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Communication disorders have complex genetic origins, with constellations of relevant
gene markers that vary across individuals. Some genetic variants are present in healthy
individuals as well as those affected by developmental disorders. Growing evidence
suggests that some variants may increase susceptibility to these disorders in the
presence of other pathogenic gene mutations. In the current study, we describe eight
children with specific language impairment and four of these children had a copy number
variant in one of these potential susceptibility regions on chromosome 15. Three of
these four children also had variants in other genes previously associated with language
impairment. Our data support the theory that 15q11.2 is a susceptibility region for
developmental disorders, specifically language impairment.
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Introduction

Specific language impairment (SLI) is a developmental language disorder characterized by
impaired oral language skills (Leonard et al., 1999; Catts et al., 2005). The disorder is typically
diagnosed in the preschool years, when children normally begin speaking in more complex and
complete sentences. These children have normal non-verbal IQ in spite of their problems with
semantics, syntax, and discourse (Paul, 2007). Hallmark grammatical errors include the omission
of articles (such as “the”), pronoun mistakes (e.g., “him” in place of “he”), grammatical inflection
(e.g., “go” instead of “goes”), and tense errors (e.g., switching present for past tense).

Children with language impairments rarely have a single gene mutation and it is agreed that
even individuals with the same disorder are unlikely to have the exact same set of genetic markers
(Bishop, 2002). The lack of a consistent causal gene has led some to speculate that complex
developmental disorders such as dyslexia, attention deficits, and SLI are instead due to any one
of several combinations of genetic markers. Recently, evidence has suggested that some genetic
variants may create a susceptibility to developmental disorders, and these susceptibility variants
may be common inmany individuals, even if the remainder of their genetic variants differ (Donlon,
1988; Wang et al., 2009; Burnside et al., 2011; Centanni et al., 2015; Hashemi et al., 2015).

The effect of copy number variants (CNVs) on chromosome 15 (q11.2) has been a subject of
debate in the field, both anecdotally and in scholarly articles.Microdeletions andmicroduplications
in this region have been associated with a variety of disorders, including autism, schizophrenia,
Prader–Willi, and Angelman’s syndromes (Kirov et al., 2009; Hogart et al., 2010; Mefford et al.,
2010; Dimitropoulos et al., 2013; Hashemi et al., 2015). However, duplications at this location are
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commonly seen in typically developing individuals (Mefford
et al., 2010), which raises questions about whether variants at
this location play a role in the disorders mentioned above.
The consistent association between this region and a variety of
developmental disorders suggests that variants in this region do
contribute to the disordered state, even if they are not causal on
their own. Though copy number variations in this region have
been suggested as a susceptibility variant in many disorders, it is
currently unknown if these variants are susceptibility factors for
disorders such as SLI.

In the current report, we discuss the behavioral and genetic
profiles of eight children with SLI who took part in a larger
study on the biological basis of language impairment. Due to
the current controversy regarding the definition of SLI and its
diagnostic criterion (Reilly et al., 2014), we used strict assessment
score cutoffs that are in line with other studies on the genetics
of SLI (Rice et al., 2009). Four of these children all had
gains in this region of chromosome 15 as well as additional
CNVs in multiple other regions previously linked to language
impairments.

Materials and Methods

Participants
In the current study, we discuss four children who were part
of a cohort of eight children with SLI, ranging in age from
4;5 to 17;2 (years;months), that participated in a larger study
on the biological pathways of speech and language disorders.
All procedures were approved by the Institutional Review
Board of the University of Nebraska Medical Center and all
participants were consented prior to participation. Participants
completed a series of commonly administered, age-appropriate
speech, language, reading, and cognitive assessments including
the Goldman Fristoe Test of Articulation-Second Edition (GFTA-2;
Goldman and Fristoe, 2000), the Clinical Evaluation of Language
Fundamentals-Fourth Edition (CELF-4; Semel et al., 2003),
Reynolds Intellectual Assessment Scales (RIAS; Reynolds and
Kamphaus, 2005), and the Woodcock Reading Mastery Test-
Revised (WRMT-R; Woodcock, 1998). All participants were
required to have normal cognition based on a standard score
higher of 75 or higher on the RIAS.

Children were assigned to the SLI group based on GFTA-2
percentile scores of 16 or higher and a CELF-4 standard score
below 85. Inclusionary criteria are presented in Table 1.

TABLE 1 | Inclusionary criterion for categorization in the specific language
impairment (SLI) group.

Non-verbal
IQ1

Speech
production2

Language3 Word
reading4

Criterion >75 >16th percentile <85 Any

1Reynolds Intellectual Assessment Scales (RIAS; Reynolds and Kamphaus, 2005).
2Goldman-Fristoe Test of Articulation (GFTA-2; Goldman and Fristoe, 2000).
3Clinical Evaluation of Language Fundamentals (CELF-4; Semel et al., 2003).
4Woodcock Reading Mastery Test (WRMT-R; Woodcock, 1998).

DNA Collection and Isolation
Buccal cell samples were collected from all eight participants
with SLI using the Isohelix DNA swab packs (Cell Projects,
Ltd., Kent, UK), and DNA was extracted per manufacturer’s
recommendations using the QIACube (Qiagen, Valencia,
CA, USA). DNA quantity and quality were determined using
the NanoDrop ND-1000 R© spectrophotometer (NanoDrop
Technologies, Wilmington, DE, USA) and agarose gel
electrophoresis, respectively.

CNV Detection
High-resolution genome-wide analysis was performed on
genomic DNA using the CytoScanHDTM array (Affymetrix,
Santa Clara, CA, USA) according to manufacturer’s instruction.
This array contains more than 2.6 million markers for high-
resolution whole-genome copy number analysis and 750,000
genotype-able single nucleotide polymorphisms (SNPs) for
reliable detection of copy neutral loss of heterozygosity (CN-
LOH). Data were visualized and analyzed with the Chromosome
Analysis Suite (ChAS) software (Affymetrix) using the following
filter parameters: (1) ≥25 markers and ≥5 kilobases (kb) for
CNVs and (2) ≥5 megabases (Mb) for CN-LOH. All basepairs
are mapped to Build 37/hg19. Parental DNA samples were not
available for these children, so it was not possible to determine
whether these were de novo variants.

Statistical Analysis
We used Pearson’s correlation to evaluate the relationship
between gain size in 15q11.2 and phenotype characteristics
(p < 0.05).

Results

Behavioral Profile
All eight children were administered a number of speech,
language, and cognitive assessments to ensure a diagnosis of
SLI in the absence of any comorbid conditions (Table 1). All
children were classified as having SLI since they scored below 85
on the languagemeasure in the presence of normal non-verbal IQ
and no articulation impairments (Table 2). Because children five
through eight did not evidence any variants at 15q11.2, their data

TABLE 2 | Assessment standard scores (percentiles in parenthesis where
applicable) for four children with copy number variants (CNVs) at 15q11.2.

Age
(months)

Non-verbal
IQ1

Speech
production2

Language3 Word
reading4

Child 1 124 103 (58) 101 (36) 70 (2) 92 (30)

Child 2 112 104 (61) 103 (42) 64 (1) 93 (32)

Child 3 121 98 (45) 100 (36) 64 (1) 98 (45)

Child 4 136 101 (53) 105 (34) 82 (12) 109 (73)

Age is displayed in months.
1Reynolds Intellectual Assessment Scales (RIAS; Reynolds and Kamphaus, 2005).
2Goldman-Fristoe Test of Articulation (GFTA-2; Goldman and Fristoe, 2000).
3Clinical Evaluation of Language Fundamentals (CELF-4; Semel et al., 2003).
4Woodcock Reading Mastery Test (WRMT-R; Woodcock, 1998).
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were excluded from further consideration in this paper. Child 1
was 10;3 (years;months) and female, child 2 was 9;3 and female,
child 3 was 10;1 and female, and child 4 was 11;3 and male.
None of the children scored within the impaired range on the
word reading measure (<85), but they did display a wide range
of typical word reading abilities, from the 30th percentile (child
1, 30; child 2, 32; child 3, 45) up to the 73rd percentile (child 4).

Genetic Profile
Of the eight children with SLI that were genotyped, four of
these children had large gains in an overlapping region at
15q11.2. Child 1’s gain was 54.34 kilo-bases in length (25283093–
25337431), child 2 had a gain of 41.70 kb (25295728–25337431),
child 3 had a gain of 32.94 kb (25291742–25324677), and
child 4 had a gain of 14.81 kb (25306864–25321675). These
gains are large and encompass a variety of genes. Because
of the size of these gains, exons and introns for a variety
of genes were affected. Most hits among these four children
included the genes SNORD109A, SNORD109B, and SNORD116-
(1-23). These genes are commonly associated with Prader–Willi
syndrome, with evidence suggesting that several genes, including
SNORD116, are a key pathogenic component (Rabinovitz et al.,
2012; Anderlid et al., 2014).

We also annotated copy number at other known language,
and more broadly, neurodevelopmental loci. Overall, the range
of assessment scores and the variety of gain sizes in the sample
suggest that other genetic factors may be contributing to the
observed phenotypes (Table 3). Child 1 had two additional
significant gains or losses (hereafter collectively called ‘hits’). The
first was a gain at 13q21.1, which has been seen in individuals
with autism and language impairment (Bartlett et al., 2004).

The second was a loss at 12p13.33, which has been previously
associated with childhood apraxia of speech (CAS) and attention
difficulties (Thevenon et al., 2013). Child 2 had two hits of
clinical significance in addition to 15q11.2. The first was a
loss at 10q21.1, which has been associated with intellectual
disability, lack of expressive speech, and attention deficit and
hyperactivity disorder (ADHD; Neale et al., 2010; Freunscht
et al., 2013). The second was a loss at 16p11.2, which has been
previously associated with autism (Kumar et al., 2008; Weiss
et al., 2008; Laffin et al., 2012). This gene is often characterized
as pathogenic and likely contributed to the phenotype of this
child.

Child 3 had two CNVs in addition to the deletion at 15q11.2,
both of which may be pathogenic. The first was a loss at 9p24.3
involving the gene DOCK8 and has been previously linked with
intellectual disability (de Vries et al., 2005; Griggs et al., 2008).
In fact, this child did have the lowest non-verbal IQ (standard
score of 98) of the four children described here (Table 2). The
second was a gain at 22q13.33. A duplication of this region is
linked with developmental delay and the region also contains the
gene SHANK3, which has been associated with autism (Durand
et al., 2007; Moessner et al., 2007). Finally, child 4 had one CNV
in addition to the deletion at 15q11.2: a gain at 7q11.23, which
has been associatedwith language delay and theWilliams–Beuren
locus (Jurado et al., 1998; Somerville et al., 2005; Berg et al., 2007).
The result that these children all exhibited other genetic variants
previously associated with speech and language impairments
support the idea that a variant at 15q11.2 is a susceptibility locus
and not necessarily one that is deleterious by itself.

The genetic profiles have an interesting phenotypic context
for evaluating the function of 15q11.2 relative to reading and

TABLE 3 | Additional CNVs for each of four children with hits at 15q11.2.

CNV
Identified

Type Size
(kbp)

Linear location Previous associations Prevalence in
Database of Genomic
Variants (DGV)

Prevalence in Ontario
Population Genomics
Platform (OPGP)

Child 1 13q21.1 Gain 76.78 57713219–57789996 Autism and language impairment
(Bartlett et al., 2004).

3,267 out of 26,404
subjects (12.37%)

213 out of 873 subjects
(24.51%)

12p13.33 Loss 24.01 2235940–2259954 CAS and attention
(Thevenon et al., 2013)

514 out of 27,543
subjects (1.86%)

89 out of 873 subjects
(10.2%)

Child 2 10q21.1 Loss 30.84 53383971–53414806 Intellectual disability, lack of speech
and attention deficit and hyperactivity
disorder (ADHD; Neale et al., 2010;
Freunscht et al., 2013)

8 out of 22,208 subjects
(0.003%)

2 out of 873 subjects
(0.02%)

16p11.2 Loss 579.42 29597822–30177240 Autism, schizophrenia
(Kumar et al., 2008; Weiss et al.,
2008; Laffin et al., 2012)

317 out of 22,680
subjects (1.39%)

Not found

Child 3 9p24.3 Loss 17 291610–308949 Intellectual disability
(de Vries et al., 2005; Griggs et al.,
2008)

94 out of 23,637
subjects (0.39%)

Not found

22q13.33 Gain 103.33 51072547–51175872 SHANK3 is an autism gene,
duplication noted with developmental
delay
(Durand et al., 2007; Moessner et al.,
2007)

129 out of 22,634
subjects (0.05%)

48 out of 873 subjects
(5.49%)

Child 4 7q11.23 Gain 38.21 74162950–74201156 Expressive language delay and the
Williams–Beuren locus
(Jurado et al., 1998; Somerville et al.,
2005; Berg et al., 2007)

4 out of 45 subjects
(8.8%)

Not found

Frontiers in Genetics | www.frontiersin.org 3 August 2015 | Volume 6 | Article 272

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Centanni et al. Susceptibility gene for language impairment

language. We consider the clustering of percentiles for children
1–3 and the relative outlier of child 4. Child 4 had the smallest
gain (18.13 kb less than the next largest gain, in child 3) and
also had the highest scores on the language and word reading
measures. Although this child is the oldest in our sample, it is
unlikely that age was a factor considering that the reading scores
were normed for age. Although there are just four data points,
there is a significant linear association between the size of the gain
observed and the scores on the word readingmeasure (r = −0.96,
p = 0.04; Figure 1). In spite of the age correction, Child 4’s
data point could be a possible outlier. Future studies with a
larger group of children are required to validate this potential
association between gain size and word reading scores.

Prevalence of Observed Hits in the General
Population
Search of the Database of Genomic Variants (DGV; http://dgv.
tcag.ca/) yielded one unselected sample with variation at 15q11.2.
A single deletion was found (1 out of N = 873 subjects) in
the Ontario Population Genomics Platform (OPGP) controls
(Costain et al., 2013). This study used the same technology as
our study (Affymetrix-CytoScanHD). To evaluate the population
prevalence of the secondary hits observed in our four children,
we also searched the DGV and the OPGP for each of the variants
reported here. Population frequencies in these two populations
are shown in Table 3.

Discussion

In the current study, we report the behavioral phenotypes of four
children with SLI who also had large gains in the q11.2 region
of chromosome 15. These children all had poor oral language
abilities compared to typical peers. In spite of normal non-verbal
intelligence and normal speech articulation, these children had a
wide range of abilities in word reading. Three of the four children

FIGURE 1 | Relation between gain size and word reading. There was a
significant correlation between the size of the gain observed at 15q11.2 in
each of the children and their respective scores on the word reading measure.

also had additional genetic variants located in areas previously
associated with speech and language impairments. These results
support the theory that variants at 15q11.2 may create an
increased predisposition to displaying a language disorder.

Strengths and Caveats of the Current Study
A strength of the current study is the strict criterion used
to identify children with SLI. Because this disorder often
co-occurs with dyslexia (Leonard et al., 2002; McCarthy et al.,
2012), it has been difficult to determine which genes are
related to SLI specifically and which are related to dyslexia.
Though our sample size was small (eight children with SLI),
the result that four of the eight had a duplication at 15q11.2
supports previous work linking developmental disorders with
microdeletions or microduplications in this region (de Kovel
et al., 2010; Hashemi et al., 2015). Since all the children in our
study were confirmed as having SLI, we were unable to provide
support for previous reports that this CNV can occur in typically
developing individuals. Future studies should investigate this
marker in a larger population of typically developing children as
well as those with SLI in the absence of comorbid conditions.

The Multiple Hits Model of Developmental
Disorders
To date, no single genetic marker reliably predicts the occurrence
of SLI. It is likely that SLI, and perhaps other communication
disorders, are caused by a constellation of genes (Rice et al.,
2009). An existing hypothesis states that region 15q11.2 is a
susceptibility variant. If so, a hit in this region could increase
the likelihood that an individual will exhibit a developmental
disorder phenotype when additional risk variants are also
present. Microdeletions in this region are commonly associated
with developmental disorders like Prader–Willi Syndrome
(Dimitropoulos et al., 2013) and Angelman Syndrome (Donlon,
1988), as well as epilepsy (Mefford et al., 2010) and autism
(de Kovel et al., 2010). For example, a microdeletion in 15q11.2
was observed in 1% of individuals with idiopathic generalized
epilepsies (12 of 1234; de Kovel et al., 2010). These deletions are
often seen in unaffected family members in addition to affected
offspring.

Though the variants seen in the current study were
microduplications rather than microdeletions, recent evidence
suggests that this type of variant may also indicate susceptibility
to developmental disorders, including autism (Hogart et al., 2010;
Kitsiou-Tzeli et al., 2010; van der Zwaag et al., 2010) and speech
delay (Burnside et al., 2011). The consistent observation that
microduplications in 15q11.2 are associated with SLI in our
sample, together with previous evidence that microdeletions in
this area are related to other developmental disorders, suggests
that this region is sensitive to mutations of various forms.
It is interesting to note that the four children with gains at
15q11.2 did not evidence any variants in regions previously
associated with SLI, including 16q (SLI1), 19q (SLI2), and 13q
(SLI3) (Bartlett et al., 2004; Consortium, 2004; Monaco, 2007;
Newbury et al., 2011). Specifically, a locus at 16q known as
SLI1, has not only been linked with SLI in a large sample,
but is also associated with basic reading, spelling, and reading
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comprehension measures (Consortium, 2004). The observation
that none of our participants exhibited variants in these notable
regions is likely due to a combination of study design and sample
size. Developmental language and communication disorders are
notorious for having a complicated genetic picture, without a
single causal gene (Bishop, 2002). It is possible that the variant
at 15q represents another path to SLI in the absence of variants at
the previously associated areas.

Our result provides additional support to 15q11.2 as a
susceptibility locus, though larger studies of persons with
language and related cognitive phenotypes are needed to establish
the prevalence of this variant in the general population compared
with a variety of developmental disorders.
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