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The Early Stages of Malignant Hematopoiesis: A Multi-cellular,
Multi-compartment and Multi-factorial Challenging Study Model

Development of normal hematopoietic cells is an ordered multi-step process, tightly regulated by a
complex network of intrinsic factors and microenvironmental cues that control cell fate decisions
within the bone marrow (BM) (Pelayo et al., 2012; Purizaca et al., 2012; Boulais and Frenette, 2015).
During malignant hematological disorders, including acute leukemias (AL), the uncontrolled
differentiation of precursors of the lymphoid or myeloid series sustains tumor growth at the
expense of normal blood cell production. Moreover, selection and dominance among leukemic
clones occur while competing for niche resources and creating abnormal BM microenvironments
that co-participate in the pathobiology of the disease (Colmone et al., 2008; Ayala et al., 2009;
Purizaca et al., 2012; Kim et al., 2015; Vilchis-Ordoñez et al., 2015). Thus, due to the complexity and
health impact of AL (Gupta et al., 2014), new strategies to better predict cell population dynamics
according to genetics, microenvironmental and clinical heterogeneous contexts may contribute to
understand its pathobiology and to guide strategies for decreasing overall mortality.

Mathematical modeling has emerged as a powerful tool in biomedical and health research
because it enables the simulation of complex biological systems and the efficient generation of
testable hypotheses. In recent years, leukemic cell dynamics has been addressed from the novel view
of systems biology, resulting in helpful stochastic and deterministic models and providing clearer
understanding of the disease by simplification ofmalignant clonal evolution processes (Vesely et al.,
2011; Amir et al., 2013; Paguirigan et al., 2015). However, models fitted to experimental data must
strike a balance between simplicity and reality, so that they can bring insights into clinical scenarios.

Here we discuss the importance and challenges of incorporating the BM microenvironment
into AL modeling, as a key element that will control the interplay between cell populations and
the selective pressure leading to leukemic or normal hematopoiesis progression. By developing
integrative tools that better mimic and predict the behavior of heterogeneous and polyclonal cells
in the context of abnormal microenvironments within leukemic bone marrow, we may learn about
crucial mechanisms co-participating in the etiology and progression of the disease.

Normal vs. Leukemic Clones: Systems Biology in the Study of
Acute Leukemia Complexity

Continuous dynamic modeling with differential equations (DEs) has been the most popular
systems biology tool for the study of normal and leukemic hematopoiesis. This type of modeling is
useful for the time evolving non-linear competition between normal and leukemic cell populations,
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considering multiple compartments to simulate different
maturation stages or multiclonal behavior (Catlin et al., 2005;
Stiehl and Marciniak-Czochra, 2012; MacLean et al., 2013; Stiehl
et al., 2014).

Of special interest, theoretical data suggests the existence
of an initial “steady state” before the disease development,
when co-existence of normal hematopoiesis with a limited
number of pre-leukemic cells controls leukemia installation
(Rubinow and Lebowitz, 1976; Stiehl and Marciniak-Czochra,
2012; Swaminathan et al., 2015). A sudden change in the
homeostatic parameters may induce leukemic cell expansion
leading to a progressive decrease of normal hematopoiesis,
while perturbation of initial homeostatic state endows malignant
cells with self-renewal and proliferation. Accordingly, the model
by Rubinow and Lebowitz’s on competition advantage of
leukemia cells proposed a higher value of their equilibrium
number that refers to the maximum population size that
can be supported within the niche. If the stop-expansion
signal for malignant progenitors is not delivered before
the equilibrium number is reached, a signal activating the
slow-down of normal cells promotes the expansion of the
leukemic population. High equilibrium numbers in leukemic
compartments could be biologically interpreted as independence
from the microenvironment, unbalanced proliferation/apoptosis
rates, and further accumulation of blasts.

Using a stochastic model to simulate stem cell decisions,
Abkowitz and colleagues have analyzed the behavior of
individual components (HSC) acting collectively within a
dynamical complex context (clonal diversity plus heterogeneous
surrounding microenvironment). By tracking HSC replication,
the expansion of the hematopoietic system was apparent from
birth to adolescence, when steady-state levels are reached.
Stochastic modeling of replication kinetics has shown to be useful
to predict cell rebounding upon hematopoietic transplantation or
under emerging conditions (Catlin et al., 2005, 2011). In contrast,
agent-based deterministic modeling of HSC organization in
health and hierarchical-related diseases, like chronic myeloid
leukemia, are powerful for simulating additional heterogeneity
scenarios to be considered, i.e., aging, HSC-niche interaction and
therapy outcomes (Glauche et al., 2011). Unlike CML, AL cells
show apparent dependence on their own “leukemic niche” (Veiga
et al., 2006; Colmone et al., 2008; Basak et al., 2010; Jacamo et al.,
2014). Recent models suggest additional feedback mechanisms
assuming both, the leukemic and normal cell interdependence on
the same growth factors (Stiehl et al., 2014).

In addition to the normal vs. leukemic competition, increasing
evidence of genetic diversity supports the multiclonal evolution
of AL (Choi et al., 2007; van Delft et al., 2011; Amir
et al., 2013). Strikingly, rather than as a consequence of
new acquired mutations, relapse could be explained as a
deterministic clonal selection where high proliferative cells are
eliminated by chemotherapy, while distinct slow-cycling or
self-renewing cells stay protected and may re-emerge when
the competing clones (leukemic high-proliferating cells) and
their negative feedback (normal hematopoietic cells) have been
eliminated. Similar to deterministic models of chemotherapy-
dependent clonal selection, the stochastic modeling by Kimmel

and Corey drives to the conclusion on the co-existence of
distinct clones and the extremely broad heterogeneity of
cancer cells. However, the stochastic acquisition of mutations
may provide theoretical evidence of the parallel evolving
clones with unique proliferative potentials, and represent a
suitable model for chronic chemotherapy-induced transition to
secondary malignancy (Kimmel and Corey, 2013). Despite the
fact that linear mutation structures can simplify the population
dynamics, it is necessary to consider proliferation heterogeneity.
Interestingly, the acquisition of de novo mutations is more
probable during long treatment schemes (Lindsley et al., 2015).

Technological advances in RT-PCR, RNA-seq and mass
cytometry methods for single cell analysis are providing
highly specific clusterization of cell populations that allow
the identification of experimentally unseen cell transition
stages from the earliest steps of differentiation (Marco et al.,
2014; Moignard et al., 2015). With new experimental models
and molecular research progress, parameters and assumptions
considered for the development of mathematical models, evolve
to a more complex understanding of leukemogenesis. The
view of two or more hematopoietic populations competing
within compartments, plus the resulting regulation among
compartments from the isolated feedback loops is too simplistic.
Therefore, it is becoming of substantial importance to take
into account additional intercellular interactions, including those
with non-hematopoietic neighboring cells within the BM niches.

Modeling the Interplay Between Leukemia
Cells and the Tumor Microenvironment

Tumor-microenvironment interplay is essential for the
protection and progression of malignant cells, where a number
of interactions mediated by integrins, cytokines and chemokines,
extracellular matrix (ECM) proteins, and other molecules
produced and expressed by niche cellular elements, may dictate
the final fate decision (Raaijmakers, 2011). The recent multi-
compartment model by Gerdes for T-cell lymphoma/leukemia,
suggests that premalignant cells can get established in any
available permissive niche, compensating their low affinity for
specific interactions with an increased efficiency for resource
utilization when compared to normal clones (Gerdes et al.,
2013).

Closer to this multi-component interaction outlook has been
the development of generic-cancer cell-automata models. This
type of discrete modeling makes the evaluation of homogeneous
or heterogeneous cell populations in a grid where every cell
has a defined state and neighborhood possible. Strikingly,
cell-automata modeling concede single-cell resolution and had
become a very promising tool for the study of tissue development
and tumors, including microenvironmental factors like ECM
density and oxygen diffusion that control tumor size (Chen et al.,
2014; Scott et al., 2014).

In spite of the power of these approaches, it is clear that
the feedback existing between the BM microenvironmental
components and the malignant cell decisions operates at a
molecular level regulating intracellular pathways. How could we

Frontiers in Genetics | www.frontiersin.org 2 September 2015 | Volume 6 | Article 290

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Enciso et al. Systems biology of leukemia hematopoiesis

mimic the complexity at cellular population and molecular levels
at the same time? How could we address themulti-cellular system
within systems complexity?

Simulation of One-cell Molecular Network
Models with Multi-cellular Methods

Knowledge about the hematopoietic system has been benefited
from the development of regulatory networks for early HSC
differentiation, T lymphocyte development, plasticity and

signaling, among others (Albert and Wang, 2009; Naldi et al.,
2010; Martínez-Sosa and Mendoza, 2013; Tian and Smith-Miles,
2014). Considering that every computational simulation with
a specific initial state of an intracellular network represents a
single cell dynamic profile, to simulate a multi-cellular process
we must simultaneously simulate as many networks as cells
within the system (Wu et al., 2009). Accordingly, Mendoza
proposed a virtual culture of Th cells that simulate differentiation
of naive CD4+ T cells to Th1, Th2, Th17, and Treg subsets.
In this model, each cell phenotype is defined by molecular
patterns of activation, while the input for each virtual cell at

FIGURE 1 | Systems within a system. Leukemic initiation and progression is a tightly regulated competitive process, where at least three systems must work

together: the normal hematopoietic differentiation, the leukemic cell production, and the hematopoietic microenvironment where malignant and normal cells

competition takes place. As blast population increases, the normal cell abundance decreases. Cell population changes have been modeled through differential

equations in multi-compartment continuous modeling, strategy that allows the representation of hematopoietic hierarchy with the assignation of different kinetic

parameters values for cells within each compartment. The model mimics in vivo fundamental properties like quiescence in the stem-cells compartment and increasing

proliferation in developing cells. Additional to regulatory feedback between normal and malignant hematopoietic populations, an abnormal microenvironment may play

a crucial cooperating role in the inverse leukemic/normal relationship by disrupting the HSC-niche communication. The genetic diversity within the various

leukemia-initiating cells and tumor cells highlights the multiclonal complexity of the disease, and suggests the existence of minor malignant clones—undetected at

diagnosis—that become apparent upon chemotherapy and drive individuals to relapse. HSC, hematopoietic stem cell; HPC, hematopoietic progenitor cell; PC,

precursor cell; MC, mature cell; LIC, leukemia initiating cell.
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any time-step proceeds from the intercellular communication
(Mendoza, 2013). More importantly, the dynamics of a given
regulatory network respond to the concentration of regulatory
cytokines produced by the cell itself and to neighbor signal
intensities. Thus, applying tools like virtual cultures to malignant
hematopoiesis may help to understand blast accumulation or
the intercommunication between leukemia-initiating cells and
an abnormal BM microenvironment (Figure 1). The recent
demonstration of pro-inflammatory cytokines produced by ALL
cells suggests that this condition may promote their own survival
and account for the exhaustion of normal progenitor cells
(Vilchis-Ordoñez et al., 2015). The pathological consequences
of a pro-inflammatory microenvironment can be resumed in
three potential principles: (a) leukemic cells showing aberrant
expression of cytokines that perturb normal hematopoiesis, (b)
mutated stromal cells favoring a permissive microenvironment
for leukemia initiation, progression, andmaintenance (Shalapour
et al., 2010), or (c) normal hematopoietic cells responding to
biological stress due to blast overcrowding by activating
pro-inflammatory pathways. These three scenarios might
act independently or sinergistically by means of positive
feedback.

To solve this, hybrid models are also mathematical tools
with great potential to model microenvironment-dependent
systems, allowing the scaling to tridimensional modeling and
the consideration of discrete decisions on cell processes like
migration and proliferation (Anderson, 2005; Scott et al.,
2014). Although these dedicated models have considered
microenvironmental factors for solid tumor progression, they
still miss the direct feedback existing between extracellular
factors and the intra-cellular signaling pathways that regulate
cell fate decisions. Of note, an intracellular view would allow
modeling of constitutive or null activation of specific pathway
mediators and analyzing the putative consequent effects on
disease dynamics. Virtual cultures make this possible, but the
very high computational requirements when modeling excessive
number of cells may represent by now a weakness of the strategy.

For any of the discussedmodeling approaches, the importance
of a rigorous experimental validation of mathematical modeling
for complex processes is high and has been limited by

the experimental systems that are conventionally used to
study human leukemogenesis. The combination of single-cell
sequencing, 3-D organoid-like cultures and xenotransplantation
would provide new information for malignant vs. normal
cell discrimination and cell population dynamics within more
natural microenvironmental structures. Furthermore, a proper
validation of current and future investigations from the view
of systems biology will benefit from longitudinal, prospective
clinical studies.

To this extent, the use of “edge-technology” in silico strategies
for multi-cellular (leukemic, hematopoietic, and stromal
components), multi-compartment (differentiation stages), and
agent-based (individual cells network) modeling of leukemia
pathobiology is a promising tool for the study of feedback
pathways in the searching of auxiliary strategies for leukemia
treatment, normal hematopoiesis rebounding, and relapse delay.
The construction of novel “systems within a system” integrative

theoretical models (Figure 1) that better mimic and predict the
behavior of the disease may transform our vision of malignant
hematopoiesis and provide helpful platforms for new testable
hypotheses.
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