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Nitroxide small molecule agents are in development as preventative or therapeutic
pharmaceutical drugs for age-related macular degeneration (AMD) and cardiovascular
disease, which are two major diseases of aging. These aging diseases are associated
with patient genetics, smoking, diet, oxidative stress, and chronic inflammation.
Nitroxide drugs preventing aging-, smoking-, high sugar or high fat diet-, or radiation-
and other environmental-induced pathophysiological conditions in aging disease are
reviewed. Tempol (TP), Tempol Hydroxylamine (TP-H), and TP-H prodrug (OT-551)
are evaluated in (1) non-smokers versus smokers with cutaneous microvascular
dysfunction, rapidly reversed by cutaneous TP; (2) elderly cancer patients at risk for
radiation-induced skin burns or hair loss, prevented by topical TP; and (3) elderly smoker
or non-smoker AMD patients at risk for vision loss, prevented by daily eye drops of OT-
551. The human data indicates safety and efficacy for these nitroxide drugs. Both TP
and TP-H topically penetrate and function in skin or mucosa, protecting and treating
radiation burns and hair loss or smoking-induced cutaneous vascular dysfunction. TP
and TP-H do not penetrate the cornea, while OT-551 does effectively penetrate and
travels to the back of the eye, preserving visual acuity and preserving normal and low
light luminance in dry AMD smokers and non-smoker patients. Topical, oral, or injectable
drug formulations are discussed.

Keywords: aging, inflammation, smoking, CVD, AMD, tempol, hydroxylamine

INTRODUCTION

Certain age- and environmental-related pathophysiological changes, degenerative conditions, and
diseases are driven and accelerated by radical- (i.e., OH, H2O2, and O2−) induced oxidative stress
and inflammation (for review, see Wilcox, 2010). For example, chronic exposure to cigarette
tobacco smoke can cause and accelerate microvascular dysfunction in cardiovascular disease
(CVD) and age-related macular degeneration (AMD). Smoking, together with aging are major
causes of diminished vision in AMD, with premature loss of quality of life and independence
(Buschini et al., 2015). Radical-induced oxidative stress and inflammation can be modulated by
Tempol (TP)-based nitroxide drugs to prevent or treat vascular, ocular, and other pathological
conditions and aging associated disease. Pharmaceutical nitroxide drug candidates for treatment
and/or prevention of aging-related and smoking-related diseases are in various different stages of
development. Clinical data for TP, Tempol Hydroxylamine (TP-H), and the more lipophilic TP-H
prodrug, OT-551, are reviewed.
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PATHOPHYSIOLOGY OF AGE-RELATED
MACULAR DEGENERATION

Age-related macular degeneration is a major cause of vision loss
and loss of independence in the elderly and affects a third of
people over 65 (Lim et al., 2012). Dry AMD is a slowly progressing
disease involving lipid peroxidation, inflammation, deposition
of lipoprotein drusen, and death of photoreceptors, resulting in
loss of visual acuity (VA) in both eyes (Buschini et al., 2015).
Progression to wet AMD occurs in about 10% of dry AMD
patients. Wet AMD is characterized by new blood vessel growth,
commonly known as choroidal neovascularization. These new
blood vessels leak fluid, causing macular edema, degeneration of
retinal tissues, and blindness (Bhutto and Lutty, 2012; Birke et al.,
2013).

The etiology of AMD is complex and is based on multiple
factors, such as an individual’s genetic susceptibility together with
environmental factors and metabolic conditions (Girmens et al.,
2012; Buschini et al., 2015). The role of increased oxidative stress
is associated with both the incidence and the progression of AMD
and is reviewed by Jarrett and Boulton (2012). Both aging and
increased oxidative stress mediated diseases are associated with a
decrease in transcription factor Nrf2 signaling (Suh et al., 2004;
Zhang et al., 2015).

Nrf2, is a major regulator of oxidative stress and regulates the
inducible expression of genes encoding phase II detoxification
enzymes and anti-oxidant proteins, via the anti-oxidant response
element (ARE), to attenuate oxidative stress and protect cell
survival (Cano et al., 2010). Nrf2-deficient mice develop retinal
pathology that have similarities with human AMD including
deregulated autophagy, oxidative injury, and inflammation (Zhao
et al., 2011). Wang et al. (2014) demonstrated that Nrf2
is altered in human AMD specimens, and Nrf2 deficiency
promotes cellular oxidative damage and a pro-inflammatory
environment in cigarette smoke extract (CSE) exposed retinal
pigment expthelial (RPE) cells. Human RPE cells exposed to CSE
in culture caused oxidative damage and cell death (Bertram et al.,
2009). CSE also induced the expression of Nrf2 and exogenous
administration of anti-oxidants (GSH and N-acetyl-cysteine)
prevented oxidative damage to the RPE cells caused by CSE.
While Nrf2 signaling has significant cytoprotective capability
for RPE cells, aging and/or chronic exposure to a complex and
powerful oxidant like cigarette smoke (CS), could impair Nrf2
signaling and promote inflammation sufficient to permit AMD
lesion formation (Huang et al., 2015). One logical treatment
strategy would be to neutralize oxidative stress.

Primary AMD risk factors include patient genetics, aging,
smoking, and diet (Yates and Moore, 2000; Evans, 2001; Tomany
et al., 2004; Kifley et al., 2007; Lim et al., 2012; Ersoy et al., 2014).
AMD also shares the same risk factors with CVD (Wong, 2010;
Cheung and Wong, 2014; Wu et al., 2014). Specific ocular and
vascular dysfunction occurs in AMD and CVD, and early CVD
diagnoses may indicate early AMD (Cheung and Wong, 2014).
Chronic cigarette smoking consistently has a very strong direct
positive correlation to AMD. Smoking is also a major modifiable
risk factor for CVD, affecting large-vessel atherosclerosis and
thrombosis (Bottcher and Falk, 1999). While smoking remains a

leading cause of AMD, vascular dysfunction and CVD, it is likely
that without effective treatment, several hundreds of millions of
people with relatively good vision today, would remain at risk
of developing serious vision loss, vascular dysfunction and CVD
within relatively few years.

The current treatment option for early dry AMD is life-style
change (i.e., smoking cessation, reduced alcohol consumption,
controlled diet and increased exercise) together with daily
use of anti-oxidant formulations (Buschini et al., 2015). The
beneficial use of anti-oxidants in dry AMD was confirmed in
the AREDS1 and AREDS2 Phase III clinical studies in which an
oral supplement containing anti-oxidants and zinc (AREDS1),
and an oral supplement containing anti-oxidants and lutein plus
zeaxanthin and/or omega-3 fatty acids (AREDS2) was tested by
the National Institutes of Health for halting AMD progression
(Age-Related Eye Disease Study 1 Research Group, 2001; Age-
Related Eye Disease Study 2 Research Group, 2013). These oral
vitamin supplement therapies were shown to modestly retard
the progression of dry AMD from an intermediate stage to the
advanced stage and the results indicated no overall additional
benefit. Current therapeutic approaches in development are
reviewed (Girmens et al., 2012; Evans and Syed, 2013; Leung
and Landa, 2013; Buschini et al., 2015). Briefly, these therapeutic
strategies are to (1) reduce or block the stimulation of continuous
damage and inflammation, and/or (2) to replace, repair or
regenerate damaged cells.

OT-551, TEMPOL HYDROXYLAMINE,
AND TEMPOL DRUG DEVELOPMENT
FOR AGE-RELATED MACULAR
DEGENERATION

In in vitro screening libraries of small molecules with known
activity in inhibiting damage from radicals, TP-H has emerged
with desirable safe and strong protective activities against
oxidative damage in ocular (Zhou et al., 2008), vascular, and
other tissues and organs (Mitchell et al., 2003; Wilcox, 2010). The
chemical properties of TP-H, however, prevent it from effectively
crossing the cornea (Figure 1). As such, topical drug delivery is
not feasible for applications to the back of the eye. Therefore,
TP-H was chemically modified into a prodrug, OT-551, (with a
cyclopropyl group and an ester linkage) which is more lipophilic
than TP-H or TP. In contrast to TP and TP-H, OT-551 is fully
capable of penetrating the cornea and can travel, via the scleral
route, to reach the macula at the back of the eye. In the eye,
ocular esterases can convert OT-551 to more water soluble, less
lipophilic, TP-H, which can function in the back of the eye, at the
macula and retina (Figure 1).

OT-551 has been tested for preventative and therapeutic
activities in a range of eye, skin, and other conditions. In
general, it appears to be a safe and effective small molecule
drug candidate which can activate nuclear factor E2-related
factor (Nrf-2) and the anti-oxidant response element (ARE),
and can inhibit nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB; Greenwald et al., 2014). As
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FIGURE 1 | Piperidine nitroxide OT-551 eye drop for preserving visual acuity (VA) in AMD (Top), nitroxide group redox cycling (Bottom, A) and
piperidine ring redox reactions (Bottom, B). (Top) The piperidine nitroxide, OT-551, as an eye drop drug candidate for preserving visual acuity (VA) in AMD (Top).
OT-551 is a prodrug of Tempol Hydroxylamine (TP-H; Top, middle position). OT-551 is more lipophilic than TP-H and is depicted as a topically administered OT-551
eye drop. The structure of OT-551 is shown (Top, far left). OT-551 is self- administered as daily (3× – 4×) eye drops to the front of the human eye of patients with dry
AMD (Age related Macular Degeneration), as shown with the thick black arrow. The red dashed arrows indicate the proposed movement of lipophilic OT-551
traveling through the cornea and the scleral route to the back of the eye to the macula, which is the region of greatest VA. OT-551 ester bonds would be cleaved by
esterases to yield TP-H (or for short TH, see text) with the chemical structure is shown (Top, far right). In the back of the eye the macula can be seen as an oval
yellowish colored area surrounding the fovea and near the center of the retina in the area between the two red arrow tips (at about the 3 o’clock position in this eye
diagram). (Bottom, A) The nitroxide group redox cycling reactions between the nitroxide radical (A, left ring), the Oxo-ammonium cation, (A, right upper ring), and
the Hydroxylamine (A, right lower ring). (Bottom, B) The piperidine ring redox reactions at the 4-position of the piperidine nitroxide ring.
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mentioned above, Nrf2 activation modulates a large number of
genes, including anti-oxidant enzymes, and genes that control
distinct immune and anti-inflammatory responses. Because Nrf2
activation is responsible for cytoprotective functions, nitroxide
compounds such as OT-551, TP-H, and TP may be utilized
therapeutically to impede smoking-related skin damage and
AMD.

OT-551 formulated as a topical daily eye drop for dry AMD
patients is capable of significant preservation of both standard
luminance VA and low luminance visual acuity (LLVA), which
is a measure of impaired night and reduced light vision, as
evidenced in human Phase 2 clinical trials for dry AMD. The
initial NEI (National Eye Institute, open-label single center) was
a National Eye Institute Intramural Research Program sponsored
Phase 2 clinical trial for OT-551 in dry AMD which achieved
statistical significance for the primary endpoint of preserving
VA (Wong et al., 2010). In this NEI trial, the mean change in
best corrected visual acuity (BCVA) for the OT-551 study eye
was equal to 0.2 ± 13.3 letters, as compared to –11.3 ± 7.6
letters for the fellow control eye (p = 0.0259). The NEI
trial showed a significant effect of OT-551 on the primary
endpoint of VA, but did not show a meaningful effect on the
secondary endpoints: growth of Geographic Atrophy (GA) lesion
(monitored photographically), drusen size (monitored by optical
coherence tomography), or retinal sensitivity (monitored by
microperimetry).

In the separate OMEGA (OT-551 Multi Center Evaluation
of GA) Phase 2 trial, initiated prior to the completion of the
NEI study, the primary endpoint for OT-551 was changed to the
prevention of GA, which did not achieve statistical significance.
However, in the OMEGA trial, the secondary endpoint for
OT-551 was VA, and statistical significance was achieved, as
monitored by BCVA and also by LLVA. The month 12 interim
OMEGA results showed that the OT-551 positive effect on
reducing vision loss at 12 months was statistically significant.
OT-551 eye drops at 0.45% significantly (1) reduced loss of
VA versus baseline in all study eyes, across all levels of Low
Luminance Deficit (LLD; a measure of visual function derived
as the difference between BCVA and LLVA; with p = 0.0499),
and (2) reduced loss in study eyes at higher risk of moderate
vision loss with LLD ≥ 15 at baseline (p = 0.0360). The
month 18 results also showed a positive OT-551 signal. The OT-
551 protective trend was maintained at 18 months for LLVA,
as monitored by LLD. The administration of 0.45% OT-551,
versus the placebo control, reduced loss of vision versus baseline
in all study eyes with 18 months data across all levels of
LLD.

Thus, the OMEGA results confirmed the NEI results for
OT-551 in preserving VA and also extended the data to show
OT-551 was capable of preserving LLVA. Direct comparison of
the two Phase 2 data sets shows that in the NEI trial the AMD
patients had 100% bilateral GA at baseline, while in the OMEGA
trial the AMD was less advanced in patients, with only 81%
bilateral GA at baseline. Despite this difference in patient cohorts,
and differences in the dosing regimen and eye drop size, both NEI
and OMEGA trial data suggest that OT-551 eye drops are capable
of reducing further loss in VA in AMD patients.

Thus, the OT-551 clinical data from these two different
Phase 2 clinical AMD trials indicate that OT-551 appears safe
and effective in preserving standard VA and preserving LLVA
in dry AMD patients after receiving multiple (3x–4x) daily
administrations of eye drops (20–30 μL), as a self-administered
topical eye drop formulation. In these clinical studies, the AMD
patients’ VA was quantitatively measured in standard luminance
or low luminance, via eye chart exams of the OT-551 eye drop
instilled eye, as compared to the patients’ randomly chosen
control (non-treated) eye. Safety has been demonstrated in
over 200 patients who have taken OT-551 for up to 2 years,
with no drug-related adverse events. Further studies would be
required to determine the effects of OT-551 on VA, LLVA,
night vision, inflammation, or inflammatory eye pain in elderly
AMD patients who smoke, as compared to non-smoker AMD
patients.

The LLD symptoms in intermediate AMD appear to be
relevant for the OT-551 OMEGA clinical trial with respect to
the important new clinical LLD findings of Wu et al. (2015),
suggesting, “VA measures under low luminance conditions may
better reflect visual difficulties experienced by individuals. These
findings are especially important when considering relevant
clinical end points—namely, ‘a characteristic or variable that
reflects how a patient feels, functions, or survives,’ as defined
by the Biomarkers Definitions Working Group (Atkinson et al.,
2001)—for interventional studies targeting the early stages of
AMD (see also Csaky et al., 2008; Lesmes et al., 2013).”

There are good reasons to consider that the cigarette smoking
status of the OT-551 clinical trial participants may be important
and AMD smokers are an appropriate experimental patient
group for proposed future dry AMD clinical trials, to directly
compare AMD cigarette smoking and AMD non-smoking
patients. OT-551 may also be formulated for safe and effective
skin or eye protection against smoke- or other chemical damage,
as well as for protection against intense white- or especially
blue- and ultra-violet-radiation-induced damage, as observed in
animal models (Tanito et al., 2007, 2010), or for inflammatory
pain. In other human clinical studies, topical administration of
TP prevented radiation-induced skin burns and hair loss, when
applied to the skin of the head (scalp) of brain cancer patients
(Metz et al., 2004).

OT-551 has solid toxicology data (Wilcox, 2010) and is
formulated as a topical eye drop for preventing or arresting
progression of damage, degeneration, and loss of VA. OT-551
appears safe and effective in dry AMD and has promise for
certain other ocular conditions, including in the front of the
eye. Lipid peroxidation is an important factor in inflammatory
eye conditions, and in progressive and degenerative eye disease
(Wilcox, 2010; Tokarz et al., 2013). OT-551 inhibits damage
and preserves VA, likely through its various anti-oxidant, anti-
inflammatory, anti-angiogenic, or other activities. OT-551’s
anti-angiogenic activity does not appear to involve vascular
endothelial growth factor (VEGF; a signal protein produced by
cells that stimulates vasculogenesis and angiogenesis) inhibition.
For AMD patients, this anti-angiogenic activity may potentially
be considered as complementary to, or synergistic with, certain
approved and marketed AMD anti-angiogenic strategies.
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The continued development of OT-551 via immediate or
extended release formulations in topical, oral, or parenteral
pharma drug products appears warranted for: (a) topical
administration as an ophthalmic formulation for aging (and/or
smoking) related macular degeneration at the back of the eye,
as well as (b) evaluation of OT-551 mediated activities for
conditions in the front or inside the eye, including itching and
irritation from allergens, smoke, radiation, chemicals, blue-/UV-
light and associated inflammatory pain.

TEMPOL IN SMOKING-RELATED
AND/OR AGING-RELATED VASCULAR
CONDITIONS AND CARDIOVASCULAR
DISEASE

Current chronic smoking and advancing age are well-known
and accepted risk factors for CVD, including hypertension,
coronary heart disease, stroke, and peripheral artery disease
(Kannel and Higgins, 1990). Current chronic young or elderly
adult smokers have reduced cardiovascular function and smoking
causes serious eye, skin, hair, vascular, and other tissue and
organ degenerative conditions, including lung, metabolic, and
neoplastic diseases. In addition to these diseases and AMD,
smoking places individuals at higher risk for many other serious
conditions and diseases, many or most of which are related
to the cardiovascular system. For example, acute exposure
to cigarette smoke causes immediate increases in arterial
stiffness and blood pressure (Katayama et al., 2004) as well as
reductions in conduit vessel endothelial function (Ijzerman et al.,
2003).

The microvasculature is typically the major site of initial
vascular damage in CVD progression, as impaired microvascular
function can be detected prior to the onset of clinical symptoms
(Abularrage et al., 2005; Khan et al., 2005; Joannides et al., 2006).
Indeed, it has been well-established that current chronic cigarette
smoking significantly impairs microvascular function, even in

relatively young, otherwise healthy, individuals (Pellaton et al.,
2002; Dalla Vecchia et al., 2004; Edvinsson et al., 2008; Fujii
et al., 2013). Furthermore, it has been suggested that impaired
microvascular function is also the main mechanism behind other
symptoms associated with cigarette smoking, such as increased
blood pressure and decreased insulin sensitivity (Attvall et al.,
1993).

Much of the risk associated with current chronic smoking and
advancing age is related to oxidative stress induced degeneration.
Indeed,many cardiovascular conditions and diseases are chronic,
progressive reactions initiated, and propagated by local oxidative
stress and chronic vascular inflammation (Mangge et al., 2014).
Oxidative stress induced inflammation is mediated by different
cell types involved in vascular inflammation, producing cytokines
with specific membrane receptors for transmission into the
cells. Various different cell types communicate, express, and
recognize pro-inflammatory or anti-inflammatory cytokines
(Ambati et al., 2013). TP-H and TP based agents, may include
anti-inflammatory, catalytic anti-oxidant, or anti-angiogenic
activities important for various applications in preventative or
therapeutic vascular dysfunctions in patients, including those
who chronically smoke (Table 1). This is probably also true
for certain other diet, chemical and radiation exposures in
aging-related human conditions of eye, skin, and cardiovascular
systems (Hahn et al., 2000; Cheung and Wong, 2014; Greenwald
et al., 2014). The skin offers an ideal place to study the
therapeutic effects of TP-H or TP formulations on cardiovascular
health.

HUMAN STUDIES SHOWING
MECHANISMS OF MICROVASCULAR
DYSFUNCTION IN CURRENT CHRONIC
SMOKERS

In general, study of the microcirculation presents a challenge
due to difficulties in accurately imaging and reproducibly

TABLE 1 | Human young adult cutaneous microvascular clinical outcomes with cutaneous Tempol (TP).

Reference Cohort Presenting Results Comments

Fujii et al., 2014 Young adult age current chronic
smokers of cigarette tobacco

Impaired microvascular
function associated with
current chronic cigarette
smoking

In 90% of subjects, cutaneous TP
administration restored plateau Cutaneous
Vascular Conductance, CVC1, compared to
control non-treated (no TP) cigarette tobacco
smokers

TP restores cutaneous
microvascular function and
Nitric Oxide and Nitric
Oxide Synthetase
dependent vasodilation

Medow et al., 2011 Young adult age non-smokers
(not a cigarette smoker and not
exposed to secondhand
cigarette smoke)

Healthy; no impaired
microvascular function

In 100%, of subjects, cutaneous TP
administration had no effect on plateau CVC,
compared to controls in young adult
non-smokers

Cohort not expected to
have high amounts of
Reactive Oxygen Species
(ROS) and not expected to
have impaired
microvascular function

Medow et al., 2011 Young adult age non-smokers
with oxidative stress
experimentally induced by
infusion of angiotensin II

Impaired microvascular
dysfunction induced by
angiotensin II

In 90% of subjects, cutaneous TP
administration restored plateau CVC when
Reactive Oxygen Species (ROS) was induced
by angiotensin II

TP restores microvascular
function by inhibiting ROS

1Cutaneous Vascular Conductance (CVC) as evaluated by cutaneous red blood cell flux divided by the mean arterial blood pressure (MAP).
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quantitating microcirculation under minimally or non-invasion
conditions. However, the cutaneous microcirculation can be
studied relatively easily and non-invasively, and is relevant to
smokers and elderly individuals, due to significant skin wrinkle
formation, and yellowing of the skin in smokers. Furthermore,
the cutaneous microcirculation has been shown to be reflective
of generalized microvascular dysfunction in disease progression
(Khan et al., 2000; Ijzerman et al., 2003; Kruger et al., 2006).
One can study the mechanisms behind impairments in cutaneous
microvascular function using techniques such as microdialysis
and iontophoresis, in which high concentrations of a vasoactive
agent can be delivered to a small area of skin with minimal
systemic effects. Using these techniques, test agents can be
delivered to both stimulate vasodilation (i.e., acetylcholine) and
to inhibit vasodilatory pathways of interest. For example, the role
of the nitric oxide pathway can be investigated by administering
a nitric oxide synthase inhibitor, such as L-NG-nitro-arginine
methyl ester (L-NAME).

A number of protocols have been developed to assess
cutaneous endothelial function. Two of the most commonly
studied are thermal hyperemia and acetylcholine-mediated
dilation. The former involves locally heating a small area of
skin up to 39–42◦C, producing a robust vasodilation, which
is primarily dependent on nitric oxide (Kellogg et al., 1999;
Minson et al., 2001; Choi et al., 2014). The latter involves infusing
acetylcholine into the skin via iontophoresis, microdialysis, or
microinjection, which also involves nitric oxide (Kellogg et al.,
2005; Medow et al., 2008), albeit to a considerably lesser extent
than with thermal hyperemia. Both of these responses are known
to be impaired in young smokers (Edvinsson et al., 2008; Fujii
et al., 2013, 2014) and with advanced age (Minson et al., 2002;
Holowatz et al., 2005).

From studies using these approaches in conscious humans,
chronic current cigarette smoking is believed to impair
microvascular function primarily by reducing nitric oxide
bioavailability via oxidative stress. In support of this notion, Fujii
et al. (2013) demonstrated impaired cutaneous microvascular
function to be entirely the result of impaired nitric oxide-
dependent dilation. Cigarette smoke contains a number
of compounds that induce oxidative stress via superoxide
production. For example, the semiquinone radical in cigarette
tar directly produces superoxide (Pryor and Stone, 1993),
and both nicotine (Fang et al., 2006) and stable thiol-reactive
agents (Jaimes et al., 2004) activate NADPH oxidase, which
produces superoxide. Superoxide combines with nitric oxide
to produce hydrogen peroxide, effectively reducing nitric oxide
bioavailability and thereby impairing endothelium-dependent
dilation.

The mechanisms behind impaired microvascular function
in young smokers are remarkably similar to those observed
in primary aging. As such, we have proposed that cigarette
smoking is a model of premature aging of the vascular
system. Primary aging is characterized by reduced nitric oxide
bioavailability, secondary to oxidative stress, and much of the
vascular impairment can be ameliorated by anti-oxidants, such
as ascorbate (Vitamin C), which stoichiometrically scavenges
superoxide and also stabilizes tetrabiopterin, an important

cofactor for nitric oxide synthase (Heller et al., 2001). For
example, intra-arterial infusion of supra-physiological doses of
ascorbate in older human subjects improves arterial stiffness
(Hildreth et al., 2014) and endothelial function in conduit
vessels (Eskurza et al., 2004; Wray et al., 2012) and in the
microcirculation of skeletal muscle (Kirby et al., 2009) and
the skin (Holowatz et al., 2006). Interestingly, similar effects
of ascorbate on conduit-vessel function have been observed in
young smokers (Katayama et al., 2004). It is important to note
that, in individuals with low levels of oxidative stress (i.e., young,
healthy non-smokers), minimal or no effects of certain anti-
oxidants have been observed (Eskurza et al., 2004; Kelly et al.,
2008).

HUMAN CLINICAL STUDIES WITH
TEMPOL MEASURING RAPID
IMPROVEMENT OF MICROVASCULAR
FUNCTION

Fujii et al. (2014) demonstrated TP acutely and rapidly (within
30min) improves the thermal hyperemia response in young adult
smokers, returning the response back to that typically observed
in healthy non-smokers and effectively reversing their impaired
endothelial function observed. This effect was found to be entirely
nitric oxide-dependent. As such, the authors concluded the effect
of TP was due to a removal of oxidative stress, and therefore
increased nitric oxide bioavailability (Fujii et al., 2014). The
various TP-based nitroxide drug candidates which can be best
used to improve cutaneous microvascular function or reduce the
cardiovascular burden of cigarette smoking in humans remains
to be systematically investigated.

Tempol based piperidine nitroxides may have similar effects
in the aging microvasculature. Medow et al. (2011) observed TP
could fully reverse the reduction in thermal hyperemia caused
by infusion of angiotensin-II in young adults. Angiotensin-II is
elevated with advanced age, as well as in many disease states,
and induces oxidative stress by activating NADPH oxidase and
xanthine oxidase. Thus, infusion of angiotensin-II mimics an
aging state. Furthermore, DuPont et al. (2014) demonstrated both
TP and Apocynin, an inhibitor of NADPH oxidase, ameliorate
the impaired thermal hyperemia observed in chronic kidney
disease, another disease state characterized by high oxidative
stress.

Although no studies to date have administered TP
systemically in humans to treat endothelial dysfunction in
other microvascular beds (i.e., in the heart, kidneys, etc.),
experimental animal studies have shown systemic TP to be
effective for improving microvascular function under conditions
of high oxidative stress (Wilcox, 2010). For example, chronic
administration of TP improved skeletal muscle microvascular
function in obese rats (Frisbee, 2005) and retinal microvascular
function in diabetic mice (Yadav and Harris, 2011). Vascular
impairments associated with angiotensin-II administration were
also prevented in mesenteric arteries of rats treated with TP for
2 weeks (Wang et al., 2010).
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CONCLUSION AND FUTURE
DIRECTIONS

These nitroxide agents appear to be safe and effective drugs with
anti-oxidant and other activities. They inhibit tissue oxidative
stress and inflammation, and also have very significant effects
on the gut microbiome, food energy utilization, and metabolism
(Li et al., 2013; Kim et al., 2015). TP and TP-H, as piperidine
nitroxides, have properties which mimic superoxide dismutase
enzyme (SOD) activity. The membrane permeability and potency
of small molecule TP, TP-H,OT-551, and analogs can be relatively
superior to SOD as a human enzyme. TP has a relatively
high rate constant in catalytic decompositions of peroxynitrate-
derived free radicals, including nitrogen dioxide, carbonate, and
superoxide as free radicals. Peroxynitrate is produced in the
reaction of nitric oxide with superoxide anions in vasculature,
ocular, skin, and other tissues. Nitroxide based drugs, like TP-H
or TP, can protect against peroxynitrate damage in red and other
blood cells, platelets, and blood plasma, as well as protect proteins
and lipids in other cells and tissues.

In summary, there are promising uses of these nitroxide-based
drugs as anti-inflammatory, anti-angiogenic, or anti-oxidant
agents, in reversing impaired cutaneous endothelial function
for smokers; preserving VA in AMD; or inhibiting disease
conditions where inflammation, angiogenesis, or oxidative stress
are mediators of dysfunction. Future studies are warranted to
determine whether TP, TP-H, OT-551 prodrug, or analogs can
be used safely and effectively in topical, oral, or injectable
formulations to promote health, by preventing or therapeutically
treating certain chronic inflammatory conditions or aging-
related degeneration and disease.
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