-15/107 group.
The most appreciable differences in BRCA1 protein levels were
observed in MIA PaCa-2 cells, which paradoxically displayed
only moderate responses at the mRNA level compared to
hTERT-HPNE and HCT-116. HCT-116 and hTERT-HPNE cells
demonstrated variable up-regulation of BRCA1 protein following
sequestration of endogenous miRNA activity by anti-miRs.
Irrespective of the mechanisms underlying these observations,
our findings are consistent with recent large-scale transcriptome
and proteome profiling studies of mammalian cells that
indicate individual protein abundances are largely determined
by post-transcriptional regulation and by translational and
degradation activity rather than by copy numbers of a
corresponding mRNA within a cell (Schwanhausser et al.,
2011; Vogel and Marcotte, 2012; Londin et al., 2014). Such
effects of post-transcriptional regulation of BRCA1 need
not be unique to miRNAs as interestingly, prior to the
discovery of miRNA-mediated regulation of BRCA1, the RBP
HuR was shown to post-transcriptionally suppress translation
of BRCA1 by associating with its 3′UTR (Saunus et al.,
2008).

Experimental evidence by other groups and by us suggests
that while uncommon, it may be possible for miRNAs to
promote stabilization of target miRNA transcripts or induce their
expression, which can result in increased downstream translation
(Li et al., 2006;Miranda et al., 2006; Place et al., 2008; Huang et al.,
2012). Such miRNA-induced expression of target transcripts is
best characterized as occurring through interactions of miRNAs
with upstream promoter regions and activation of transcription
complexes and could, in part, explain some of the observed
discrepancies between cell lines relating to BRCA1 transcript
availability and protein concentrations (Place et al., 2008; Huang
et al., 2012). While we did not investigate interactions of the miR-
15/107 group and the BRCA1 promoter region in this report, they
nonetheless may exist to provide yet another means for which this
group of miRNAs can regulate expression of an important DDR
mediator.

Taken together these results highlight the observation that the
effect of miR-15/107 group miRNAs on BRCA1 is tissue-specific
and suggests that miR-15/107-mediated interactions are part of
molecular mechanisms with varying affinities for suppressing
the abundance of BRCA1 mRNA and protein. Alternatively,
it is conceivable that there are additional tissue-specific post-
transcriptional regulators that are currently unknown, the
combined effect of which is reflected by the abundance of
BRCA1 mRNA and protein in a given tissue. In other words, our
experimental observations are likely the downstream effect (at
the translational level) of a multitude of endogenous molecules
such as miRNA, mRNAs, RBPs, etc., whose repertoires vary
in each cell line. Given the significant length of its mRNA
and the fact that we have demonstrated the existence of one
miRNA target in BRCA1’s CDS it is reasonable to assume
that additional miRNA target sites exist along its length. These

miRNAs are currently unknown and their effect is unaccounted
for. An alternative interpretation of these observations is
that they could be the result of low basal levels of BRCA1
protein across cell lines, or, of variations in preference for
translated mRNA splicing variants, something that has been
demonstrated to occur frequently in other systems (Pascal et al.,
2008).

The functional significance of this non-standard regulation
of BRCA1 by the miR-15/107 group remains to be elucidated.
BRCA1 functional status has demonstrated itself to be of
great clinical value over the past several years, as BRCA1
deficient tumors have proven to be highly susceptible to selective
modulators of DNA damage repair pathways such as PARP
inhibitors, and therefore can be exploited pharmacologically to
effectively treat these cancers in a manner that is less cytotoxic
to healthy tissues than traditional chemotherapy regimens
(Helleday, 2011). As it has been shown that up-regulation of
miR-182, a known miRNA modulator of BRCA1, effectively
renders cells BRCA1 deficient and therefore susceptible to such
PARP inhibitors as 4-amino-1,8-naphthalimide or olaparib, it
may be possible that forced expression of the miR-15/107
family, which are typically down-regulated in many cancers
through various mechanisms, may be advantageous in chemo-
sensitizing particular cancers (Moskwa et al., 2011). As an
example of this, expression of miR-15a and miR-16, which are
commonly epigenetically silenced in non-small cell lung cancer,
can be induced pharmacologically by treatment with HDAC
inhibitors trichostatin A and sodium butyrate (Chen et al., 2013).
Hence, restoration of miR-15/107 expression in tumors in which
these miRNAs are down-regulated or silenced may potentially
enhance response to targeted therapies such as PARP inhibitors
in addition to reinstating the anti-cancer properties already
attributed to these miRNAs (Bonci et al., 2008; Aqeilan et al.,
2010; Finnerty et al., 2010; Furuta et al., 2013; Guo et al., 2013).
However, our findings here suggest that physiological variation of
miR-15/107 activity on BRCA1 across tissues may deemphasize
the potential for these miRNAs as biomarkers or modulators
to pharmacotherapy that targets BRCA1-mediated DSB repair.
While such paradigms could be of great relevance potentially
by virtue of the near-ubiquitous expression patterns of the miR-
15/107 group and its members’ frequent dysregulation in disease,
our tissue-specific findings suggest that a therapeutic exploitation
of these interactions may not be straightforward. Indeed, it is
reasonable to conjecture that the post-transcriptional regulation
of high-value mRNA targets such as BRCA1 is controlled by
multiple mediators such as miRNAs, RBPs, and possibly other
mechanisms that are not currently known. Consequently, it is
also reasonable to expect that a mistimed or uncoordinated
attempt at suppression of a desired subset of targets, in this case
BRCA1,may result in no observable effect, or in an effect different
than what was intended. Thus, an improved understanding and a
more detailed enumeration of these interactions will be required
before such an intervention is attempted and further studies are
warranted to explore the emerging role of non-standard miRNA
mediated regulation of critical DNA damage repair factors as they
pertain to the development and progression of cancers and other
diseases related to genomic instability.
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