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Living systems have the ability to adapt and self-organize when challenged with drastic
environmental changes. The remarkable characteristic of plasticity and collectivity allow them to
evolve and survive over billions of years in a rather unpredictable manner. Observing and studying
the dynamic complexity have influenced many scientists across diverse disciplines to believe that
living systems operate far from equilibrium and, hence, the second law of thermodynamics and
ergodicity breaks down (Stuart, 1995; Prigogine, 1997). Therefore, it may not be feasible to develop
simple deterministic models to interpret complex living systems’ behavior.

Briefly, the second law of thermodynamics states that entropy in systems that are in equilibrium
will increase over time or space. In other words, order will decrease in a thermodynamically
equilibrium system where there is no exchange of matter or energy. Living systems, which
constantly exchange matter and energy to the surroundings, can be considered to exist far from
equilibrium to achieve biological order (Stuart, 1995). One appropriate example is the ability of
bacteria to exchange pheromone during environmental threats, such as during antibiotic treatment,
to form biofilms which are highly organized structures resistant to the therapeutic intervention
(Chatterjee et al., 2013). The biofilm example demonstrates that the cooperative behavior of
organisms can be very different to the individual response. Thus, using ergodic principle or
predictive deterministic approaches to understand cellular behaviors can be questionable, and this
issue has been debated from time to time.

Most biological experimentations of mammalian cells are performed in vitro, where cells from
living tissues are removed from their physiological neighbors and regrown in minimum media
that will support the morphology, survival, and growth of the cells. The number of cells used in
different experiments, although variable, are usually several order of magnitudes lower than that in
actual tissues or organs. Under such far from realistic laboratory conditions, are in vitro cells able
to display emergent behaviors?

Remarkably, genome-wide oscillatory behaviors have been observed in continuously cultured
laboratory yeast, and the mammalian circadian clocks have been reproduced in a plate (Klevecz
et al., 2004; Sato et al., 2006). Although fascinating, the collective behaviors were achieved for
limited periods under carefully controlled experimental conditions, such as the rate of aeration
and agitation of fermenters, etc. Outside the specified range, the synchronization of cells fade. In a
more recent effort, cultured, and self-assembling engineered human cardiac tissue created rhythmic
heart beat that was highly similar to the human heart (Turnbull et al., 2014). Therefore, from
these examples, it becomes conceivable that during in vitro laboratory experimentations, complex
non-linear and self-organizing behaviors can still be achieved if the technical and environmental
conditions are carefully and tightly managed to mimic the actual reality, considering the exchange
of key matter between the surroundings.

Today, in the name of systems biology approaches, we have seen numerous works that have
employed theoretical models to interpret and predict cellular responses. It is surprising to note
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that despite the complexity of living systems, numerous
deterministic models have been rather successfully used to
understand both linear and non-linear responses (Selvarajoo,
2014). A vast majority of cellular models are based on ordinary
differential equations, mass-action kinetics, Michaelis–Menten
kinetics or Boolean logics. In most circumstances, if not all,
the investigations considered “closed” systemmodular approach,
where the models did not include continuous exchange of
materials between the internal and external environments and,
hence, chemical and thermal equilibrium have been assumed.
That is, the approaches often adopted well-mixed, homogenous
and isothermal environment where each reaction in the cellular
network is connected through first-order, higher-order mass-
action, enzyme kinetic equations, or simply Boolean logics,
depending on the knowledge gained for individual reaction.

Despite the simplicity, these models, combined with
experimental verifications, have progressed our understanding
of several complex mechanisms controlling cell processes. For
example, the elucidation of distinct feedback mechanisms in
epidermal- and nerve- growth factor signaling utilizing the same
MAP kinases module (Santos et al., 2007), and the identification
of key target for enhancement of apoptosis in cancers (Piras et al.,
2011; Hayashi et al., 2015). In several other studies, even without
the need to know graded response, simple binary (ON/OFF) state
approaches utilizing discrete Boolean network modeling have
produced insightful results in understanding diseases processes
(Benenson et al., 2004; Zhang et al., 2008; Schlatter et al., 2009).
More recently, even immune cell divisions based on main and
co-stimuli have induced responses that can be shown to be
linear functions of their signaling components (Hawkins et al.,
2013; Marchingo et al., 2014). So, if deterministic and rule-based
models can be applied successfully using in vitro dataset, does
it indicate that ergodic hypothesis could hold in 2-D plated cell
cultures? That is, under the conditions where simple models
work, are cells experiencing thermodynamic equilibrium?

Here, it is noteworthy to give some examples from our
research on analyzing in vitro large scale time-series gene
expressions dataset of mammalian innate and adaptive immune
cell types to distinct environmental stimulations (Tsuchiya
et al., 2009; Selvarajoo and Giuliani, 2012; Simeoni et al.,
2015). Using simple statistical approaches of Pearson/Spearman
correlations, Shannon entropy, Mutual Information and noise
(squared coefficient of variation), in summary, we found that
these metrics changed from an initial value at stimulation to
achieve stable values at later times. More precisely, we noticed
the levels of transcriptome-wide expression disorder increased
after appropriate immune stimulation, and eventually reached
asymptotic values. (This can be analogous to a tiny drop of
ink added to water will show increasing disorder in color,
and eventually stabilizes). In another recent study (Piras et al.,
2014), on tracking transcriptome-wide variability in mammalian
developmental cells, we also observed the increase in gene
expressions disorder across the developmental process, reaching
stable values at later stages (Figure 1). The observations from
these in vitro studies indicate that cultured cells with fixed
stimulation and condition may be reaching a state that is
indicative of pseudo equilibrium.

FIGURE 1 | Increasing transcriptome-wide disorder for human and

mouse development cells. (A) Pearson correlation, (B) Shannon entropy,

and (C) noise from oocyte to blastocysts indicate increasing disorder which

stabilizes, and is similar to other differentiated and cancer cells (D). Figure

adapted from Piras et al. (2014).

On a different note, we monitored the transcriptome-wide
expression variability from single cells to cell population in
increasing ensemble sizes across six mammalian cell types (Piras
and Selvarajoo, 2015). We observed that while increasing cell
ensemble size, transcriptome-wide noise reduced approximately
following the law of large numbers. Furthermore, the entire gene
expressions of cell populations (and only the highly expressed
portion of single cells) followed the central limit theorem.
More simply, unlike single cells, which are probably more
vulnerable to stochastic noise (Elowitz et al., 2002; Selvarajoo,
2012), cell populations showed reduced transcriptome-wide
noise. It is, therefore, conceivable that deterministic rules
can be utilized and modeled for the stable population-
wide average response. However, for single cell responses
stochastic modeling have been shown to be most appropriate,
consider the investigations on bistable cell fates in bacteria
(Dubnau and Losick, 2006). Nevertheless, both single cell
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stochastic and population-wide deterministic modeling based
on in vitro data exclude or disregard the exchange of matter
between other diverse cell types or the natural environment.
This is especially important for multicellular organisms,
where information is constantly exchanged within the entire
system.

To summarize, it has been debated for a long time whether
living systems can be mathematically conceptualized using
simple theories as they possess very complex dynamic and
emergent behaviors, and many times display unpredictable
outcomes. Interestingly, certain self-organizing and non-ergodic
behaviors have been observed even in laboratory conditions. In
the case of an oscillating system, we can set up experiments
and define conditions to mimic in vivo-like response of
molecular dynamics. Whereas, in other situations, it may be
very difficult to define experimental conditions that consider
far from thermodynamic equilibrium phenomenon observed in
self-organizing in vivo systems. Under such conditions, simple
statistical techniques on large-scale time series omics dataset can

be used to monitor multi-dimensional entropy and variability
that could provide hints into the global state of the system
(Piras et al., 2014). Notably, we have highlighted that tracking
the global responses of living cells, in vitro, have shown a
general increase in entropy and variability from initial values,
which stabilize at higher levels at later time points. Under such
stabilizing entropy condition, it is our opinion that deterministic
models can continue to play vital roles for in vitro studies.
Nevertheless, for in vivo systems, the rules for self-organization
require further investigations (Stuart, 1995), especially for multi-
cellular organisms considering the exchange of matter between
different cell types. Knowing this will allow us to better predict
the emergent properties of the “real” living systems.
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