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The dynamic composition of proteins associated with nuclear DNA is a fundamental
property of chromosome biology. In the chromatin compartment dedicated protein
complexes govern the accurate synthesis and repair of the genomic information and
define the state of DNA compaction in vital cellular processes such as chromosome
segregation or transcription. Unscheduled or faulty association of protein complexes
with DNA has detrimental consequences on genome integrity. Consequently, the
association of protein complexes with DNA is remarkably dynamic and can respond
rapidly to cellular signaling events, which requires tight spatiotemporal control. In
this context, the ring-like AAA+ ATPase CDC48/p97 emerges as a key regulator
of protein complexes that are marked with ubiquitin or SUMO. Mechanistically,
CDC48/p97 functions as a segregase facilitating the extraction of substrate proteins
from the chromatin. As such, CDC48/p97 drives molecular reactions either by directed
disassembly or rearrangement of chromatin-bound protein complexes. The importance
of this mechanism is reflected by human pathologies linked to p97 mutations, including
neurodegenerative disorders, oncogenesis, and premature aging. This review focuses
on the recent insights into molecular mechanisms that determine CDC48/p97 function in
the chromatin environment, which is particularly relevant for cancer and aging research.
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INTRODUCTION

DNA is the most precious resource of an organism. Its faithful transmission to following
generations is of major importance for an individual. Elaborate surveillance mechanisms are
required to guard the genome, since large amounts of heterogeneous protein complexes are active
at the DNA. Thus, DNA is packaged into highly dynamic chromatin structures for efficient space
usage. This involves different histone variants as well as complex protein cohorts that allow for
genome function (Misteli, 2007; Cutter and Hayes, 2015). Dependent on cell type, cell cycle
phase, environmental cues, or aging status, multisubunit replication and transcription machineries
access chromatin and thereby challenge chromosome integrity. In addition, various maintenance
and repair mechanisms are active that keep chromatin intact. To ensure genome stability these
processes need to be coordinated and tightly controlled in time and space. Within complex protein
agglomerations specific proteins have to be recruited or removed to allow a given process to
continue. The underlying molecular signaling is predominantly triggered by post-translational
modifications (PTMs) of target proteins.

The ATPase CDC48/p97 (also known as VCP in human) is a central factor that integrates
recognition, modification and execution of molecular processes mediated by ubiquitin (Ghislain
et al., 1996; Meyer et al., 2000; Dai and Li, 2001; Wojcik et al., 2004) or ubiquitin-like molecules
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(Krick et al., 2010; Bandau et al., 2012; den Besten et al.,
2012; Nie et al, 2012; Bergink et al, 2013; Kghler et al,
2013, 2015). CDC48/p97 forms homo-hexameric ring-like
particles, which undergo extensive conformational changes upon
ATP-hydrolysis (Rouiller et al., 2002; Banerjee et al., 2016).
These intramolecular changes drive the mechanistic function
of CDC48/p97, which is best described as segregase activity
(Rape et al., 2001; Braun et al., 2002; Shcherbik and Haines,
2007). While the precise molecular mechanism of substrate
handling is controversial (Stolz et al., 2011; Barthelme and
Sauer, 2015), cumulating evidence suggests that the ATP-
dependent conformational rearrangements account for partial
unfolding of substrates (Beskow et al., 2009; Godderz et al.,
2015; Song et al., 2015), thereby promoting their segregation
from multimeric protein assemblies. Following the recognition
of target proteins that are marked by ubiquitin, SUMO or
both, CDC48/p97 mobilizes the modified substrates from higher
order protein complexes, resulting in their inactivation by
breaking off the molecular context and/or promoting subsequent
proteolytic turnover (Figure 1). The cellular processes that rely
on CDC48/p97 segregase activity are diverse (Franz et al., 2014),
ranging from degradation of damaged proteins associated with
the endoplasmic reticulum (ER, ERAD; Ye et al.,, 2001; Braun
et al., 2002; Jarosch et al., 2002; Rabinovich et al., 2002) or
mitochondria (MAD; Heo et al.,, 2010; Hemion et al., 2014;
Fang et al., 2015), ribosome-associated quality control (Ossareh-
Nazari et al., 2010; Brandman et al., 2012; Verma et al., 2013) to
lipid droplet metabolism (Olzmann et al., 2013), and lysosomal
proteolysis (Ren et al., 2008; Ju et al., 2009; Krick et al., 2010;
Tresse et al., 2010; Ritz et al., 2011; Buchan et al., 2013). Recently,
most attention has been paid to the role of CDC48/p97 in the
directed modulation of chromatin-associated protein complexes
(Vaz et al.,, 2013; Dantuma et al., 2014). Herein, fundamental
cellular processes such as DNA synthesis and DNA repair as well
as transcriptional regulation require CDC48/p97.

Given the growing number of cellular pathways relying
on CDC48/p97 function, it appears obvious that independent
regulatory mechanisms are required to control the diverse
molecular activities. In this context, cofactors provide specificity
toward defined CDC48/p97 pathways (Decottignies et al,
2004; Hartmann-Petersen et al., 2004; Medicherla et al., 2004;
Schuberth et al., 2004; Wang et al., 2004; Neuber et al., 2005;
Park et al., 2005; Richly et al., 2005; Schuberth and Buchberger,
2005; Song et al, 2005; Ritz et al, 2011). Most cofactors
interact with CDC48/p97 via conserved binding motifs and
provide additional molecular properties that assist in substrate
recognition, processing, or regulation of ATPase activity.
Substrate recruiting cofactors harbor dedicated domains that
recognize conjugated ubiquitin or SUMO, thereby facilitating
substrate binding (Kloppsteck et al., 2012; Meyer and Weihl,
2014; Buchberger et al., 2015). Processing cofactors alter the
length or topology of ubiquitin or SUMO marks, either
by extending (E3-E4 enzymes), shortening (ubiquitin/SUMO
hydrolases), or remodeling (also called editing, combined E3-
E4 and hydrolase activities) the conjugates (Koegl et al,
1999; Hoppe, 2005; Rumpf and Jentsch, 2006; Jentsch and
Rumpf, 2007; Kuhlbrodt et al., 2011; Heride et al., 2014).

Other cofactors regulate CDC48/p97 ATPase activity (Trusch
et al, 2015; Zhang et al, 2015) thus controlling substrate
processing. Cofactors themselves can provide another layer of
associated factors (termed accessory factors), thereby defining
CDC48/p97 function (Alexandru et al., 2008; Sowa et al,
2009; Balakirev et al, 2015; Raman et al., 2015; Figure 1;
Table 1).

The requirement of an organism for CDC48/p97 originates
from the variety of processes that depend on its segregase
activity. Hence, alterations in CDC48/p97 protein expression
or mutations are associated with different diseases including
neurodegeneration or premature aging (Partridge et al., 2003;
Johnson et al.,, 2010; Nalbandian et al., 2011; Franz et al.,
2014). Moreover, CDC48/p97 overexpression is associated
with different cancer types connected with poor prognosis
(Fessart et al, 2013). This is intelligible given the diverse
chromatin related pathways, like replication or DNA repair
that CDC48/p97 is associated with. Since each of these
pathways is highly related to tumor formation, p97 constitutes
a reasonable target for anticancer therapy (Balch et al,
2008) and first inhibitors are already tested in clinical trials
(Deshaies, 2014; Chapman et al., 2015). This review provides
an overview on the fundamental role of CDC48/p97 in
controlling activity and dynamics of protein complexes at the
chromatin. For simplicity, we will refer to spelling of conserved
human orthologs throughout the article, unless otherwise
stated.

DNA REPLICATION IS DRIVEN BY
DYNAMIC COMPOSITION OF PROTEIN
COMPLEXES

The faithful duplication of genomic information during S phase
of the cell cycle is a complex biological process involving
the highly ordered cascade of numerous replication factors
at the chromatin (Masai et al, 2010; Fragkos et al, 2015).
DNA synthesis is initiated at origins of replication, which serve
as assembly platforms for DNA synthesis factories, termed
replisomes. Herein, the concerted activity of origin recognition
complex (ORC), CDC6, and CDT1 is required to load the
replicative DNA helicase, the Mini-chromosome-maintenance
(MCM) complex onto DNA. Together these factors constitute the
pre-replicative complex (pre-RC). As pre-RCs do not perform
helicase activity yet, pre-RC assembly is considered as licensing
of DNA replication. Interestingly, inaccurately assembled pre-
RCs can disassemble from DNA implicating that replication
licensing involves quality control mechanisms and iterative
loading events (Chen et al., 2007; Xouri et al., 2007; Frigola et al.,
2013; Duzdevich et al., 2015). Subsequent to MCM assembly,
the pre-RC components are dispensable and consequently
inactivated. Origins actively synthesizing DNA are characterized
by recruitment of further factors, including CDC45 and the
go-ichi-ni-san (GINS) complex (Gambus et al., 2006; Moyer
et al.,, 2006; Ilves et al., 2010). The presence of CDC45 and
GINS thus characterizes active replisomes. During ongoing DNA
synthesis and particularly close to completion of DNA replication
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FIGURE 1 | CDC48/p97 function in chromatin-associated processes. (A) Schematic illustration of molecular mechanisms underlying CDC48/p97 activity.
CDC48/p97 (red) recognizes chromatin-bound substrates (blue) that are conjugated to ubiquitin or SUMO (black circles). The modification with ubiquitin and SUMO
can come in different flavors (exemplified by a chain of molecules). Both molecules can be conjugated as a monomeric moiety or a chain of several molecules. The
linkage in between molecules of a ubiquitin chain is variable depending on the internal lysine-(K)-residue used for chain extension (indicated by the angle between
ubiquitin molecules of a chain). As such, diverse linkages are capable of defining distinct signaling events (referred to as ‘ubiquitin-code’). Moreover,
SUMO-dependent ubiquitylation gives rise to hybrid chains. Depending on the exact modification of the substrates, diverse cofactors facilitate substrate recognition
and/or processing of the ubiquitin/SUMO modification by extending, removing, or internal remodeling of the chain. This is probably important to define the
directionality of the CDC48/p97 reaction. Eventually, CDC48/p97 segregase activity is required to mobilize the substrate from higher order protein complexes (light
gray). On one hand the substrate can be recycled, probably involving hydrolysis of the modification. Otherwise, the substrate can be terminally degraded involving
the proteasome, lysosome, or proteolytic cofactors. Extraction of the substrate can promote two distinct outcomes. Disintegration of the protein complex can result
in its inactivation (bottom left). Alternatively, extraction of the substrate can disclose the binding site of another factor (orange) thus facilitating the directed
progression of the reaction (bottom right). (B) Schematic overview of CDC48/p97-dependent pathways in the context of eukaryotic chromosomes (gray).
CDC48/p97 (red) possesses molecular switch properties, driving molecular reactions in distinct chromatin-associated processes. The involvement of respective

CDC48/p97 cofactors is listed below the indicated pathways.

converging replication factories collide and are considered to
require regulated disassembly (Maric et al, 2014; Moreno
et al., 2014). These processes exemplify that the composition of
replication factories is highly dynamic throughout the regular
replication program and, moreover, responsive to genotoxic
insults that might threaten genome stability (Sirbu et al., 2013;
Alabert et al., 2014; Dungrawala et al., 2015; Raschle et al,
2015). Intriguingly, CDC48/p97 has been shown to be essential
for DNA replication in eukaryotes by regulating the abundance
of several replication factors at distinct time points (Figure 1;
Table 1).

CDC48/p97-mediated Control of DNA
Replication Licensing and Fork
Progression

The functional relevance of CDC48/p97 in DNA synthesis
was first shown in Caenorhabditis elegans (C. elegans). RNAIi-
mediated depletion of CDC48/p97 or the dimeric cofactor UFD-
1-NPL-4 caused replication defects accompanied with collapsed
forks and formation of DNA repair foci (Mouysset et al.,
2008). This initial observation of compromised DNA synthesis
upon inactivation of the CDC48/p97VFP~1=NPL=4 complex was
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TABLE 1 | CDC48/p97 substrates in the chromatin environment.

Cdc48/p97-dependent process Substrate(s) Cofactor/Accessory Experimental system Reference
factors
DNA replication
Replication fork progression, G2/M n.d. DVC1 Mammalian cells, patient Lessel et al., 2014
checkpoint cells
Replication licensing CDT-1, CDC-45-GINS UFD-1, NPL-4, C. elegans, X. laevis, Mouysset et al., 2008;
UBXN-3/FAF1 mammalian cells Franz et al., 2011, 2016
Replication stress FANCI, FANCD2 DVCA Mammalian cells Gibbs-Seymour et al., 2015
Replication stress, DNA damage Poly, a.o. DVC1 Mammalian cells, Davis et al., 2012;
tolerance (DDT) C. elegans Mosbech et al., 2012
Replication termination MCM7 Dia2 S. cerevisiae, X. laevis Maric et al., 2014; Moreno et al., 2014;
Maculins et al., 2015
DNA repair
Diverse genotoxic insults SUMO/Ubiquitin- Ufd1, Npl4 S. cerevisiae Nie et al., 2012
conjugates
Diverse genotoxic insults SUMO/Ubiquitin- Ufd1, Npl4, Rfp1, Pli1 S. pombe Kohler et al., 2013
conjugates
DNA damage response (DDR) Topt, Wss1, Doal S. cerevisiae Balakirev et al., 2015
SUMO-conjugates
DNA-double strand break repair L3MBTLA1 UFD1, NPL4 Mammalian cells, Acs et al., 2011
C. elegans
DNA-double strand break repair SUMO-Rad52 Ufd1 S. cerevisiae, mammalian Bergink et al., 2013
cells
DNA-double strand break repair Ubiquitin-(K48)- UFD1, NPL4 Mammalian cells Meerang et al., 2011
conjugates
DNA-double strand break repair DNA-PKcs n.d. Mammalian cells Jiang et al., 2013
DNA-protein crosslink (DPC) Topt, a.o. Wss1 S. cerevisiae Stingele et al., 2014
PCNA-dependent response to n.d. DVC1, mono-ubiquitylated Mammalian cells Centore et al., 2012
UV-light PCNA
UV-light induced protein turnover CSB UFD1, UBXN7, CUL4 Mammalian cells He et al., 2016
UV-light induced protein turnover CDT1, SET8 UFD1, NPL4, a.o. Mammalian cells, X. leavis Raman et al., 2011
UV-light induced protein turnover DDB2, XPC UFD1, NPL4, UBXN7, Mammalian cells Puumalainen et al., 2014
CcuL4
UV-light induced protein turnover Rbp1 Ufd1, Npl4, Ubx4, Ubx5, S. cerevisiae Verma et al., 2011
Cul3
Transcription
Histone ubiquitylation Histone 2B Ubx3 S. cerevisiae, mammalian Bonizec et al., 2014
cells
Mating-type switch a2 Ufd1, Npl4, Doal0, a.o. S. cerevisiae Wilcox and Laney, 2009
Transcriptional inactivation HIF1a UBXN7, CUL2, VHL Mammalian cells Alexandru et al., 2008
Transcriptional regulation LexA-VP16, Met4, Ufd1, Npl4 S. cerevisiae Ndoja et al., 2014
R-Smads
Heterochromatin decondensation CenH3 Ufd1, Npl4 A. thaliana Merai et al., 2014
Telomere maintenance
Telomerase efficiency Cdc13 Vms1 S. cerevisiae Baek et al., 2012
Telomerase efficiency Est1 Ufd1, Npl4, Ufd4 S. cerevisiae Linetal., 2015
Sister-chromatid segregation
Anaphase degradation n.d. Ubx4 S. cerevisiae Chien and Chen, 2013
Chromatin Aurora-B Ufd1, Npl4 X. leavis, mammalian cells Ramadan et al., 2007;
decondensation/congression Dobrynin et al., 2011
Meiosis AIR-2 n.d. C. elegans Sasagawa et al., 2012
Others
Global analysis SUMO-conjugates Ufd1, STUbL S. pombe Kohler et al., 2015

The table lists the identified chromatin-associated substrates of CDC48/p97, sorted by their functional relevance in indicated cellular processes. In addition, the involvement
of cofactors and/or accessory factors is displayed along with the experimental system that was used in the respective publication (a.o. and others, n.d. not determined).
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further addressed in a follow-up study, identifying chromatin-
associated CDT-1 is the primary substrate (Franz et al., 2011;
Raman et al, 2011). Herein, the abundance of the licensing
factor CDT-1 on chromatin relies on CDC48/p97 activity during
initiation of DNA replication (Franz et al., 2011). In addition,
CDT-1 stabilization on mitotic chromatin (correlating to G1
phase), coincides with chromatin-retention of CDC-45 and the
GINS complex (Franz et al., 2011). A genetic interaction screen
identified the UBX-domain protein UBXN-3 as a specialized
cofactor enhancing substrate recognition by CDC48/p97 during
DNA replication (Franz et al., 2016). Indeed, in vivo and in vitro
protein interaction analysis confirmed that UBXN-3 provides
substrate recognition toward CDT-1 and other ubiquitylated
proteins (Franz et al., 2016). Analysis of individual replication
forks in human cell lines revealed that siRNA-mediated depletion
of the human ortholog FAF1 causes severely impaired replication
fork progression associated with elevated frequency of replication
fork stalling and firing of dormant origins. In fact, CDT1 protein
appears to be the primary target of CDC48/p97"AF! also in
human cells, as indicated by genetic suppression of replication
defects upon codepletion and in vivo binding studies (Franz
et al,, 2016). Taken together, CDC48/p97YFP1=NPL4 'in complex
with the substrate recognition module UBXN-3/FAF1, controls
replication fork progression by restraining the abundance of
CDT1 during replication licensing.

It should be noted that the regulatory mechanism depicted
above is specific to the G1 phase of the cell cycle (Ballabeni
et al., 2004; Franz et al., 2011). In contrast CDT1 protein levels
are also under control during the ensuing S phase, involving
PCNA and Cullin-based E3 ligases (Zhong et al., 2003; Arias
and Walter, 2007; Havens and Walter, 2009; Sugimoto et al,,
2009; Coleman et al., 2015). S phase degradation of CDT1 is
considered as fundamental in preventing over-replication in one
cell cycle as well as avoidance of chromosomal rearrangements
(Davidson et al., 2006; Tatsumi et al., 2006). In response to
DNA damage, CDT1 chromatin extraction and degradation also
involves CDC48/p97 activity (Hu et al., 2004; Jin et al., 20065
Raman et al,, 2011). In contrast to the licensing factors ORC
and Cdc6, Cdt1 is required for break-induced replication in yeast
(Lydeard et al., 2010). The exact requirement of CDT1 and its
subsequent inactivation during DNA repair, however, remains
elusive.

Interestingly, another thus far unappreciated cofactor of
CDC48/p97 has attracted attention as a critical regulator in
cellular pathways ensuring genome integrity (Stingele et al.,
2015). Two studies could show that mutations in DVCI [also
called Spartan (SPRTN) or Clorfl24 in humans, functionally
related to Wssl in Saccharomyces cerevisiae] are causative for
genome instability phenotypes cumulating in hepatocellular
carcinoma and progeria (Lessel et al., 2014; Maskey et al., 2014;
Figure 1; Table 1). Patient cells expressing dysfunctional DVC1
show hallmarks of genomic instability, which is accompanied by
aberrant replication fork velocity along with excessive replication
stress. Furthermore, patient cell lines escape the cell cycle
control by G2/M checkpoint, which usually halts the transition
into mitosis until damage is repaired. Importantly, human
cells exclusively expressing disease-related DVCI mutations

phenocopy the observations made in primary cells (Lessel
et al., 2014). Identification of respective target substrates will
decipher, which aspect of DNA replication is controlled by
DVCI. Indeed DVCI could be shown to colocalize with DNA
replication factories in synchronized but otherwise untreated
mammalian cells (Davis et al., 2012). Its functional relevance,
however, became particularly important upon treatment with
various types of genotoxic agents, which triggered the DVCI-
dependent recruitment of CDC48/p97 to sites of DNA damage
(Centore et al., 2012; Davis et al., 2012; Mosbech et al., 2012).
Intriguing insights into the mechanistic function of DVCI’s
cognate Wssl in chromatin-associated protein degradation have
recently been reported in the context of replication-coupled DNA
repair (Stingele et al., 2014; Balakirev et al., 2015). Herein, Wss1
protease was identified to specifically mediate the processing of
DNA-protein crosslinks (DPC) in a thus far overlooked repair
pathway that presumably also underlies genome instability in
DVC1 mutant cells (Figure 1; Table 1 and references therein).
Accordingly, disease-causing mutations locate in the domain
encoding the predicted DVC1 protease (SprT) domain (Lessel
et al., 2014); however, a chromatin-directed protease activity of
DVC1 awaits affirmation. The mechanistic details of DPC-repair
will be discussed in the respective paragraph on DNA-repair
pathways.

Termination of DNA Replication Requires
CDC48/p97 Activity

Until recently, the molecular mechanisms underlying the
termination of DNA replication in metazoans was only scarcely
described (Dewar et al., 2015). Thus, the identification of
CD(C48/p97 in the release of the MCM helicase in complex with
CDC45 and GINS (collectively termed CMG complex) at sites
of replication termination was astonishing (Maric et al., 2014;
Moreno et al., 2014). Yeast cells or Xenopus egg extracts that are
depleted for CDC48/p97 are defective in the disassembly of the
CMG complex at the end of the cell cycle when replication forks
collide with high frequency. Both studies show that selective poly-
(K48)-ubiquitylation of the MCM7 subunit is required to trigger
CMG release (Maric et al., 2014; Moreno et al., 2014). Interfering
with polyubiquitylation as well as CDC48/p97 activity, result in
accumulation of DNA structures comparable to pharmacological
inhibition of termination (Moreno et al, 2014). Moreover,
ubiquitylation of MCM?7 depends on active progression through
S phase (Maric et al., 2014; Moreno et al., 2014). In conclusion,
DNA replication requires CDC48/p97 activity to terminate DNA
synthesis by unloading of active CMG complexes.

Comparing CDC48/p97-dependent regulation of replication
licensing with termination of replication leaves open questions
to be addressed. Moreno et al. (2014) used an experimental
system in Xenopus egg extracts that affects polyubiquitylation
in progressing S phase, thus allowing exclusive analysis of
replication termination. In S. cerevisiae, the licensing factor Cdt1
is not regulated via proteolysis, but nuclear export, pointing at
distinct regulatory mechanisms between unicellular fungi and
metazoans (Tanaka and Diffley, 2002; Feng and Kipreos, 2003;
Kim and Kipreos, 2007). What are the respective cofactors that
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define CDC48/p97 specificity toward replication termination? In
yeast, the ligase complex SCFP™2 catalyzes the ubiquitylation of
MCM?7 and thus provides the signal for CMG disassembly (Maric
et al., 2014; Maculins et al,, 2015). The substrate recognition
factor Dia2, however, is not obviously conserved outside of
the fungi kingdom. In Xenopus, release of CMG complex has
been linked to the E3 ligase BRCAI1, however, is supposed
to be specific to stalled replisomes but not termination (Long
et al., 2014; Dewar et al.,, 2015). As such, CDC48/p97-dependent
CMG release might be considered as a combined phenotype:
aberrant licensing causing stalled forks, in turn requiring active
CMG unloading. In C. elegans and Xenopus egg extracts,
CDC48/p97 is linked to the release of CDC-45 and GINS
after S phase is completed (Franz et al., 2011, 2016). Herein,
CDC48/p97 cooperates with the cofactors UFD-1-NPL-4 and
UBXN-3/FAF1, however, neither the depletion of ufd-1, npl-4,
nor ubxn-3 resulted in persistent chromatin-association of MCM
subunits (Franz et al,, 2016). These observations support the
idea that CMG disassembly is more complex involving dedicated
CDC48/p97 cofactors separately targeting MCM or CDC45-
GINS. It has been speculated that a ring-shaped GINS molecule
embraces DNA (Kubota et al., 2003; Boskovic et al., 2007), thus
chromatin release might be regulated independently from MCM.
Alternatively, CMG disassembly might be differentially regulated
in invertebrates and vertebrates. In human cells, unloading of
MCM complexes has been linked to the deubiquitylating activity
of USP7 (Jagannathan et al., 2014), implicating that regulated
MCM release might involve editing of ubiquitin chains. Whether
USP7 activity is indeed coordinated by CDC48/p97 remains to be
elucidated.

PROTEIN DYNAMICS AT SITES OF DNA
REPAIR

DNA damage poses a major threat to cells. Besides defects
in replication, additional intrinsic incidents may threaten
chromatin integrity. Hence damage may originate from
hydrolytic reactions or reactive oxygen species (ROS). However,
also extrinsic and highly carcinogenic sources like UV exposure
or tobacco products harm DNA. If unrepaired, DNA damage
leads to accumulation of mutations or chromosomal aberrations
and promotes genome instability, the cause for many diseases
including cancer (Jackson and Bartek, 2009; Ciccia and Elledge,
2010). Specific to the damaging agent, the recognition of the
damage and the molecular mechanism for its removal are
diverse. One unifying feature of all repair pathways, however, is
the progression through specific phases of damage recognition,
effective repair, and finally resolution of repair intermediates. The
underlying DNA damage response (DDR) triggers the dynamic
and hierarchically ordered assembly and disassembly of repair
factors on the chromatin (Hoeijmakers, 2001). CDC48/p97 plays
a central role in various DNA repair scenarios and specialized
cofactors provide mechanistic regulatory insight (Figure 1;
Table 1). Please also see latest review articles on this topic
(Vaz et al., 2013; Dantuma et al., 2014; Brinkmann et al., 2015;
Dantuma and van Attikum, 2016).

CDC48/p97 Activity in Processing of
DNA Double Strand Breaks

The most detrimental DNA lesions are double strand breaks
(DSBs) since inadequate fusion of loose ends can give rise
to considerable chromosome rearrangements, duplications, or
deletions and hence are a severe threat for genome integrity
(Hoeijmakers, 2009). Two main pathways known to repair
DSBs operate differently. One is comparably simple by ligating
the loose ends back together in a reaction called non-
homologous end-joining (NHE]). The other, termed homologous
recombination (HR) is a much more concise pathway, using
a homologous template for reestablishing the undamaged state
(Hoeijmakers, 2001; San Filippo et al., 2008; Lieber, 2010; Mehta
and Haber, 2014; Kowalczykowski, 2015).

CDC48/p97 was first implicated in DNA repair by finding
that it gets phosphorylated at S’ upon DNA damage induction
(Livingstone et al., 2005). Indeed DNA-dependent protein
kinase, catalytic subunit (PKcs), one of the kinases mediating
this PTM (Livingstone et al., 2005), directly interacts with
CDC48/p97 upon ubiquitylation (Jiang et al, 2013). DNA-
PKcs associates with a heterodimer of Ku70-Ku80 at DSBs
and initiates NHE] (Wang et al., 1994; Davis et al, 2014).
CDC48/p97 acts here to restrict DNA PKcs occupancy on DNA
by handing it over to proteasomal turnover. In this glioma cell
model, loss of CDC48/p97 improves repair efficiency temporally
(Jiang et al, 2013). Conversely, other studies described an
increase in sensitivity toward DNA damage and subsequent
genome instability when CDC48/p97 activity is limited (Acs
et al, 2011; Meerang et al., 2011; Raman et al, 2011).
Upon DNA DSB induction a well-studied signaling cascade
is commenced, involving initial phosphorylation steps but
subsequent engagement of the ubiquitin and SUMO machinery
to establish binding sites for specific signaling proteins like
BRCA1 and 53BP1 (Bekker-Jensen and Mailand, 2011; Polo
and Jackson, 2011). This process requires tight regulation;
however, ubiquitylation does not only serve as a binding
platform orchestrating the recruitment of specific interaction
partners. Instead also poly-(K48)-linked ubiquitin chains, which
trigger proteasomal degradation (Dammer et al., 2011), were
identified at DDR sites that strongly accumulate in CDC48/p97
depleted cells (Meerang et al., 2011). This observation indicates
the requirement for CDC48/p97 to remove K48-ubiquitylated
proteins from break sites and possibly allow recruitment of
downstream factors. In fact, loss of CDC48/p97 function seems
to have broad impact on recruitment of repair proteins. After
treating cells with ionizing irradiation, CDC48/p97 depletion
attenuates recruitment of 53BP1, BRCA1, and abolishes loading
of RAD51 to repair sites (Meerang et al., 2011). Mechanistically
it remained unclear how CDC48/p97 promotes recruitment
of downstream proteins. A recent study highlighted that
CDC48/p97 specifically enables recruitment of 53BP1 to DSBs
induced by micro-irradiation. 53BP1 association with DSBs is
dependent on the ubiquitin cascade but does itself not bind
to ubiquitin (Botuyan et al., 2006). Here yet again a switch
in signaling molecules has to be implemented. 53BP1 binds to
H4K20me2, a histone mark that is initially occupied by LAMBTL1
(Min et al., 2007). Upon ubiquitylation, LAMBTLI is primed for
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extraction by CDC48/p97 together with its cofactors NPL4 and
UFD1. Only then 53BP1 is able to bind its designated recruitment
site and the repair process can be pursued (Acs et al., 2011). Even
though different outcomes of CDC48/p97 activity at damage loci
are described, both emphasize the requirement of CDC48/p97 to
extract ubiquitylated target proteins from DNA damage signaling
sites to facilitate further repair steps.

CDC48/p97 Functions as
SUMO-dependent Segregase to Provide

Genome Stability

Aside ubiquitin-conjugates CDC48/p97 and its cofactor UFDI
both recognize SUMOylated target proteins directly (Nie et al.,
2012). A functional relevance of CDC48/p97 exclusively targeting
SUMO-conjugates was first described in the assembly of
downstream effector proteins during DNA repair (Bergink et al.,
2013). During HR the essential recombinase RAD51 forms long
filaments on the two single stranded loose DNA ends, which
enable scanning and approaching the homologous sequence
(Holthausen et al., 2010; Forget and Kowalczykowski, 2012). Its
DNA association needs to be tightly controlled, since hyper-
recombination is highly cytotoxic; at the same time RAD51 is
essential for recombination (Tsuzuki et al., 1996; Sonoda et al.,
1998; Richardson et al., 2004; Klein, 2008). In yeast, SUMO-
conjugated Rad52 interacts with and aides Rad51 loading onto
DNA when engaged in HR. Interestingly, CDC48/p97Yd! has
direct binding affinity toward the same SUMOylated lysine on
Rad52 hence counterbalancing recombination events mediated
by Rad51 (Bergink et al, 2013). This finding highlights a
function of CDC48/p97 independent of ubiquitin and implies
that competitive binding to SUMO can promote segregation
activity.

In addition to minimizing Rad51-Rad52 interaction,
CDC48/p97 plays a more global role in the regulation of
SUMO-conjugates at the chromatin (Kohler et al, 2015).
SUMOylation was established as another layer of regulation at
DSB sites that enables thorough repair (Hardeland et al., 2002;
Cremona et al., 2012; Jackson and Durocher, 2013). Mutations
in SUMO related proteins lead to genomic instability, but again,
inappropriate retention of SUMOylated proteins on DNA also
impedes accurate repair since recruitment of downstream factors
is strongly reduced (Psakhye and Jentsch, 2012). Interestingly,
the CDC48/p97VMd1~NPM complex has been implicated in this
specific extraction as well. Ufdl harbors a SUMO interaction
motif (SIM) by which it directly binds SUMO (Nie et al., 2012).
Additionally, specific ubiquitin ligases target SUMOylated
proteins for ubiquitylation (SUMO-targeted ubiquitin ligases:
STUDLSs). CDC48/p97 together with its cofactors is thus recruited
via a dual mechanism consisting of ubiquitin and SUMO, thereby
facilitating extraction and possibly degradation of SUMOylated
proteins at DNA damage sites (Nie et al., 2012). UFD1 takes
an important role as cofactor of CDC48/p97. In addition to
its direct binding to SUMO, a physical as well as functional
interaction of Ufd1l with the STUbL Rfpl (RNF4 ortholog) or
the SUMO E3 ligase Plil (PIAS1) was shown. The concerted
action of these proteins leads to ordered removal of SUMOylated

proteins at damage site, again their inappropriate retention by
loss of one of the factors entails genomic instability (Kohler et al.,
2013). This example nicely highlights CDC48/p97s function
as a molecular switch. It provides a platform for a variety of
functionally distinct proteins that together lead to precisely
coordinated CDC48/p97-dependent chromatin extraction of
client proteins (Figure 1; Table 1).

An analogous mechanism was described for DNA repair by
the Fanconi anemia pathway. After replication block, Fanconi
anemia pathway becomes active to promote fork restart by
initiating translesion synthesis and damage removal (Haynes
et al, 2015). Two central components, FANCI and FANCD,
are SUMOylated upon fork stalling. As described for other
SUMOylated proteins, they are targeted for degradation by RNF4
mediated ubiquitylation and subsequent mobilization from DNA
by the CDC48/p97 complex (Gibbs-Seymour et al., 2015). Here
CDC48/p97 acts jointly with DVCI. Degradation of FANCI
and FANCD is impaired in RNF4 mutants, highlighting that in
this case ubiquitin binding of the CDC48/p97PVC! complex is
necessary.

Processing of DNA-protein Crosslinks

Proteins that are crosslinked to DNA or chromatin are a
specialized form of chromatin modification, which can arise from
metabolic sources or external insults such as reactive aldehydes,
UV-light, or catalytic intermediates, e.g., upon Topoisomerase 1
inhibition (Duxin and Walter, 2015; Stingele and Jentsch, 2015;
Stingele et al., 2015). DPCs result in stalling of RNA and DNA
polymerases and thus impact on a variety of cellular processes.
Consequently, DPCs need to be removed in a regulated manner
that involves incomplete proteolytic digestion. Subsequently,
the processed DPC remnant can be bypassed by a specialized
translesion polymerase (Duxin et al., 2014), whereas the DPC
remnant itself is considered to be eventually removed by base
excision repair. Intriguingly, a DVCl-related protease acts as
CDC48/p97 cofactor and harbors protease activity to catalyze
DPC processing in yeast (Stingele et al., 2014, 2015; Figure 1;
Table 1). Wssl protease activity becomes particularly activated
upon DNA binding, where it digests DPCs including covalently
bound Topoisomerase 1, other chromatin-bound proteins as
well as itself for inactivation (Stingele et al., 2014; Balakirev
et al,, 2015). Interestingly, Wssl specifically targets SUMO-
conjugates on chromatin via its SUMO-interaction motif (Mullen
et al., 2010; Stingele et al., 2014; Balakirev et al., 2015). In
contrast DVCI is directed toward ubiquitin-conjugates and is
linked to the PCNA sliding clamp (Centore et al., 2012; Davis
et al.,, 2012; Juhasz et al., 2012; Mosbech et al., 2012; Gibbs-
Seymour et al, 2015). In case of replication fork stalling-
induced extraction of the Fanconi anemia ID complex, the
SUMO-dependent ubiquitin E3 ligase RNF4 is central for the
underlying signaling (Gibbs-Seymour et al., 2015), supporting
the idea that DVC1 regulation in metazoans is multilayered
involving both SUMO and ubiquitin. Although a chromatin-
directed protease activity of DVCI awaits to be verified, it is
feasible that DVC1 and Wssl represent functional equivalents.
This might explain initial observations that DVC1 is required
for the removal of translesion polymerase after UV-lesion bypass
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(Centore et al., 2012; Davis et al., 2012; Ghosal et al., 2012; Juhasz
et al., 2012; Mosbech et al., 2012; Kim et al., 2013), which is
probably linked to attenuated processing of DPCs (Duxin et al.,
2014; Duxin and Walter, 2015). Recently, the CDC48 cofactor
Doal (also known as UFD3 or PLAP) was shown to be present
in CDC48/p97WSSl complexes (Balakirev et al., 2015). In this
study, genotoxic stress resulted in nuclear GFP-Wssl punctae,
consistent with the formation of DNA repair foci. This is in line
with formation of nuclear DVC1 foci upon exposure to genotoxic
stress by HU, UV-light, or laser microirradiation in C. elegans
and mammalian cells (Davis et al., 2012; Mosbech et al., 2012).
Moreover, GFP-Wss1 translocates to the vacuole upon damage
induction, pointing at a putative role of lysosomal degradation in
Wssl-mediated DDR involving the Doal cofactor.

To date, the mechanistic role of CDC48/p97 in Wssl-
dependent DDR is still obscure. Upon genotoxic insults
DVC1/Wssl recruits CDC48/p97 to the damaged site, pointing
at an adaptor-like function promoting segregase activity (Centore
et al., 2012; Davis et al.,, 2012; Mosbech et al., 2012; Gibbs-
Seymour et al, 2015). It appears likely, that DVC1/Wssl’s
intrinsic protease activity is particularly important in cases of
DPCs, when CDC48/p97 segregase is not capable of processing
the substrate due to covalent linkage to the DNA (Stingele
et al.,, 2014). The observation that Wss1 harbors SUMO-ligase
(Balakirev et al., 2015) as well as isopeptidase activity (Mullen
etal., 2010) suggests that Wss1 function might include additional
layers of regulation.

CDC48/p97 Dependent Extraction in UV
Induced DNA Damage Repair

Not only replication block but also obstruction of transcription
poses a major threat to DNA. Frequent sources of transcription
fork stalling are bulky UV lesions (Mullenders, 2015). To avoid
stalling of forks, the cell probes constantly for these helix
distortions via the global genome nucleotide excision repair
(GG-NER) pathway that is active on both DNA templates.
Here, XPC together with UV-DDB complex (UV-DNA damage
binding protein) consisting of DDB1 and DDB2 detect lesions
and initiate repair (Hoogstraten et al., 2008; Marteijn et al,
2014). To proceed with the excision reaction, these factors need
to be removed from chromatin. CDC48/p97 in complex with
NPL4-UFD1 and UBXD?7 regulates the chromatin association of
XPC and DDB2. Ubiquitin dependent extraction by CDC48/p97
allows their proteasomal degradation. Depletion of CDC48/p97
promotes retention of those factors and ultimately leads to
genomic aberrations (Puumalainen et al., 2014). In contrast, the
DUB USP7 was identified to counteract CDC48/p97 dependent
extraction of XPC. It shortens the ubiquitin chain on the target
protein, thereby removing the signal for extraction and possible
degradation (He et al., 2014).

In case RNA Polymerase II (RNA Pol II) encounters such
lesions on the actively transcribed strand, transcription coupled
NER (TC-NER) is initiated (Spivak and Ganesan, 2014). During
TC-NER CSB is involved in repair initiation (Fousteri et al., 20065
Anindya et al.,, 2010). Similar to XPC and DDB2 degradation in
GG-NER, CDC48/p97-dependent proteolysis of CSB is required
to facilitate progression of DNA repair upon UV-irradiation

(He et al., 2016). To this end, CSB removal from chromatin
is mediated by the cofactors UFD1 and UBXN7 (He et al,
2016). Both sub-pathways, GG-NER and TC-NER have different
initiation signals, but merge into one mutual pathway after initial
processing. When the injured DNA is excised the gap of 22-30
nucleotides needs to be sealed again. This is accomplished by
replication proteins, including PCNA, a DNA polymerase, and
subsequent ligation (Marteijn et al., 2014; Mullenders, 2015). In
this context, CDC48/p97 is associated with removal and ensuing
proteasomal degradation of CDT1 and histone methyl transferase
SET8 (Raman et al,, 2011). Chromatin association of the two
proteins is tightly regulated not only during replication but also
upon repair to avoid unscheduled replication initiation (Senga
et al., 2006). Binding to the PCNA interaction protein motif
degron (PIP degron) of PCNA generally primes target proteins
for ubiquitylation by CRL4%4? (Havens and Walter, 2009).
Hence, after UV damage, CDC48/p97 extracts ubiquitylated
CDT1 and SET8 from damaged chromatin and sends both
substrates for destruction by the proteasome (Raman et al., 2011).

Normally the cell favors preserving RNA Pol II upon stalling;
this is achieved by RNA Pol II backtracking, which allows repair
proteins to access the lesion (Epshtein et al., 2014). As a last
resort, when NER cannot be executed, RNA Pol II is removed
and degraded to prevent even more severe damage (Wilson et al.,
2013). Upon UV irradiation, degradation of the largest subunit of
RNA Pol IT Rpbl1 is facilitated by ubiquitin dependent extraction.
Herein, CDC48/p97 cooperates with its cofactors Ufd1 and Npl4,
as well as with Ubx5 (UBXN7; Verma et al., 2011), a cofactor
that is also associated with NER dependent protein extraction in
humans.

ADDITIONAL FUNCTION OF CDC48/p97
IN CHROMOSOME BIOLOGY

In contrast to the load of DNA damage another determinant
of cellular aging is the shortening of chromosome ends,
the telomeres, with consecutive cell divisions. Interestingly, a
function of CDC48/p97 in the regulation of telomere length
has recently been proposed based on the identification of
Cdcl13 and Estl as substrate proteins (Baek et al, 2012; Lin
et al., 2015; Figure 1; Table 1). Both, Cdc13 and Estl are key
regulators of telomere replication in yeast. Baek et al. (2012)
showed that CDC48/p97 cooperates with the Vmsl (ANKZF1)
cofactor in the proteolytic turnover of Cdcl3. Interestingly,
Cdc13 destruction appears to involve both proteolytic routes,
the proteasome and the lysosome. In contrast Lin et al. (2015)
propose that CDC48/p97 together with Ufd1-Npl4 and the
ubiquitin E3 ligase Ufd4 (TRIP12) cooperate to adjust telomere
length by limiting the abundance of mono-ubiquitylated Estl.
Consequently, CDC48/p97 inactivation results in shortened
telomeres, presumably due to inefficient telomerase upon Cdc13
and Estl accumulation.

In addition to DNA synthesis and repair pathways,
CDC48/p97 plays pivotal roles during sister-chromatid
segregation. Faulty segregation of chromatids during mitosis
is a significant source of copy number variations, large
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chromosomal aberrations, or chromosome destruction. In fact,
a key regulator of mitosis, the kinase Aurora-B, was the first
chromatin-associated substrate of CDC48/p97 to be identified
(Ramadan et al, 2007; Figure 1; Table 1). Interestingly,
CDC48/p97VMdI~NPl  restricts Aurora-B activity to promote
chromosome congression or chromatin relaxation at distinct
time-points during mitosis, as well as chromosome segregation
during meiotic division (Ramadan et al., 2007; Dobrynin et al,,
2011; Sasagawa et al., 2012). The involvement of cofactors in the
regulation of Aurora-B during meiosis I, however, remains to
be defined. In yeast cells, CDC48/p97 and its cofactor Ubx4 are
involved in the nuclear distribution of proteasomes, thus defining
protein degradation during anaphase (Chien and Chen, 2013),
implicating that additional CDC48/p97 substrates await to be
identified in the context of mitosis.

Aside DNA metabolism CDC48/p97 executes critical function
in the regulation of DNA-dependent RNA synthesis. Of note,
failure in accurate regulation of transcription factors controlling
metabolism and cell proliferation are associated with oncogenesis
(Maneix and Catic, 2016). Chromatin-dependent activity of
CDC48/p97 in the regulation of gene expression is especially
interesting, as it does not involve subsequent protein degradation
(Wilcox and Laney, 2009; Ndoja et al., 2014; Figure 1; Table 1).
In yeast, CDC48/p97 controls rapid switch in gene expression
through non-proteolytic release of transcription factors from
the chromatin. Intriguingly, individual transcription factors that
are regulated by CDC48/p97 represent transcriptional activators
as well as repressors (Wilcox and Laney, 2009; Ndoja et al,
2014). Thus, CDC48/p97 is capable of initiating fast response
toward transcriptional stimuli through attenuation or activation
of gene expression. In S. cerevisiae the Ufd1-Npl4 cofactor and
Doal0 are linked to transcriptional regulation by CDC48/p97
(Wilcox and Laney, 2009; Ndoja et al., 2014). In mammalian
cells CDC48/p97 together with the cofactor UBXN7 and the
CUL2-VHL ubiquitin ligase mediates the proteolytic inactivation
of HIFla transcription factor, suggesting a critical role of
CDC48/p97 in the cellular response toward hypoxia (Alexandru
et al, 2008). It remains to be shown, whether CDC48/p97-
mediated regulation of HIFla occurs on chromatin. In contrast
to the extraction of transcription factors, CDC48/p97 is also
implicated in chromatin remodeling. In yeast CDC48 together
with Ubx3 (UBXDS) is required for the mono-ubiquitylation
on histone 2B, thus controlling chromatin compaction and
presumably differentiation in vertebrates (Bonizec et al,
2014). An alternative pathway controlling gene expression
was described in Arabidopsis. Here, CDC48/p97~NF™ promotes
chromatin de-condensation through regulated disassembly of
centromeric heterochromatin, resulting in the release of rRNAs,
which facilitates ribosome biogenesis (Merai et al., 2014). Here,
SUMOylated centromere components including the centromeric
histone variant CenH3 trigger chromatin relaxation.

CONCLUDING REMARKS

The described molecular mechanisms illustrate the central role
of CDC48/p97 in the dynamic control of protein composition

in the chromatin environment (Figure 1; Table 1). CDC48/p97
operates at the intersection of two major signaling pathways at
the chromatin, ubiquitylation and SUMOylation. It is currently
unclear whether both signaling pathways initiate separate
mechanisms (Meerang et al, 2011; Bergink et al., 2013) or
whether both pathways eventually converge into a common
pathway (Nie et al., 2012; Kohler et al., 2013; Gibbs-Seymour
et al, 2015) with CDC48/p97 as nodal point (Figure 1). It
is feasible, however, that independent and shared signaling
pathways act in parallel. Whereas ubiquitin- and SUMO-
signaling are essential in mediating timely response toward
genotoxic insults, both modifications need to be removed
eventually to restore genome integrity. Regarding ubiquitin
signaling, CDC48/p97-dependent processing of substrates on
chromatin has exclusively been shown to target either K48-
linked ubiquitin chains (Ramadan et al., 2007; Meerang et al.,
2011; Maric et al, 2014; Moreno et al, 2014) or mono-
ubiquitin (Lin et al., 2015). Whether other linkage-types are
involved in CDC48/p97 regulation at the chromatin remains
to be deciphered. Mono-ubiquitin and K63-linked chains are
essential in the initial signaling of the molecular response to
DSBs (Dantuma and van Attikum, 2016). Thus, the recognition
of these modifications by CDC48/p97 may provide additional
mechanistic insights in early events at DSBs. In this context,
it will be of interest to address which cofactors are involved
in either linkage-specific recognition or editing of linkage-types
(Figure 1). Due to its diverse functions, global CDC48/p97
inhibition causes pleiotropic defects on chromosome biology.
Thus it will be crucial to identify the cofactors that direct
specificity and discriminate between distinct pathways. Although
CDC48/p97 inhibitors are tested in clinical trial studies with
promising properties (Anderson et al., 2015), a more specific
targeting might be applicable through the selective manipulation
of cofactors. The identification of substrate proteins targeted by
CDC48/p97 will allow future studies to uncover the underlying
molecular mechanisms in more detail, pointing out commons
and differences.
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