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Defining and manipulating specific neurons in the brain has garnered enormous interest
in recent years, because such an approach is now widely recognized as crucial for
deepening our understanding of how the brain works. When I started exploring the
Cre-loxP recombination for brain research in the early 1990s, it was written off as a
dead-end project by a young fool. Yet over the past 20 years, Cre-lox recombination-
mediated neurogenetics has emerged as one of the most powerful and versatile
technology platforms for cell-specific gene knockouts, transgenic overexpression,
Brainbow imaging, neural pathway tracing with retrovirus and CLARITY, chemical
genetics, and optogenetics. Its popularity and greater utility in neuroscience research
is also largely thanks to the NIH’s bold Blueprint for Neuroscience Research Initiative
to launch several Cre-driver resource projects, as well as individual laboratories and
private research organizations. With newly-discovered, genetically-encoded molecules
that are capable of responding to sonar and magnetic stimulation, for sonogenetics or
magnetogenetics, respectively, or detecting rapid voltage changes in neurons, Cre-lox
neurogenetics will continue to aid brain research for years to come.

Keywords: Cre-loxP, optogenetics, brainbow, mouse brain, learning and memory, neural circuits, cognition, Cre
recombinase

Santiago Ramón y Cajal was among the first to observe and marvel at the elegance and beauty
of various neurons in the brain and wonder how they contribute to perception, emotion, memory,
and behavior (Cajal, 1909/1910). Structure-functional analysis of neurons began in earnest with the
development of single-cell, juxtacellular-labeling, and patch-clamp techniques (Jankowska et al.,
1976; McCrea et al., 1976; Hamill et al., 1981; Edwards et al., 1989; Pinault, 1996; Klausberger and
Somogyi, 2008). Various other technologies have further transformed the neuroscience landscape
at multiple levels – ranging from genes and proteins (Carraway and Leeman, 1973; Hökfelt et al.,
1977; Noda et al., 1984; Seeburg et al., 1990; Buck and Axel, 1991; Moriyoshi et al., 1991; Monyer
et al., 1992; Carlsson, 1993; Südhof, 2012), to synaptic plasticity and cognitive enhancement (Tang
et al., 1999; Lømo, 2003; Frey and Frey, 2008; Wang et al., 2009).

In the late 1980s and early 1990s, following the pioneering efforts by Mario Capecchi, Oliver
Smithies, and Martin Evans on gene targeting and embryonic stem cell (ES) technologies (see
review by Capecchi, 2005), a small number of laboratories began to generate mutant mice to define
genes’ function in development, cancer, or immunology (Zijlstra et al., 1989; DeChiara et al., 1990;
Koller et al., 1990; Thomas and Capecchi, 1990). Alcino Silva, Seth Grant, and Thomas O’Dell were
among the first to apply the gene knockout approach to study the specific roles of CaMKII or Fyn
kinase in plasticity and memory (Grant et al., 1992; Silva et al., 1992a,b). These studies set a new
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stage to investigate genes and brain functions. However, the
limitations such as the lack of phenotypes due to genetic
compensation or the developmental effects were noticed. For
example, increased spontaneous epilepsy was observed in the
CaMKII knockout mice, whereas the dentate gyrus was deformed
in the Fyn knockout mice. Both cases led to heated debate in
the field about how the reported memory and plasticity deficits
should be interpreted. With the NMDA receptor occupying a
center stage in plasticity and memory field, Li et al. (1994)
set out to demonstrate its role in learning behavior, but they
found that NMDAR1 knockout pups all died neonatally due
to failed brain development, including the defective suckling
reflex. For developmental neuroscientists, it was very exciting,
because stereotypic whisker barrel in the thalamus failed
to form (Li et al., 1994). Yet for cognitive and behavioral
neuroscientists, it was disappointing. It further solidified the
argument that deleting the gene in every cell and organ
throughout development was not ideal for defining cognitive
mechanisms.

YOUNG AND FOOLISH

My interest in developing the conditional gene knockout
technique stemmed from the specific problem atmy hand as I was
finalizing my HHMI postdoctoral fellowship with Eric Kandel
at Columbia University in the summer of 1993. From 1990 to
1993, I was testing the long-held idea, first postulated by Bernie
Agranoff (Agranoff and Klinger, 1964), that long-term memory
requires new protein synthesis and gene expression. Researchers
were racing to identify novel genes whose expressions were
regulated by brain activity. We were the first to pull out a set
of genes which included tissue-plasminogen activator (tPA), a
MAP kinase phosphatase, and a brain-specific immediate early
gene BAD1 (published under my former name, Qian et al., 1993,
1994). BAD1 was later also isolated by Paul Worley and named
as Arc (Lyford et al., 1995). While isolating these novel genes
was exciting, the next logical step for me was to examine their
functions in memory. Anti-sense oligonucleotide-based “knock-
down” methods were imprecise and not reliable, whereas gene-
knockout was a good choice, but its limitations and caveats were
obvious.

I stumbled upon a paper by Brian Sauer on his successful
demonstration of the Cre recombinase-based excision of a
floxed marker gene from the circular plasmid transfected in
mammalian culture cells (Sauer and Henderson, 1988). The
last paragraph of this paper put forth a big question: “Can
Cre also cause recombination at lox sites located within the
genome of a mammalian cell?” This led me to wonder if I
could use it to develop brain subregion- and cell type-specific
gene knockout and/or transgenic overexpression methods. But
I knew that all the textbooks and literature describing DNA
replication and recombination go hand in hand with cells
division (such asmeiosis or mitosis; Figure 1). This basic doctrine
was imprinted into everyone’s mind, and also evident from the
opening sentences of Sauer’s paper: “The processes governing DNA
recombination in mitotic mammalian cells have been the subject

of intense investigation in recent years. . . Mitotic recombination
plays a central role in the development and function of the immune
system.” Knowing that all neurons in the adult brain are known
to be postmitotic right after birth (except a few in the dentate
gyrus and olfactory bulb), any fool who set out to work on DNA
recombination in the adult brain would be committing a career
suicide. Nature has shown that brain tumors are all in glial cells
which divide, but not in neurons. Therefore, DNA recombination
as the way to create region- and cell type-specific knockout in the
brain was considered to be plainly impossible. I was told that the
next show was not about how and why I would fail, but where.

But I was obsessed with the thought of wanting of know
the function of genes in a clear way, and only a handful of
laboratories had gene-targeting facilities and embryonic stem
(ES) cells for making conventional knockout mice. I asked Mario
Capecchi of Utah and Susumu Tonegawa of MIT for a second
postdoc position, and both said yes. When I sought advice, to
my great surprise, Eric suggested that I should choose Susumu’s
lab as it would be a better place for trying my idea. I also
got the permission to use the CaMKII promoter, cloned by
Mark Mayford, which becomes active after the second or third
postnatal week and only expresses the forebrain principal cells
such as pyramidal cells (Mayford et al., 2005). The stage was all
set, with the only minor bug: if my idea did not work out at this
second postdoc stage, I would be out of a job.

When I arrived at MIT in the fall of 1993, I was
pleased to find that Susumu did not discourage me from
exploring Cre-loxP neurogenetics during our 15-s introduction
meeting. I was surprised by the zoo-like atmosphere in this 40
postdoctorals/students laboratory. Miraculously, this survival-of-
the-fittest model worked well for productivity, and overall MIT
was exciting and refreshing to me.

To develop Cre-loxP-neurogenetics, I must ignore three risks:
(1) to hope the textbook on DNA recombination linked with
replication was wrong, and my argument was that herpes virus
(producing cold sore) infected the peripheral nerve ganglia
and somehow replicated itself. (The mechanism still remains
unknown to date, but presumably without ganglia neuron
division.) (2) The complex procedures and long cycles with no
quick feedback and no room for error. I must make various
constructs and generate at least three different mouse lines and
then embark on a multi-year crossing to breed them together
(Figures 2A,B). Back then, making even one mutant mouse
was already a form of art and luck. In fact, only a few brave
souls in well-equipped laboratories could do so because of the
complex procedures, lengthy project cycle, expensive cost, and
with potentially no phenotypes or undesirable outcomes at the
end. A few lucky ones got good jobs and the other unlucky ones
simply disappeared. (3) The intentional risk which I brought
upon myself: I chose to work on the NMDAR1 as the gene for
conditional knockout, instead of the BAD1/Arc. As everyone
knew, if the sites to which I inserted the LoxP somehow disrupted
its expression, I would have a dead pup that was to be published
in a few months by Li et al. (1994). In contrast, unintentional
disruption of Arc from the loxP insertion would still give me a
conventional knockout paper. But I convinced myself the idea
was promising, and my gamble would pay off: I would, at least,

Frontiers in Genetics | www.frontiersin.org 2 February 2016 | Volume 7 | Article 19

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Tsien Cre-Lox Neurogenetics

FIGURE 1 | DNA recombination involves complex topological and biochemical during DNA replication. DNA recombination is linked with DNA replication
during cell divisions in order to exchange genetic materials for the selection of favorable mutations or the elimination of unfavorable or deleterious mutations.
Recombination also comes with DNA injury and is therefore tightly coupled with the DNA repair mechanism. Nearly all neurons in the adult brain are post-mitotic to
ensure their stability. This explains why brain tumors are in glial cells but not in neurons.

FIGURE 2 | Cre-LoxP neurogenetics for achieving region- and cell-type specific analysis of relationships of genes, circuits, and functions in the
brain. (A) Strategy to detect the Cre-LoxP recombination in the brain. It required the production of two different transgenic mice: Tg-Cre and Tg-Reporter lines,
respectively. These two lines were then crossed to generate the double transgenic mice. CA1-specific recombination was detected after P19 by LacZ method. It is
known that CA1 pyramidal cells undergo neurogenesis between E10 and E18 and enter the post-mitotic state by P0. They are well differentiated by P7, with fully
established synaptic connections. We have found that Cre-loxP recombination occurs during the middle or end of the third postnatal week in the CA1 pyramidal
cells. LacZ in the CA1 pyramidal cells was detected as deep blue color on Nissl stain (in purple-blue) background. (B) Conditional knockout of NR1 gene in a specific
cell type and region. The exon 11-21 encoding the entire transmembrane domain and C-terminus were flanked by the loxP (termed floxed) in the introns. The
second loxP was followed with the neo cassette gene, which allowed for targeted ES cells selection. Luckily, insertion of loxP sites and the neo gene did not alter
NR1 gene expression in the floxed homozygous mice.

get a badge of honor for being the first fool to throw myself under
the bus of the textbook dogma.

The execution required complex choreography. Despite all
of the chaos in the new laboratory, I found friendly colleagues
willing to help me. There was David Gerber and Toshikuni
Sasaoka who taught me about microinjections in fertilized
eggs and blastocysts, respectively; Dongfeng Chen who helped
with immune-antibody and staining; Yuqing Li who shared his

insights into the NMDAR1 constructs; Min Xu who provided
me ES cells and guided me through delicate ES cell-culture
procedures; I was also grateful to David Anderson at CalTech
for the LacZ reporter and Brian Saucer at Du Pont for Cre-
loxP plasmids. I completed all my constructs by January of
1994 and started production of transgenic mice and ES cell
targeting of the floxed NR1 construct. I also had a hard-working
undergraduate student named Cindy Tom and technician
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Jason Derwon, who assisted with the genotyping and brain
sectioning.

One ominous cloud moved over my head when Klaus
Rajewsky reported in July 1994 that they achieved 50% knocked
down of the RNA polymerase in T cells (Gu et al., 1994). This
meant that even in dividing T cells, Cre-recombination was
not efficient: either 50% of the T cells had 100% knockout of
RNA polymerase or 100% of the cells had only one copy of the
gene deleted, or worse, a mixed mosaic situation. Despite this,
I held out the hope (after additional digging into the literature)
that the transiently active promoter they used might be the
culprit for the poor efficiency during T cell development. Over
the ensuing months and years, I stuck my head in the sand
and labored over my Cre-loxP neurogenetics experiments. In
the late fall of 1994, I finally got the first feedback from the
experiments.

On a sunny but cold morning, I recall the great surprise
when I saw the intense LacZ staining, specifically in the CA1
pyramidal cells of the hippocampus in the first Cre transgenic
line (Figure 2). I could not believe my incredible luck, because
the CA1 hippocampal region was the center of the universe in the
eyes of many plasticity and memory researchers. Additional Cre
lines confirmed similar CA1-specific recombination; then other
Cre lines showed forebrain-specific patterns. When Susumu
returned from a trip to Japan, I told him about what I had
found. Once he recovered from his confusion, which seemed
to result from jetlag and attempting to grasp all that I had
been working on, he overcame his disbelief and immediately
shared his jubilation with Alcino over the phone. I asked myself
why the CaMKII promoter, which was supposed to express in
the forebrain – not specific to the CA1- had such a specific
effect. Dongfeng Chen helped provide the clue by revealing
that Cre expression was higher in the CA1 pyramidal cells.
Over the following 6–8 months, I also obtained the floxed NR1
homozygous mice crossed with the Cre Tg 29.1 line. I confirmed
the CA1 pyramidal cell-specific NMDA receptor knockout. Pato
Huerta and I proceeded with brain slice recordings or histology,
respectively, as soon as we could obtain young adult mice
(∼3–5 weeks). We also set aside a set of mice for collaborating
with Tom McHugh, Kenny Blum, and Matthew Wilson for place
cell recordings in the NR1 mutants. Now, we know that the
Cre-lox recombination in T29-1 retained the CA1 specificity only
in an age-dependentmanner: as Cre expression accumulated over
time (starting in the 6th–8th postnatal weeks), it would gradually

achieve the forebrain-specific recombination (as expected from
the CaMKII promoter).

By the fall of 1996, we were preparing three back-to-back
manuscripts to be submitted to Cell. We had decided that
reporting the feasibility of the Cre-lox neurogenetics would
be the first, the CA1-specific NMDA receptor knockout study
the second, and the place-cell characterization paper would
be published as the third. The original agreement with Eric
for using the CaMKII promotor was to include him and
Mark as the co-authors in the first paper, in case the Cre-
lox work progressed to a point of publication. This initially
doomed project now unexpectedly resulted in multiple results,
which created its own political nuisance. Knowing the immense
interest of the CA1-specific NMDA receptor knockouts in the
learning and memory field, Eric preferred his co-authorship
be placed in the second paper, not the first Methodology
paper. But Susumu insisted that Eric’s name be in the first
paper. The back-and-forth conversations that ensued were very
distressful to me, but allowed my brain to form an unusually
strong long-term semantic memory of what it means to be
caught between a rock and a hard place. The papers were
eventually published in December 1996 (McHugh et al., 1996;
Tsien et al., 1996a,b), but they were left with no corresponding
author.

CRE-DRIVER RESOURCES FOR
NEUROSCIENCES

The successful demonstration of the feasibility of Cre-lox
neurogenectis has generated a firestorm in the field. Recognizing
its unique usefulness for neuroscience, the NIH launched the
NIH Blueprint for Neuroscience Research, known as the Cre-
driver project, to create a collection of mouse strains for
better defining the functions of specific cell types and neural
circuits in cognitive behaviors1. I was glad to provide my inputs
during the process. The NIH chose three centers in the United
States for the generation of genetically modified mice expressing
Cre recombinases in the nervous system. The teams were led
by Dr. Ronald Davis at Baylor College of Medicine (now at
Scripps Research Institute-Florida), Dr. Josh Huang at Cold
Spring Harbor Laboratory (co-led with Sacha Nelson of Brandeis

1http://www.neuroscienceblueprint.nih.gov/factSheet/CreDriver.html

TABLE 1 | Cre-driver mouse resources.

Cre-driver mice Network NIH Blueprint for neuroscience http://www.credrivermice.org

MMRRC (Mutant Mouse Regional Resource Center) https://www.mmrrc.org/cataloR/StrainCatalogSearchForm.isp

The Jackson Laboratory’s Cre Repository https://www.jax.org/jax-mice-and-services

The GENSAT project NIH Blueprint/Rockefeller University http://www.gensat.org/cre.isp

EMMA (European Mouse Mutant Archive) European Union, Italy. www.emmanet.org

MSR (International Mouse Strain Resource) www.findmice.org

Harwell (Mammalian Genetics Unit) UK www.har.mrc.ac.uk

Cre-X-mice Project Canada http://nagy.mshri.on.ca/cre_new/index.php

RBRC (RIKEN Biology Resource Center) Japan http://mus.brc.riken.jp/en/
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University) and Dr. Ulrich Mueller at Scripps Research Institute.
This program generated more than hundreds of Cre-driver lines
(Taniguchi et al., 2011). The mice are available through the
Mutant Mouse Regional Resource Center (MMRRC) or the
Jackson Laboratory’s Cre Repository (see Table 1).

The NIH Neuroscience Blueprint program also funded the
GENSAT project led by Nathaniel Heintz of The Rockefeller
University to generate BAC-Cre recombinase driver mouse lines
(Gong et al., 2007). A total of 288 Cre lines have been generated
to date2. Following these efforts, many individual laboratories and
institutions also produced a variety of Cre drivers (e.g., Madisen
et al., 2010, 2015; Leão et al., 2012). Altogether, at least over
630 Cre lines have been deposited at the Jackson Laboratory to
date.

The European Union (EU) also followed the NIH initiative
and launched its own Cre-driver project under the name
CREATE (Coordination of resources for conditional expression
of mutated mouse alleles) (Table 1). The CREATE consortium
represents a core of major European and international mouse
database holders and research groups to develop a strategy
for the integration and dissemination of Cre-driver strains for
modeling aspects of complex human diseases in the mouse.
These Cre lines can be found by contacting EMMA (European
Mouse Mutant Archive, Italy) or MSR (International Mouse
Strain Resource; Table 1). In addition, the United Kingdom,
Canada, and Japan have also funded several Cre-driver projects
(Table 1).

CRE-DRIVING TOWARD MULTIPLE
DIRECTIONS INTO THE FUTURE

In the past decade, one of the most exciting developments is
optogenetics which uses light stimulation to manipulate neurons
(Zemelman et al., 2002; Boyden et al., 2005). It has been
great fun to witness that optogenetics was able to take full
advantage of a decade’s investment in generating a rich collection
of Cre mouse lines (e.g., CaMKII::Cre, PV::Cre, SOM::Cre,
D1: Cre, D2::Cre, ChAT:Cre, or DAT::Cre, etc.), enabling its
widespread use in the neuroscience community (Madisen et al.,
2012).

However, optogenetics was not the only game in town that
benefited from Cre-loxP neurogenetics. Chemical genetics has
also emerged as a powerful approach in allowing scientists
to activate or suppress specific neurons. For example, one
can over-express chemically–genetically modified proteins, such
as kinases (Bishop et al., 2000; Wang et al., 2003), or
DREADD (Rogan and Roth, 2011) in specific neurons or
brain regions. Researchers can also use the floxed diphtheria
toxin fragment A (DTA) to delete specific cells using cre lines
(Brockschnieder et al., 2004; Matsumura et al., 2004; Buch et al.,
2005; Ivanova et al., 2005), and then observe the resulting
phenotypes.

In addition, Cre-lox neurogenetics are used to track neural
projections in the brain with retrograde virus (Sun et al.,

2http://www.gensat.org/cre.jsp

2014; Beier et al., 2015) or CLARITY methods (Lerner
et al., 2015). Jeff Lichtman and Joshua Sanes have cleverly
explored the unique properties of the Cre-loxP system to
randomly express different ratios of red, green, and blue
derivatives of green fluorescent protein (GFP) in individual
neurons, a technique termed Brainbow (Livet et al., 2007). This
allowed them to flag each neuron with a distinctive color.
This process has been a major contribution to the field of
connectomics.

Cre-lox neurogenetics has also been combined with voltage-
sensitive proteins to monitor changes in neuronal activity.
Genetically encoded calcium indicators, such as the GCaMPs,
have allowed researchers to infer changes in neuron activations
via calcium transients (Tian et al., 2009). Researchers are
also developing other genetically encoded voltage-sensitive
fluorescent proteins that can report cortical electrical responses
in vitro and/or in vivo (Akemann et al., 2010; Ghitani et al., 2015;
Madisen et al., 2015).

Most recently, Stuart Ibsen and Sreekanth Chalasani reported
an exciting way to use low-pressure ultrasound stimulation to
produce microbubbles that amplify the mechanical deformations
which can be detected by TRP-4, the pore-forming subunit
of a mechanotransduction channel (Ibsen et al., 2015). By
overexpressing TRP-4 in specific neurons, the authors showed
it can sensitize neurons to an ultrasound stimulus. Similarly
exciting, Sheng-Jia Zhang and his colleagues recently reported
another noninvasive method, namely magnetogenetics, to
activate neurons in vivo using magnetic stimulation. The
activation of neurons was achieved by neuronal expression of
an exogenous magnetoreceptor, an iron–sulfur cluster assembly
protein 1 (Isca1) (Long et al., 2015). These two noninvasive
approaches offer additional tools to manipulate specific neurons
in behaving animals.

Looking back, Cre-lox neurogenetics was written off as a dead-
end project, but my intuition and diligence got me through the
door. Nowadays, a week rarely goes by without having yet another
Cre-based neuroscience finding reported. Cre-lox neurogenetics
seems to still have a lot of miles ahead of it. To my students, I
always say that being young and foolish can be an asset for the
community!
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