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Many applications of high throughput sequencing rely on the availability of an accurate
reference genome. Variant calling often produces large data sets that cannot be
realistically validated and which may contain large numbers of false-positives. Errors
in the reference assembly increase the number of false-positives. While resources are
available to aid in the filtering of variants from human data, for other species these do
not yet exist and strict filtering techniques must be employed which are more likely to
exclude true-positives. This work assesses the accuracy of the pig reference genome
(Sscrofa10.2) using whole genome sequencing reads from the Duroc sow whose
genome the assembly was based on. Indicators of structural variation including high
regional coverage, unexpected insert sizes, improper pairing and homozygous variants
were used to identify low quality (LQ) regions of the assembly. Low coverage (LC) regions
were also identified and analyzed separately. The LQ regions covered 13.85% of the
genome, the LC regions covered 26.6% of the genome and combined (LQLC) they
covered 33.07% of the genome. Over half of dbSNP variants were located in the LQLC
regions. Of copy number variable regions identified in a previous study, 86.3% were
located in the LQLC regions. The regions were also enriched for gene predictions from
RNA-seq data with 42.98% falling in the LQLC regions. Excluding variants in the LQ, LC,
or LQLC from future analyses will help reduce the number of false-positive variant calls.
Researchers using WGS data should be aware that the current pig reference genome
does not give an accurate representation of the copy number of alleles in the original
Duroc sow’s genome.

Keywords: missassembly, copy number variable regions, structural variation, draft assemblies, false positives

INTRODUCTION

Contemporary genetics research benefits from genomics tools and resources, including DNA
sequencing and single nucleotide polymorphism (SNP) chips, which facilitate detailed quantitative
molecular characterization of genetic variation at the population and individual level. A high
quality reference genome sequence for the species of interest is an invaluable asset for the discovery
of molecular genetic variants. Most reference genome sequences for species with large, complex
genomes are incomplete representations of the genome sequence of a single individual or a small
number of individuals. Given the extent of insertion/deletion (indel) polymorphisms and copy
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number variation (CNV) within species, such individual
reference genomes do not contain all the sequences present in the
species of interest. Thus, there are two major flaws in the current
single linear model for reference genomes as a framework for
discovery and analysis of genetic variation: (1) errors and gaps in
the reference genome assemblies most of which are incomplete
drafts; and (2) using a haploid genome of one individual to
represent the genome(s) of a species. In this paper we focus solely
on the former.

Studies that employ variant calling from sequencing data to
find variation in the genome produce large variant call sets
(Robert et al., 2014; Belkadi et al., 2015; Bianco et al., 2015;
Gudbjartsson et al., 2015). Most of these calls will be either
false-positive, not relevant to the phenotype under investigation
or benign (MacArthur et al., 2012). Failure to detect true
variants (i.e., false-negatives) will also occur either as a result
of insufficient sequence depth or gaps in the reference genome
(real or technical). Filtering these datasets reduces the number of
variants to a level which can be validated, however, in the process
researchers risk discarding the variants they are looking for.

Many applications of high throughput sequencing rely heavily
on the accuracy of the available reference genome for the
species. Errors in the reference genome increase the number
of false-positive variant calls in data, resulting in a need for
more stringent filters which may increase the risk of removing
true-positives. Shortcomings in the reference genome will also
increase the risk of missing true variants (i.e., false-negatives).
The human genome is more accurate than that of many other
species and more resources are available to aid in the filtering
of false-positive variants. Many reference genomes have a draft
status and gaps and misassemblies are not uncommon (Kelley
and Salzberg, 2010). Identifying misassembled regions in the
reference genomes of non-human species and excluding them
from analysis will help to reduce false-positives in variant calling
data.

Whole genome sequencing (WGS) produces fairly consistent
coverage across the genome (Belkadi et al., 2015), however,
the PCR step in the Illumina library preparation pipeline is
known to introduce bias, particularly in regions of high or low
GC content (Kozarewa et al., 2009). Modifications have been
introduced to protocols to reduce this bias (Aird et al., 2011),
however, sequencing depth and quality in GC-rich and -poor
regions remain unreliable when using protocols involving a PCR
step. Previous work has shown that CNV can be accurately
detected in WGS data by looking for areas of excessively
high or low read counts following adjustment for GC content
(Yoon et al., 2009; Zhang and Backstrom, 2014). To identify
misassemblies in the chicken genome, a previous study used
a pool of multiple birds to account for true variation between
individuals, treating regions where all individuals show low read
counts as false tandem duplications (Zhang and Backstrom,
2014).

In this paper, we look to identify low-confidence regions in
the reference genome assembly Sscrofa10.2 using WGS reads
from T. J. Tabasco (Duroc 2-14), the Duroc sow whose DNA
was used in the assembly (Groenen et al., 2012). The assembly
was constructed using a BAC-by-BAC method, covers 18

autosomes and 2 allosomes (with the Y chromosome constructed
separately from the DNA of male pigs), and contains many
gaps and sequences on unplaced scaffolds. Ideally, an individual’s
sequencing reads mapped to that individual’s own assembled
genome would show no true structural variation and any areas
of structural variation could be considered a misassembly.
But the reference genome is a haploid representation and
cannot reflect areas of true heterozygous structural variation
accurately. However, a conservative approach would treat variant
calls in these areas as low-confidence until further verified.
Regions with no structural variation between the sequencing
reads and the reference genome can be considered high-
confidence.

In addition to using coverage to detect potential duplications
or collapses, we use other indicators to identify different kinds of
structural variation such as inversions, deletions and insertions as
has been done previously to identify potentially disease causing
structural variation in human genomes (Tuzun et al., 2005).
Illumina paired-end sequencing generates read-pairs from the
same DNA fragment that are a known distance apart (usually
following a normal distribution), and in a known orientation with
respect to the reference genome. Therefore, when read pairs are
mapped to a reference, if they are not in the expected orientation,
or are an abnormal distance apart, this may also be an indication
of errors in the assembly.

Finally, when mapping reads from the same animal to the
reference genome created from that animal, there should be no
homozygous variant calls.

In this work, regions with abnormally high or low coverage
(LC), with high proportions of reads with unexpected insert
sizes or a high proportion of reads which were improperly
paired were identified. In addition, SNP and indel calling
was carried out. Regions were considered low quality (LQ)
if they had high coverage, a high proportion of unexpected
insert sizes or improperly paired reads or if they were in
proximity to a homozygous variant. LQ regions are the most
likely to represent misassemblies in the genome. Regions
which had LC were analyzed separately; these regions may
not necessarily be misassembled, but have poor coverage and
may therefore be unreliable for accurate variant calling. Both
regions were also analyzed together in a combined dataset
(LQLC).

Following identification of regions of the reference which may
be unreliable, publicly available data sets were downloaded and
overlap with the regions calculated. The data sets downloaded
were the coding region, dbSNP variants, copy number variable
regions (CNVRs) identified by Paudel et al. (2013) using a
method that assesses read depth, and gene predictions based
on data obtained using RNA-seq methods. These data sets
allowed for identification of the proportion of the coding region
overlapping the unreliable regions, and to assess how commonly
used methods of SNP and indel calling, CNVR calling and
RNA-seq may have been affected by unreliable regions of the
genome assembly. We would expect the coding region to be
under represented in the LQLC regions because the coding region
is generally more complex, which should make assembly more
accurate. If the unreliable regions are enriched for calls in these
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datasets, it may suggest that analysis of these regions produces a
higher level of false-positives than the rest of the genome.

MATERIALS AND METHODS

Sample, Sequencing, and Alignment
Eight sets of paired-end, whole-genome, Illumina sequencing
reads from a single sample from T. J. Tabasco, the sow whose
genome was used to construct Sscrofa10.2, were used in this
study1. BWA (v0.6.2: Li and Durbin, 2009) was used to align
the reads to the Sscrofa10.2 reference assembly using default
parameters. The reads were mapped to both the chromosomes
and the unplaced scaffolds from the assembly. Any reads which
mapped to chromosome Y were excluded as the sequences were
from a female pig; consequently, we are unable to comment on
the quality of the assembly of chromosome Y.

Identifying Regions with Abnormal
Coverage
SAMtools was used to filter the data to remove reads with a
mapping quality less than 2 or which were improperly paired.
BEDtools (v2.16.2: Quinlan and Hall, 2010) bamtobed was used
to extract the chromosome, start positions and the end positions
of whole sequencing fragments. BEDtools GenomeCov was then
used to find per-base fragment coverage across the genome.
BEDtools MakeWindows was used to make windows of 1000bp
across the whole genome. Gap data was downloaded from the
UCSC table browser (Karolchik et al., 2004) and BEDtools
intersect was used to remove windows intersecting gap data.
The median coverage for each 1000 base window across the
genome was calculated. GC content is known to have a significant
effect on coverage in sequencing methods that involve a PCR
stage (Kozarewa et al., 2009). Coverage was normalized by GC
content as described by Yoon et al. (2009). Briefly, the read
coverage in each 1 Kb window (w) was adjusted by a multiplying
factor f, with f equal to the ratio of the overall median across
all windows divided by the median of all windows with the
same GC percentage as that of the window w. Using the median
instead of the mean prevented these values from being inflated by
extreme outliers, as described by Zhang and Backstrom (2014).
Any window with a normalized coverage over 55 or under 27
(2 SD from the mean; 41) was defined as having an abnormal
coverage.

The removal of multimappers prior to coverage analysis may
cause the detection of LC regions in certain sequence contexts
in the genome that are more likely to contain multimappers
(e.g., repetitive regions). Multimapped reads were extracted from
the original bam file and read counts for these were calculated
using Bedtools Coverage and the same 1000 bp windows used
in the above coverage analysis; additionally raw read counts for
each window were calculated in the same way from the original
bam file. The percentage of reads in each window which were
multimapped was calculated. Windows with >50%multimapped
reads are likely to have been identified as LC due to the removal

1http://www.ebi.ac.uk/ena/data/view/ERP010190

of these reads before coverage analysis. The regions with >50%
multimappers were merged and intersect with the LC regions was
calculated using Bedtools.

Identifying Regions with Abnormal Insert
Sizes
The mean and standard deviation of the insert sizes was
calculated using Picard InsertSizeMetrics2 (v1.113). Insert sizes
were considered abnormal if they were more than 2 SD from
the mean (427 bp). The merged BAM file was filtered for
abnormally large (above 588 bp) and small (below 266 bp) insert
sizes. BEDtools coverage was used to find the read count of
the abnormal reads and the original BAM file using 1000 base
windows with 200 overlap created with BEDtools MakeWindows.
These data were used to calculate the percentage of abnormal
reads in each window. A high proportion of small insert sizes
was defined as a window with over 9.47% small insert sizes (2 SD
above the mean of 4.22%) and a high proportion of large insert
sizes was defined as a window with over 1.86% large insert sizes
(2 SD above the mean of 0.12%).

Identifying Regions with a Low
Proportion of Properly Paired Reads
The mapped reads were filtered using SAMtools for the SAM
flag 0×2, removing reads which were flagged as improperly
paired. The percentage of properly paired reads was calculated as
described for insert sizes. Any window with fewer than 70.59%
(2 SD below the mean of 92.5%) properly paired reads was
considered abnormal.

Variant Calling
Single nucleotide polymorphism and indels were called using
SAMtools mpileup, BCFtools and vcfutils varFilter. The resultant
vcf file was filtered for homozygous variants, indicative of errors
in the reference genome or sequencing errors. In order to include
the entire regions covered by reads overlapping each variant, the
regions spanning from 100 bases before to 100 bases after each
variant were considered low quality.

Merging
BEDtools was used to merge the regions identified by the above
parameters into LQ, LC, and LQLC regions. BEDtools intersect
was used to find regions of each group which overlapped with the
coding region (regions downloaded from UCSC table browser;
Karolchik et al., 2004). Sanger’s gEVAL website3 was used to
inspect BAC and fosmid end alignments in a number of the
identified regions.

Assessing Effect of Identified Regions on
Public Data
Known variant data were downloaded from dbSNP (Sherry et al.,
2001) and the number of variants overlapping the abnormal
regions were calculated. To assess the potential effect of these

2http://sourceforge.net/p/picard/wiki/Main_Page/
3http://geval.sanger.ac.uk/index.html
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regions on WGS resequencing studies in pigs, the regions
identified as CNVRs in Paudel et al. (2013) were downloaded and
the number of regions overlapping the abnormal regions from the
current study were calculated. Gene predictions based on RNA-
seq data were downloaded from Ensembl (Cunningham et al.,
2015) and the number of bases overlapping the identified regions
calculated.

RESULTS

Alignment
582,271,856 reads mapped to the reference and 94.66% of these
were properly paired (551,173,366 reads).

Abnormal Regions
The effect of GC content on median coverage was as expected,
with both high and low GC content regions having poor median
coverage (Figure 1A).

While the coverage following GC normalization did follow a
normal distribution, several extreme outliers inflated the mean
and standard deviation. R (R Development Core Team, 2009)
was used to find the mean and standard deviation of the
majority of the data by overlaying a normal distribution on the

data (Figure 1B). Using this method, we determined the mean
coverage to be 41X and the standard deviation to be 7.

Regions identified by the parameters measured are
summarized in Table 1. In total, 2.6% of the genome had
abnormally high coverage, and 26.6% of the genome abnormally
LC. Regions with a high percentage of fragment pairs with
abnormally low and high insert sizes cover 3.99% and 1.52%
of the genome, respectively. Regions with a low percentage
of properly paired reads cover 4.95% of the genome. One of
the largest regions identified (77.8 Kb) has abnormal coverage,
insert sizes and read orientation (Figure 2A), and this is not
uncommon, further examples are shown in Figures 2B,C.

There were a total of 62,463 regions with >50%multimappers
and of these 99.3% overlapped with the LC regions. 66% of
the regions identified as LC overlapped with the multimapped
regions. The remaining LC regions had an unremarkable
distribution of GC contents (data not shown) and the majority
(81%) had 0 multimappers. The median read count per window
for the whole genome was 264 and the median read count
per window for the LC regions excluding those with >50%
multimappers was 161.

We identified a total of 583,093 homozygous variants.
Following merging, there were 245,972 regions identified as
abnormal due to proximity to these variants covering 63,085,828
bases (2.25% of the genome).

FIGURE 1 | Plot showing median coverage of windows against percentage of GC content (A). Histogram showing the distribution of window coverage, red
line represents a normal distribution (B).

TABLE 1 | Table summarizing the regions identified by different parameters measured.

No. of features Mean feature size Percentage of genome

High coverage 60,281 1,202 2.6

Small insert 82,097 1,363 3.99

Large insert 31,833 1,343 1.52

Improperly paired 77,785 1,786 4.95

Homozygous variants 245,972 256 2.25

Low quality (LQ) 409,905 949 13.85

Low coverage (LC) 119,251 6,275 26.6

Total (LQLC) 337,276 2,753 33.07
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FIGURE 2 | Plots showing examples of abnormal regions for multiple parameters on Chromosomes 6 (A), 12 (B), and X (C) (top). GC normalized
coverage (red) uses the left Y axis. Percentage of properly paired reads (blue) and percentage of high insert sizes (green) use the right Y axis. Means are represented
by solid lines and 2 SD from the mean are represented by dashed lines. Bottom shows same regions viewed on the gEVAL browser with poorly mapped fosmids
(top) and bac ends (bottom) shown in red.

Merged Regions
After merging the regions with abnormal insert sizes, abnormal
read orientation, and homozygous variant calls, we were left with
409,905 regions identified as being LQ, covering 13.85% of the
genome.

In total, 337,276 regions were identified as being LQLC and
the regions covered a total of 928,664,896 bases (33.07% of the
genome). If the multimapped regions are excluded from the LC
regions and the remaining LC regions are merged with the LQ
regions these cover 17.3% of the genome.

The coding region data downloaded fromUCSC table browser
covered 587,219,382 bases (excluding chromosome Y) and of
these 81,566,904 (13.89%) intersected with the LQ regions.

Of the coding region, 154,875,678 bases (26.37%) intersected
with the LQLC regions.

Impact on Public Data
The proportion of variants from publicly available data sets from
Paudel et al. (2013) and dbSNP (Sherry et al., 2001) that fall in the
abnormal regions are summarized in Table 2.

Paudel et al. (2013) identified 61,761 multi-copy regions
(MCR), and from these identified 3,118 CNVRs. Of the CNVRs
1,081 (34.66%) lie in the LQ regions and 2,692 (86.3%) lie in the
LQLC regions identified here.

The data downloaded from dbSNP (Release 104. Accessed:
05/05/2015) contain 52,634,111 known variants. In total,
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TABLE 2 | Table summarizing the proportion of called variants in publicly available data that fall in the abnormal regions identified in the current study.

Total LQ LC Combined (LQLC)

% of genome – 13.85% 26.6% 33.07%

% of coding region – 13.89% 17.72% 26.37%

dbSNP variantsa 52,634,111 19,121,760 (36.33%) 15,483,445 (29.42%) 27,009,232 (51.3%)

CNVRsb 3,118 1,081 (34.66%) 1,706 (54.71%) 2,692 (86.3%)

RNA-seq genesc (intersecting bases) 41,788,900 11,155,280 (26.69%) 11,360,980 (27.19%) 17,959,798 (42.98%)

aData from dbSNP database (Sherry et al., 2001).
bData from Paudel et al. (2013).
cData from Ensembl (Cunningham et al., 2015).

19,121,760 (36.33%) dbSNP variants were located in the LQ
regions, 15,483,445 (29.42%) dbSNP variants were located in the
LC regions and 27,009,232 (51.3%) dbSNP variants were located
in the LQLC regions.

The gene predictions based on RNA-sequencing data covered
41,788,900 bases, 26.69% of these bases were in the LQ region
(11,155,280), 27.19% were in the LC region (11,360,980) and
42.98% were in the LQLC regions (17,959,798).

DISCUSSION

This work emphasizes the importance of accuracy in reference
genomes in variant discovery research. Previous work by Zhang
and Backstrom (2014) used sequencing reads from multiple
chickens to detect misassemblies in the chicken genome. Here
we used data from the same individual used to construct the
pig reference assembly. We are therefore able to assess the
assembly without introducing potential true variation that may
be present by chance in multiple individuals; however, regions of
the genome may have been incorrectly identified as low-quality
due to true structural variation at heterozygous sites.

Regions of Sscrofa10.2 identified in this study were enriched
for variants from dbSNP. The fact that the regions identified
were enriched for variants in dbSNP, with the LQLC regions
containing over half of the dbSNP variants, supports the
assertion that these regions are enriched for false-positives;
dbSNP contains large numbers of SNPs that are not validated and
are potentially false-positives (Mitchell et al., 2004; Musumeci
et al., 2010).

In the CNVR study by Paudel et al. (2013), 61,761 MCRs
were identified and the authors state that the majority of these
were common in all individuals sequenced; in this study 60,281
regions were identified as having high coverage and it is likely
that there is overlap between these results. Studies looking for
copy number gains may benefit from excluding the LQ regions
from analysis. From the MCRs, 3,118 CNVRs were identified.
The authors estimated that of these 2,664 (85.43%) were likely
to be neutral or nearly neutral as they were common between
different groups or were in non-genic regions, which is very
similar to the number of CNVRs in the data that overlap the
LQLC regions in the current study (2,692; 86.3%). CNVRs are
called from sequencing data by comparison of read counts for a
region with the average across the genome; it is likely that there
are many false tandem repeats or collapsed repetitive regions

in the assembly that would cause false copy number loss or
gain calls. While regions identified as CNVRs are potentially
variable regions between populations, breeds and individuals,
calls based solely on comparison with the reference will give false-
positives and false estimates of the copy numbers in true variable
regions. Paudel et al. (2013) used copy number comparisons
between individuals from different populations to identify MCRs
that were variable between groups, which likely removed the
majority of the false-positives. Other studies have used array-
based methods to detect CNVRs in the pig genome (Chen
et al., 2012; Wang et al., 2012) and of the regions identified
in these studies, almost all of them fall in the LQLC regions
(data not shown). This suggests these regions truly are enriched
for CNVRs; however, enrichment of the unreliable regions for
CNVRs may also suggest unreliable assembly around large
duplications. In studies using whole genome resequencing, often
small sample sizes are used and too much confidence may
be given to the reference. It would be advisable in studies
using Sscrofa10.2, and references of other species that may
contain similar inaccuracies, not to call CNVRs based solely
on comparison with the reference, but from regional variation
in read count between individuals as has been done previously
for genomes which lack a reference following co-assembly
(Nijkamp et al., 2012) and when comparing sequences from
cancer cells to healthy cells (Chiang et al., 2009; Koboldt et al.,
2012). Similarly, researchers using other techniques that rely
on counting reads mapped to the reference genome such as
ChiP-seq and RNA-seq should be aware that these errors may
cause inaccurate calling or expression estimates. In RNA-seq,
read counts are used to estimate expression levels; unexpected
CNV between the reference and the sample sequence could cause
over- or under-exaggerated read counts, potentially resulting in
false-positives or false-negatives. RNA-seq is prone to off-target
mapping (Mortazavi et al., 2008), particularly at higher depth
(Tarazona et al., 2011); true peaks can often be distinguished
from off-target mapping using an expression threshold. However,
misrepresentation of the copy number of a region in the
reference assembly may exaggerate off-target peaks above the
threshold and cause false-positives, exaggerate true peaks causing
inaccurate expression estimates, or reduce true peaks causing
false-negatives or underestimation of expression. The regions
identified here were enriched for RNA-seq gene predictions,
more so than the annotated coding region, which may suggest
an increased false-positive rate in these regions from this
method.
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A large amount of the genome showed LC. While these
regions may suggest errors in the reference genome, such as false
tandem duplications (Zhang and Backstrom, 2014), they do so
with less confidence than the other parameters measured. The
study by Paudel et al. (2013) reported a considerable number
of copy number losses and subsequently excluded these from
further analysis as they were likely enriched for false-positives;
the fact that this excess of LC regions has been encountered
by other researchers may suggest that the problem is with the
quality of the genome assembly or region mappability rather than
the quality of the data used in the current study. Regions with
LC were analyzed separately as LC may be an indicator of the
quality of the sequencing data, PCR bias or poor mappability
and not necessarily inaccuracy in the reference. The majority
of the LC regions were explained by their large proportion
of multimappers; the regions were identified as LC because
multimappers were excluded from the coverage analysis. These
regions may not be misassembled, but rather of poor mappability
due to, for example, low complexity or repetitive sequences.
Of the LC regions which were not explained by multimappers
there was no evidence of extreme GC content causing the
reduced coverage and the majority contained no multimappers;
the LC in these regions likely relates to misassembled areas
in the reference genome, or potentially heterozygous structural
variants in the individual. Where the LC is explained by poor
mappability, it may still be advisable to exclude these regions
from SNP and indel analyses as this is likely to yield LQ
variants with a high rate of false-positives. Studies requiring
identification of only the highest quality variants would reduce
computational burden and false-positive rate by excluding the
LC regions. In studies more concerned with finding variants
relating to a specific phenotype, if LC regions are included,
variants identified in them may be treated as low-confidence,
but not necessarily excluded entirely. The percentage of dbSNP
variants in the LC region is not as high as in the LQ region,
however, fewer variants may be called in poor mappability
regions due to the common practice of filtering out low mapping
quality reads before proceeding to variant calling, reducing
depth and subsequently the chances of calling a variant in
these regions. The proportion of the genome identified here as
LQ is likely to be an over-estimation of the proportion that
is misassembled. The individual may have true, heterozygous
structural variation that cause some of these regions to appear
misassembled and this analysis has been intentionally strict to
allow downstream bioinformatic analysis to focus on only the
highest confidence regions of the genome by excluding LQLC
regions. The number of variants identified in studies employing
variant calling is often extreme and strict filtering techniques are
employed to reduce the number to a more tractable level for
validation (MacArthur et al., 2012; Ai et al., 2015). Excluding
regions which are likely to be enriched for false-positives may
significantly reduce computational burden and increase accuracy.
Strict filtering after variant calling may cause the loss of variants
of interest and it is desirable to reduce the initial number of
variant calls as much as possible to reduce the need for excessive
filtering. While variants of interest may lie in the low-confidence
regions identified here, the excess of false-positives in the region

make it unlikely that they will be easily identified. However,
discovery of variants outside of these regions will benefit from the
reduced number of false-positives in the dataset. Many variant
callers and filtration methods will consider depth and mapping
quality and are likely to exclude a number of false-positive
variants from these regions by default; however, computational
burden would be decreased by excluding unreliable regions,
which will be particularly relevant with large datasets. Other
methods that use regional read count data need to be aware that
Sscrofa10.2 does not accurately represent the copy number of
alleles in the original Duroc sow’s genome. Clearly in studies
searching for CNVRs, excluding the LQLC regions, which are
potentially enriched for true CNVRs, is not an option. In such
studies it would be beneficial to compare individuals in a study
with one another rather than with the reference, as is done in
somatic variant calling comparisons between healthy cells and
cancer cells (Roberts et al., 2013), to filter out variation that
is common in all individuals, or to exclude the LQ regions
only. The degree to which misassemblies will affect research
results depends on a number of factors including the tools
used, the type of misassembly and the type of analysis; for
example, the incorrect order of contigs will negatively affect read-
pair mapping and collapsed duplications may cause incorrect
calling of SNPs – though SNP callers may accurately filter many
of these. Similar inaccuracies to those found here are likely
to be present in the reference genomes of other non-human
species. With the price of sequencing continuing to fall, the
number of large-scale sequencing studies on species with draft
genomes will undoubtedly increase; awareness of inaccuracies
in these references will decrease computational burden and
increase accuracy. Identifying regions that are inaccurate and
producing new, more accurate assemblies will greatly increase
the power of whole-genome resequencing studies in non-human
species.

Availability of Data
The regions identified in this study have been made
available as three bed files: LQ regions, LC regions,
and LQLC regions. BED files are available to download
from http://www.ark-genomics.org/outputs/identification-low-
confidence-regions-pig-reference-genome-sscrofa102
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