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An ANOVA type general multi-allele (GMA) model was proposed in Wang (2014) on

analysis of variance components for quantitative trait loci or genetic markers with phased

or unphased genotypes. In this study, by applying the GMA model, we further examine

estimation of the genetic variance components for genetic markers with unphased

genotypes based on a random sample from a study population. In one locus and two

loci cases, we first derive the least square estimates (LSE) of model parameters in fitting

the GMA model. Then we construct estimators of the genetic variance components for

one marker locus in a Hardy-Weinberg disequilibrium population and two marker loci

in an equilibrium population. Meanwhile, we explore the difference between the classical

general linear model (GLM) andGMAbased approaches in association analysis of genetic

markers with quantitative traits. We show that the GMA model can retain the same

partition on the genetic variance components as the traditional Fisher’s ANOVA model,

while the GLM cannot. We clarify that the standard F-statistics based on the partial

reductions in sums of squares from GLM for testing the fixed allelic effects could be

inadequate for testing the existence of the variance component when allelic interactions

are present. We point out that the GMA model can reduce the confounding between the

allelic effects and allelic interactions at least for independent alleles. As a result, the GMA

model could be more beneficial than GLM for detecting allelic interactions.

Keywords: Fisher’s ANOVA model, analysis of variance, general linear model, general multi-allelic model, genetic

variance components, orthogonal partition, allelic interactions, least square estimates

1. INTRODUCTION

Typically, there are two different ways in assessing the statistical association of a categorical variable
with a continuous outcome. We can either make a direct comparison of the group means among
groups defined by the categorical variable or assess the variation that the categorical variable
may contribute to the total variance of the continuous outcome. The former approach is usually
conducted via fitting a general linear model (GLM) with or without an adjustment for other
covariates. The latter approach is referred as the analysis of variance (ANOVA), which examines
a quantitative outcome variable by partitioning its total variance into variance components
attributable to different sources of variation. The original ANOVA model was proposed initially
by Fisher (1918) and formalized later in Fisher (1925). The traditional ANOVA approach on
estimation of variance components was mainly based on Henderson’s method I-III by equating
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the observed sums of squares to their expected values
(Henderson, 1953). Currently, for predictors with observed
group levels, their variance components can be estimated via
ANOVA tables, which are mostly based on the sequential (Type
I) sums of squares or partial reductions in (Type III) sums
of squares via fitting GLM (Searle, 1971; Searle et al., 1992).
For predictors with observed or unobserved group levels, their
variance components could also be evaluated via maximum
likelihood estimation (MLE) or restricted maximum likelihood
(REML) (see Searle et al., 1992).

In genetic association studies, the standard GLM or ANOVA
approaches may not be directly applicable to genetic markers
with unphased genotypes. In humans, a marker genotype is a
combination of one paternal and one maternal allele. But the
phase information (i.e., the origin of parental alleles) is often
missing from most of the current genotype typing technologies.
Appropriate modification on the classical GLM or ANOVA
methods is therefore needed in order to overcome this unknown
phase problem. In Wang (2011), we introduced several coding
schemes for unphased marker genotypes in constructing the
dummy-variable based GLM. In Zeng et al. (2005) and Wang
(2014), some revised Fisher’s ANOVAmodels were also proposed
for ANOVA analysis of quantitative trait loci or genetic markers
with unphased genotypes, which were referred as the general
biallelic (G2A) or general multi-allelic (GMA) models. The
estimation of genetic variance components based on the G2A and
GMAmodels were also briefly explored.

In this study, by applying the GMAmodel, we further examine
estimation of genetic variance components for genetic markers
with unphased genotypes from a random sample of individuals
in a study population. First, for a single locus GMA model, we
derive the least square estimates (LSE) of model parameters in
fitting the GMA model based on the genotypic group means
and allele frequency estimates. Than we construct estimators of
the variance components for one marker in Hardy-Weinberg
disequilibrium (HWD). Next, we consider a fully parameterized
two-locus GMA model. We derive the LSE of model parameters
in fitting the GMA model and develop estimators of the
variance components for two genetic markers in an equilibrium
population. In both one locus and two loci cases, we also explore
the difference between the GLM and GMA in association analysis
of genetic markers. We show that the GMA models can provide
the same partition on the genetic variance components as the
original Fisher’s ANOVAmodels but the GLM cannot. We clarify
that the F-statistics based on the partial reductions in sums of
squares from the standard ANOVA table for association testing of
the fixed allelic effects in a GLM could be inadequate for testing
the existence of variance components when higher order fixed
allelic interactions are present. In addition, we point out that the
GMA model can reduce the confounding between allelic effects
and allelic interactions at least when the inheritance of alleles
are independent. As the result, the GMA model could be more
beneficial than GLM for detecting allelic interactions. Finally, a
simulation example is presented to show the difference between
GLM and GMA models on partitioning variance components.
The performance in model selection between using GLM and
GMAmodels is also examined.

2. MODELS AND RESULTS

Consider a random sample of size N from a study population.
Let yi, i = 1, · · · ,N, be their observed phenotypic values
for a quantitative trait Y , and gi, i = 1, · · · ,N, be their
observed unphased genotypes at certain genetic marker loci. The
quantitative trait Y is assumed to be affected by both genetic
and environmental effects. Let G denote the true (unobservable)
genotypic value, which could be affected by many genetic factors.
If we ignore the genetic by environmental interactions, the
relationship between the quantitative trait and marker genotypes
can be modeled via a GLM

yi = βzi + E(G|gi)+ ǫi, i = 1, · · · ,N, (1)

where zi is a vector of the adjusted environmental covariates
with fixed effects β , E(G|gi) represents the expected genotypic
value of the i-th individual given his/her observed marker
genotypes gi, and ǫi is a model residual error contributed by other
environmental and genetic factors that cannot be captured by the
covariates zi and marker genotypes gi. We also assume that ǫi,
i = 1, · · · ,N, are independent and identically distributed (i.i.d)
with E(ǫi) = 0 and V(ǫi) = Vǫ . Besides, {ǫi, i = 1, · · · ,N} are
independent of {gi, i = 1, · · · ,N}. Then, the total phenotypic
variance VY = V(E(G|g)) + E(V(G|g)) = V(E(G|g)) + Vǫ .
In the rest of the paper, we focus on comparing the GLM and
GMA modeling on the expected genotypic values E(G|g) and
assessing the genetic variance components contributed by the
allelic effects and allelic interactions at the marker loci to the
expected genotypic variance V(E(G|g)).

2.1. One-Locus Models
Consider a single marker locus with multiple alleles A1, . . . ,Am

(m ≥ 2). Let pj, j = 1, · · · ,m, be the allele frequencies
(
∑m

j= 1 pj = 1), and pjk = P(AjAk), j, k = 1, · · · ,m (j ≤ k), be

the genotype frequencies (
∑

j≤k pjk = 1), in a study population.

For a random sample of size N from the study population,
suppose that there are njk individuals carrying genotypes AjAk

for j ≤ k, j, k = 1, · · · ,m (N =
∑m

j= 1

∑m
k= j njk). For notation

simplicity, we also let pkj = pjk and nkj = njk for k > j,
j, k = 1, · · · ,m. Then, pj = pjj+

∑
k 6=j pjk/2, for j = 1, · · · ,m.

Let nj· = 2njj +
∑

k 6=j njk, which is the total number of alleles Aj

carried by the sampled individuals (j = 1, · · · ,m). Assume that
the observed marker genotypes gi, i = 1, · · · ,N, are i.i.d. and
follow a multinomial distribution. Then the MLE of the genotype
frequencies are given by p̂jk = njk/N, and the MLE of the allele
frequencies are given by p̂j = nj·/(2N) = p̂jj +

∑
k 6=j p̂jk/2, for

j = 1, · · · ,m. Also, let yjki,i = 1, · · · , njk be the observed
phenotypic values of the individuals carrying genotypes AjAk.
We define the observed genotypic group means ȳjk· = ȳkj· =∑njk

i= 1 yjki/njk for j, k = 1, · · · ,m, the allele averaged means
ȳj·· = ȳ·j· = (2njjȳjj· +

∑
k 6= j njkȳjk·)/nj· for j = 1, · · · ,m,

and the grand mean ȳ··· =
∑m

j= 1

∑m
k= j njkȳjk·/N. In addition,

we define the allele weighted means ȳ∗j· = ȳ∗·j =
∑m

k= 1 p̂kȳjk·
for j = 1, · · · ,m, and the weighted overall mean ȳ∗·· =∑m

j= 1

∑m
k= 1 p̂jp̂kȳjk· =

∑m
j= 1 p̂

2
j ȳjj· +

∑m−1
j= 1

∑m
k= j+1 2p̂jp̂kȳjk·.
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Note that in a classical two-way factorial ANOVA model,
each individual can receive one and only one level assignment
from each of the two factors. At a marker locus, however, an
individuals can carry a homozygous genotype “AjAj” ( j =

1, · · · ,m) with two Aj alleles indistinguishable. In general, the
allele weighted means ȳ∗j· may not be the same as the allele

averaged means ȳj··, and the weighted overall mean ȳ∗·· may also
differ from the grand mean ȳ···.

To assess the allelic effects on the expected genotypic values
(or phenotypic values), let us first take a brief review of Fisher’s
one-locus ANOVA model (see Kempthorne, 1957; Weir and
Cockerham, 1977). Since the marker genotypes are unphased,
we usually assume that the paternal and maternal gametes share
the same set of alleles, have the same allele frequencies, and
contribute the same allelic effects at the marker locus. The fact
that each allele contributes the same genetic effect regardless of
its parental origins implies that the expected genotypic values
Gjk = E(G|g = AjAk) should satisfy the symmetric property:
Gjk = Gkj, for j 6= k. So there are totally m(m + 1)/2 possible
distinctive expected genotypic values Gjk, j, k = 1, . . . ,m. By
treating the paternal and maternal gametes as two independent
risk factors, the traditional Fisher’s one-locus ANOVA model for
the expected genotypic values Gjk can be written as

Gjk = µ + αj + αk + δjk, j, k = 1, . . . ,m, (2)

where αj is referred as the average additive effect of the paternal
or maternal allele Aj (j = 1, . . . ,m), and δjk the average allelic
interaction between two parental alleles Aj and Ak (j, k =

1, . . . ,m). It is known that not all the parameters in the
above model are estimable due to an over-parameterization
of the model on the expected genotypic values. Typically, the
following constraints can be added on the model parameters (see
Kempthorne, 1957).

m∑

j= 1

pjαj = 0,

m∑

j= 1

pjδjk = 0 for k = 1, · · · ,m. (3)

From the symmetric property of Gjk, we also assume that δjk =

δkj, for j 6= k. With these constraints, if we further incorporate
model (2) into GLM (1) and ignore the adjusted covariates, the
LSE of parameters are given by µ̂ = ȳ∗··, α̂j = ȳ∗j· − ȳ∗·· for j =

1, · · · ,m, and δ̂jk = ȳjk·−ȳ∗j·−ȳ∗
k·
+ȳ∗·· for j, k = 1, · · · ,m. It has

been known that, under Hardy-Weinberg equilibrium (HWE),
the above model (2) can also provide an orthogonal partition
of the expected genotypic variance as V(E(G|g)) = VA + VD,
where VA = 2

∑
j pjα

2
j and VD =

∑
j,k pjpkδ

2
jk

are the so-

called additive and dominance variance components. Weir and
Cockerham (1977) also explored model (2) on partitioning the
expected genotypic variance in HWD. In practice, as pointed
out in Wang (2014), the symmetric property of δjk’s and the
irregular constraints (3) could make it difficult to fit model (2)
using standard statistical software especially when the adjusted
covariates are involved. Besides, the random variables that are
responsible for the additive and dominance variance components
are not explicitly defined in model (2).

The expected genotypic values can also be modeled via
a classical dummy-variable based GLM. As shown in Wang
(2011), we can introduce the following indicator variables to
describe the inheritance of the two parental alleles for each
individual

z1j =

{
1, the inherited paternal allele is Aj

0, the inherited paternal allele is not Aj
,

z2j =

{
1, the inherited maternal allele is Aj

0, the inherited maternal allele is not Aj

for j = 1, . . . ,m. Though z1j and z2j cannot be defined on
unphased heterozygous genotypes, we can define the following
genotype coding variables for unphased genotypes

wj(g) = z1j + z2j =





2, if g = AjAj

1, if g = AjA
c
j

0, if g = Ac
jA

c
j

for j = 1, . . . ,m, and

vjj(g) = z1jz2j =

{
1, if g = AjAj

0, otherwise
,

vjk(g) = z1jz2k + z1kz2j =

{
1, if g = AjAk

0, otherwise

for j 6= k, j, k = 1, . . . ,m. Here, Ac
j denotes any other allele

rather than Aj. By choosing Am as a reference allele, we can
construct the following GLM

E(G|gi) = µ0 +

m−1∑

j= 1

ajwj(gi)+

m− 1∑

j= 1

m− 1∑

k= j

djkvjk(gi), (4)

for i = 1, . . . ,N,where aj is usually referred as the fixed additive
allelic effect of the paternal or maternal allele Aj, and djk the
fixed allelic interaction between two parental alleles Aj and Ak,
with respect to the reference allele Am. In terms of the expected
genotypic values, we can show that µ0 = Gmm, aj = Gjm − Gmm

and djk = (Gjk−Gkm)− (Gjm−Gmm), for j = 1, . . . ,m− 1 and
k = j, . . . ,m− 1.

Model (4) provides a full re-parameterization of the m(m +

1)/2 expected genotypic values. Suppose that there are no empty
genotype groups for the observed random sample; i.e., njk > 0 for
any j, k = 1, · · · ,m. When we incorporate model (4) into GLM
(1) and ignore the adjusted covariates, the LSE of the expected
genotypic values are given by: Ĝjk = ȳjk, for j, k = 1, · · · ,m− 1
and j < k. Therefore, the LSE of parameters in model (4) can be
easily derived in terms of the observed genotypic group means
as µ̂0 = ȳmm· and âj = ȳjm· − ȳmm· for j = 1, · · · ,m − 1,

and d̂jk = ȳjk· − ȳjm· − ȳkm· + ȳmm· for j, k = 1, · · · ,m − 1
and j ≤ k. Note that these LSE could be sensitive to phenotypic
outliers especially for small genotypic groups. For example, a few
individuals may have genotype “AjAm” (j 6= m) for a rare allele
“Aj.” If the genotypic group mean ȳjm· is much larger than ȳmm·,
the LSE âj will be large. By choosing a common allele “Am” as
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the reference, we could improve the accuracy of LSE. Through
incorporating model (4) into a GLM, we could also perform
hypothesis tests on its model parameters via contrasts. In analysis
of genetic variance components, however, it has been known that
wj’s are often correlated with vjk’s as random variables over the
random individuals even when the inheritance of paternal and
maternal alleles are independent (Wang and Zeng, 2009). As the
result, model (4) leads to a different partition of the expected
genotypic variance V(E(G|g)) from the one defined in Fisher’s
ANOVAmodel (2).

To further dissect the confounding between the additive
and dominance effects in model (4), we can make mean
corrections on the indicator variables {z1i} and {z2j}, and
introduce the following mean-corrected index variables
(see Wang, 2014)

x1j(g) = z1j(g)− E[z1j(g)] =

{
1− pj, the paternal allele is Aj
−pj, the paternal allele is not Aj

x2j(g) = z2j(g)− E[z2j(g)] =

{
1− pj, the maternal allele is Aj
−pj, the maternal allele is not Aj

Then, we define the following modified genotype coding
variables

w∗
j (g) = x1j + x2j =





2(1− pj), if g = AjAj

1− 2pj, if g = AjA
c
j

−2pj, if g = Ac
jA

c
j

,

v∗jj(g) = x1jx2j =





(1− pj)
2, if g = AjAj

−pj(1− pj), if g = AjA
c
j

p2j , if g = Ac
jA

c
j

for j = 1, · · · ,m, and

v∗jk(g) = x1jx2k + x1kx2j =





(1− pj)(1− pk)+ pjpk, if g = AjAk
−2pk(1− pj), if g = AjAj
−2pj(1− pk), if g = AkAk
−pk(1− 2pj), if g = AjA

c
jk

−pj(1− 2pk), if g = AkA
c
jk

2pipj, if g = Ac
jk
Ac
jk

for j 6= k, j, k = 1, . . . ,m. Here, Ac
jk
denotes an allele which is

different from both Aj and Ak. Note that the modified genotype
coding variablesw∗

j (g) = wj(g)−2pj, v
∗
jj(g) = vjj(g)−pjwj(g)+p2j ,

and v∗
jk
(g) = vjk(g)− pjwk(g)− pkwj(g)+ 2pjpk are well defined

on unphased genotypes, although the mean-corrected index
variables x1j, x2k cannot be defined on unphased heterozygous
genotypes. By choosing Am as a reference allele, we can construct
the following GMAmodel (Wang, 2014)

E(G|gi) = µ∗ +

m−1∑

j= 1

α∗
j w

∗
j (gi)+

m−1∑

j= 1

m−1∑

k= j

δ∗jkv
∗
jk(gi), (5)

for i = 1, . . . ,N. Still, in model (5), we refer the parameters
α∗
j as the average additive allelic effects and δ∗

jk
(j ≤ k) as the

average allelic interactions, with respect to the reference allele
Am. Both the GMA model (5) and the GLM (4) can provide

a full parameterization of the expected genotypic values Gjk.
Comparing to model (4), one major advantage of model (5) is
that it can retain the same partition on the genetic variance
components as the one from Fisher’s ANOVA model (2). In fact,
under the constraints (3) plus the symmetric property of δjk,
model (2) can be re-written as

E(G|gi) = µ +

m∑

j= 1

αjw
∗
j (gi)+

m∑

j= 1

m∑

k= j

δjkv
∗
jk(gi), (6)

for i = 1, . . . ,N. Model (5) is a simplified version of model
(6) by further replacing the redundant variables w∗

m, v
∗
jm and

v∗mm by w∗
m = −

∑m−1
j= 1 w∗

j , v
∗
jm = −v∗jj −

∑m−1
k= 1 v

∗
jk
for j =

1, · · · ,m − 1, and v∗mm =
∑m−1

j= 1

∑m−1
k= j v

∗
jk
. We can see that

both models (5) and (2) share exactly the same additive and
dominance variance components. They become equivalent when
we take µ∗ = µ, α∗

j = αj − αm, and δ∗
jk

= δjk − δjm −

δkm + δmm, for j, k = 1, · · · ,m − 1 and j ≤ k. Note that
model (5) does not contain redundant parameters. Therefore, it
does not require constraints on its model parameters. Besides,
the random variables that are responsible for the additive and
dominance variance components are explicitly defined in model
(5). In practice, similar to enforcing the constraints (3) on model
(2), we can create the variables w∗

j and v∗
jk
by replacing the allele

frequencies pj’s by their MLE p̂j’s. Then, by incorporating model
(5) into GLM (1), we can treat these modified genotype coding
variables as regular fixed covariates and fit the model using the
ordinary LS approach. The hypothesis ofH0:VA = 0 for existence
of the additive variance component can also be tested via testing
H0 : α∗

j = 0, j = 1, · · · ,m − 1 for the average additive allelic

effects.
The GLM (4) and GMA model (5) can be transformed easily

from one to the other. From the relationship between their
genotype coding variables, we can show that

{
µ∗ = γ + 2

∑m−1
j= 1 pjaj +

∑m−1
j= 1

∑m−1
k= 1 pjpkdjk

α∗
j = aj +

∑m−1
k= 1 pkdjk , j = 1, · · · ,m− 1

and δ∗
jk
= djk for j ≤ k, j, k = 1, · · · ,m − 1. Here, for notation

simplicity, we define dkj = djk, for j < k. To fit model (5), instead
of solving its normal equations directly, we can derive the LSE of
its model parameters from the LSE of model (4) as the following.

{
µ̂∗ =

∑m
j= 1 p̂

2
j ȳjj· +

∑m−1
j= 1

∑m
k= j+1 2p̂jp̂kȳjk· = ȳ∗··

α̂∗
j = ȳ∗j· − ȳ∗m· , j = 1, · · · ,m− 1

and δ̂∗
jk

= d̂jk = ȳjk· − ȳjm· − ȳkm· + ȳmm· for j ≤ k, j, k =

1, · · · ,m − 1. Note that the LSE of the average additive allelic
effects are calculated from allele weighted means, which could
be more robust to phenotypic outliers than the LSE of fixed
additive allelic effects. It is also interesting to see that both the
fixed additive allelic effects aj’s and the fixed allelic interactions
djk’s may affect the average additive allelic effects α∗

j ’s, though

the fixed allelic interactions keep the same as the average allelic
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interactions. In general, the hypothesis test of H0 : aj = 0, j =

1, · · · ,m − 1, for the fixed additive effects in a GLM (4) is not
equivalent to the hypothesis test ofH0:α

∗
j = 0, j = 1, · · · ,m−1,

for the average additive effects in an equivalent GMA model (5).
Therefore, the standard F-statistics for testing the fixed additive
effects in model (4) could be inadequate for testing the existence
of the additive variance component VA when significant fixed (or
average) allelic interactions are present.

In ANOVA, we treat {x1j, j = 1, · · · ,m − 1} and {x2k, k =

1, · · · ,m− 1} as random variables over the sampled individuals.
Model (5) provides an approximation to the expected genotypic
values E(G|g) by a linear combination of the random variables
x1j, j = 1, · · · ,m − 1 and x2k, k = 1, · · · ,m − 1, plus
their cross-product terms for allelic interactions. To model
the genotypic distributions, let g∗i = (z1j(gi)z2k(gi), j, k =

1, · · · ,m, j ≤ k) be a vector that describes the unphased
genotypic categories for i = 1, · · · ,N. As usual, we assume that
the marker genotypes g∗1 , · · · , g∗N are i.i.d. from a multinomial
distribution of Mult

(
1, {pjk, j, k = 1, · · · ,m, j ≤ k}

)
. Under

this assumption, we can show that the vectors g1i =

(z11(gi), · · · , z1m(gi)), i = 1, · · · ,N, of paternal allele indicator
variables are i.i.d. from Mult(1, {p1, · · · , pm}); and the vectors
g2i = (z21(gi), · · · , z2m(gi)), i = 1, · · · ,N, of maternal allele
indicator variables are also i.i.d. from Mult(1, {p1, · · · , pm}).
When the inheritance of paternal and maternal alleles are
independent, the study population is under HWE and the
mean corrected index variables {x1j(gi), j = 1, · · · ,m} are
independent of {x2j(gi), j = 1, · · · ,m} for any randomly
sampled individual i. In HWD, however, the mean corrected
index variables {x1j, j = 1, · · · ,m} could be correlated with
{x2j, j = 1, · · · ,m}. Let us define

{
Djj = Cov(z1j, z2j) = E(x1jx2j) = E(v∗jj) = pjj − p2j
Djk = E(x1jx2k + x1kx2j)/2 = E(v∗

jk
)/2 = pjk/2− pjpk.

for j 6= k, j, k = 1, · · · ,m. Then, {Djk, j, k = 1, · · · ,m}

measure the departures from HWE, which satisfy
∑m

j= 1 Djk =∑m
k= 1 Djk = 0. From the observed genotypes, we have MLE

D̂jj = njj/N − p̂2j for j = 1, · · · ,m, and D̂jk = njk/(2N) − p̂jp̂k
for j, k = 1, · · · ,m and j 6= k.

It is more convenient to use GMAmodel (5) rather than GLM
(4) for estimation of genetic variance components. In model
(5), let A =

∑m−1
j= 1 α∗

j w
∗
j (g) and D =

∑m−1
j= 1

∑m−1
k= j δ∗

jk
v∗
jk
(g)

represent the additive and dominance components, respectively.
In general, we can partition the expected genotypic variance
as V(E(G|g)) = VA + VD + 2Cov(A,D). In Wang (2014), we
have derived formulas for estimating the variance components
VA,VD and covariance component Cov(A,D) based on the
parameters in model (5). By plugging in LSE of the parameters,
we obtain estimators of the variance components VA,VD and
the covariance component Cov(A,D) as shown in Appendix
A in Supplementary Material. It should be pointed out that
these estimators of the variance and covariance components
are different from the traditional ANOVA estimators when the
marker genotypes are in HWD. Unlike the ANOVA estimators
of variance components which could be negative when data

are unbalanced, our estimators of the variance components
are guaranteed to be non-negative. Similar to the ANOVA
estimators, when the model residuals are normally distributed,
these estimators become MLE of the variance and covariance
components and likely possess the asymptotic normality
property (see Searle, 1995). Meanwhile, with variations from
both the genotypic group means and the MLE estimates of
allele frequencies, these estimators are only asymptotically
unbiased, while the original ANOVA estimators are
unbiased.

Under HWE, we would expect an orthogonal partition of the
expected genotypic variance as V(E(G|g)) = VA +VD. By taking
D̂jk = 0 for j, k = 1, · · · ,m in Appendix A in Supplementary
Material, we obtain the following estimators

V̂A = 2

m∑

j= 1

p̂j(ȳ
∗
j· − ȳ∗··)

2,

V̂D =

m∑

j= 1

m∑

k= 1

p̂jp̂k(ȳjk· − ȳ∗··)
2 − 2

m∑

j= 1

p̂j(ȳ
∗
j· − ȳ∗··)

2

If we further incorporate model (5) into GLM (1) and ignore the
adjusted covariates, the estimator of residual variance is given by

V̂ǫ =
∑m

j= 1

∑m
k= j

∑njk
i= 1(yjki − ȳjk·)

2/N. The estimator of total

phenotypic variance is given by V̂Y =
∑m

j= 1

∑m
k= j

∑njk
i= 1(yjki −

ȳ···)
2/N. We can show that V̂Y = V̂A + V̂D + V̂ǫ . Note that

when D̂jk = 0 for j, k = 1, · · · ,m, the allele weighted means
and the allele averaged means become the same; i.e., ȳ∗j· = ȳj··
for j = 1, · · · ,m. Besides, the weighted overall mean ȳ∗·· is the
same as the grand mean ŷ···. However, due to possible sampling
variations from the sampled individuals, under HWE we could
still have some D̂jk 6= 0, j, k = 1, · · · ,m, which may lead to
a slight deviation from the orthogonal partition of the expected
genotypic variance.

When D̂jk = 0 for j, k = 1, · · · ,m, another nice feature of
the GMA model (5) is that the LSE {α̂∗

j , j = 1, · · · ,m − 1}

of its main effects will keep the same in a reduced GMA model
when we ignore the allelic interactions. Let us represent the full
GMA model (5) in a matrix form with the design matrix X =

(1N,Xα∗ ,Xδ∗ ), where 1N is a N by 1 vector with all its elements
being 1, Xα∗ = (w∗

1(gi), · · · ,w∗
m−1(gi); i = 1, · · · ,N)N×(m−1)

and Xδ∗ = (v∗11(gi), · · · , v∗1,m−1(gi), · · · , v∗m−1,m−1(gi); i =

1, · · · ,N)N×m(m−1)/2, which correspond to the main effects
α∗ = (α∗

1 , · · · , α∗
m−1) and allelic interactions δ∗ =

(δ∗11, · · · , δ∗1,m−1, · · · , δ∗m−1,m−1), respectively.We can show that
X′X = diag(N,X′

α∗Xα∗ ,X′
δ∗Xδ∗ ), which is a block diagonal

matrix when D̂jk = 0, for j, k = 1, · · · ,m (see proof in
Appendix B in Supplementary Material). Therefore, the LSE
µ̂∗ = ȳ··· and α̂∗ = (X′

α∗Xα∗ )−1X′
α∗Y , which do not depend

on Xδ∗ . In other words, ignoring the average allelic interactions
in model (5) does not affect the LSE of the intercept and the
average additive effects in this case. The GLM (4) does not have
such a property. In a reduced GLM (4) without the fixed allelic
interactions, the LSE of its additive effects are âj = α̂∗

j = ȳ∗j·− ȳ∗m·

for j = 1, · · · ,m − 1, while in a full GLM (4) the LSE become
âj = ȳjm· − ȳmm·, for j = 1, · · · ,m− 1.
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We can also estimate the genetic variance components with
an adjustment for other covariates. First, by incorporating the
GMA model (5) into GLM (1), we can fit GLM (1) using the
ordinary LS approach. Next, based on the fitted model, we
can calculate the fitted additive and dominance components
Âi =

∑m−1
j= 1 α̂∗

j wi(gi) and D̂i =
∑m−1

j= 1

∑m−1
k= j δ̂∗

jk
vjk(gi),

for each individual i = 1, · · · ,N. Then, we can estimate
VA and VD as the sample variances of {Âi, i = 1, · · · ,N}

and {D̂i, i = 1, · · · ,N}, respectively. Meanwhile, the
covariance component Cov(A,D) can be estimated as the
sample covariance between {Âi, i = 1, · · · ,N} and {D̂i, i =

1, · · · ,N}.

2.2. Two-Locus Models
We consider an extension of the previous one-locus models
to two loci. Assume that marker 1 has alleles A11, . . . ,A1m1

(m1 ≥ 2) with p11, · · · , p1m1 being the allele frequencies, and
marker 2 has alleles A21, . . . ,A2m2 (m2 ≥ 2) with p21, · · · , p2m2

being the allele frequencies. Let pjkrs = P(A1jA1k,A2rA2s)
denote the joint genotype frequencies at the two marker loci
in a study population. For a random sample of size N from
the study population, let njkrs be the number of individuals
who carry unphased genotypes A1jA1k (j ≤ k) at locus 1,
and A2rA2s (r ≤ s) at locus 2, for j, k = 1, · · · ,m1 and
r, s = 1, · · · ,m2 (N =

∑m1
j= 1

∑m1

k= j

∑m2
r=1

∑m2
s=r njkrs). Then,

the MLE of genotype frequencies p̂jkrs = njkrs/N. Let yjkrs,i,i =

1, · · · , njkrs, be the observed phenotypic values of individuals
carrying the joint genotypes (A1jA1k,A2rA2s). We define the

observed genotypic group means ȳjkrs· =
∑njkrs

i= 1 yjkrs,i/njkrs, for
j, k = 1, · · · ,m1 and r, s = 1, . . . ,m2. Without distinguishing
the origin of parental alleles, we assume that nkjrs = njkrs for k >

j, j, k = 1, · · · ,m1, and njksr = njkrs for r > s, r, s = 1, · · · ,m2.
Let njk·· =

∑m2
r=1

∑m2
s=r njkrs for j, k = 1, · · · ,m1, and n··rs =∑m1

j= 1

∑m1

k= j
njkrs for r, s = 1, · · · ,m2.We have theMLE of allele

frequencies p̂1j = (2njj··+
∑

k 6=j njk··)/(2N) for j = 1, · · · ,m1 at

locus 1, and p̂2r = (2n··rr +
∑

s6=r n··rs)/(2N) for r = 1, · · · ,m2

at locus 2. For notation simplicity, we define ȳkjrs· = ȳjkrs· for
k > j (j, k = 1, · · · ,m1) and ȳjksr· = ȳjkrs· for r > s
(r, s = 1, · · · ,m2). In addition, we define the weighted genotypic
group means ȳ∗j·rs = ȳ∗·jrs =

∑m1

k= 1
p̂1kȳjkrs, ȳ

∗
jkr·

= ȳ∗
jk·r

=∑m2
s=1 p̂2sȳjkrs, ȳ

∗
jk··

= ȳ∗
kj··

=
∑m2

r,s=1 p̂2rp̂2sȳjkrs, ȳ
∗
··rs = ȳ∗··sr =∑m1

j,k= 1
p̂1jp̂1kȳjkrs, ȳ

∗
j··· = ȳ∗·j·· =

∑m1

k= 1

∑m2
r,s=1 p̂1kp̂2rp̂2sȳjkrs,

and ȳ∗··r· = ȳ∗···r =
∑m1

j,k= 1

∑m2
s=1 p̂1jp̂1kp̂2sȳjkrs, for j, k =

1, · · · ,m1 and r, s = 1, · · · ,m2. The weighted overall mean
ȳ∗···· =

∑m1

j,k= 1

∑m2
r,s=1 p̂1jp̂1kp̂2rp̂2sȳjkrs.

Let Gjkrs = E(G(g)|g = A1jA1k,A2rA2s) be the
expected genotypic value of individuals with the joint genotypes
(A1jA1k,A2rA2s), for j, k = 1, . . . ,m1 and r, s = 1, . . . ,m2.
Without distinguishing the origin of parental alleles, we assume
that {Gjkrs} satisfy the symmetric properties: Gjkrs = Gkjrs =

Gjksr = Gkjsr , for j < k and r < s. In general, there are totally
m1m2(m1+1)(m2+1)/4 possible distinctive expected genotypic
values. By treating the paternal and maternal gametes as two
independent risk factors, the Fisher’s two-locus ANOVA model

for the expected genotypic values Gjkrs can be written as (see
Kempthorne, 1957)

Gjkrs = µ + α1j + α1k + δ1jk + α2r + α2s + δ2rs + (αα)jr

+(αα)js + (αα)kr + (αα)ks + (αδ)j,rs + (αδ)k,rs

+(δα)jk,r + (δα)jk,s + (δδ)jk,rs (7)

for j, k = 1, . . . ,m1 and r, s = 1, . . . ,m2. The parameters
α1j and δ1jk are referred as the average additive and dominance
effects at locus 1, α2r and δ2rs the average additive and dominance
effects at locus 2, (αα)jr the additive by additive interactions,
(αδ)j,rs the additive by dominance interactions, (δα)jk,r the
dominance by additive interactions, and (δδ)jk,rs the dominance
by dominance interactions. Still, due to an over-parameterization
of the model for the expected genotypic values, not all the model
parameters are estimable. From the symmetric property of the
expected genotypic values, we usually assume that δ1jk = δ1kj,
δ2rs = δ2sr , (αδ)j,rs = (αδ)j,sr , (δα)jk,r = (δα)kj,r , (δδ)jk,rs =

(δδ)kj,rs = (δδ)jk,sr . In addition, the following constraints need
to be added on the model parameters (Gallais, 1974; Weir and
Cockerham, 1977).

m1∑

j= 1

p1jα1j=0,

m2∑

r=1

p2rα2r=0,

m1∑

j= 1

p1jδ1jk=0,

m2∑

r=1

p2rδ2rs = 0,

m1∑

j= 1

p1j(αα)jr = 0,

m2∑

r=1

p2r(αα)jr = 0,

m1∑

j= 1

p1j(αδ)j,rs = 0,

m2∑

r=1

p2r(αδ)j,rs = 0,

m1∑

j= 1

p1j(δα)jk,r = 0,

m2∑

r=1

p2r(δα)jk,r = 0,

m1∑

j= 1

p1j(δδ)jk,rs = 0,

m2∑

r=1

p2r(δδ)jk,rs = 0 (8)

In other words, a weighted sum of the average genetic effects
of a genetic component is zero over any index. It has been
known that model (7) under constraints (8) can provide an
orthogonal partition on the genetic variance components when
the inheritance of four paternal and maternal alleles at the two
loci are independent (Kempthorne, 1957; Weir and Cockerham,
1977). Still, as pointed out in Wang (2014), it is difficult to
estimate the parameters in model (7) under the complicated
constraints (8) when other adjusted covariates are involved.
Besides, the random variables that constitute the random sources
of the genetic variance components are not explicitly defined in
model (7).

To model the expected genotypic values through a GLM,
we can re-list all the sampled individuals by an index variable
k = 1, · · · ,N. Similar to the one-locus case, we introduce the
indicator variables z

(1)
1j and z

(1)
2k

for inheritance of the paternal

and maternal alleles at locus 1, and z
(2)
1r and z

(2)
2s for inheritance

of the paternal and maternal alleles at locus 2. Then, for phase-
unknown genotypes, we define the genotype coding variablesw1j,
v1jk for j, k = 1, · · · ,m1 (j ≤ k) at locus 1, and w2r , v2rs for
r, s = 1, · · · ,m2 (r ≤ s) at locus 2, in the same way as we did
in the one-locus case. By including the within locus additive and
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dominance effects as well as the locus-by-locus interactions (i.e.,
epistases), a fully parameterized two-locus GLM model can be
written as (Wang, 2011),

E(G|gi) = µ0 +

m1−1∑

j= 1

a1jw1j +

m1−1∑

j= 1

m1−1∑

k= j

d1jkv1jk +

m2−1∑

r=1

a2rw2r

+

m2−1∑

r= 1

m2 − 1∑

s= r

d2rsv2rs +

m1−1∑

j= 1

m2−1∑

r= 1

(aa)jrw1jw2r

+

m1−1∑

j= 1

m2−1∑

r= 1

m2−1∑

s= r

(ad)j,rsw1jv2rs

+

m1−1∑

j= 1

m1−1∑

k= j

m2−1∑

r= 1

(da)jk,rv1jkw2r

+

m1−1∑

j= 1

m1−1∑

k= j

m2−1∑

r= 1

m2−1∑

s= r

(dd)jk,rsv1jkv2rs (9)

for i = 1, . . . ,N. A nice feature of the above GLM is that we
can easily establish the relationship between its model parameters
and the expected genotypic values by starting from the lowest
order parameter µ0 = Gm1m1m2m2 . Suppose that there are no
empty genotypes; i.e., njkrs > 0 for any j, k = 1, · · · ,m1 and
r, s = 1, · · · ,m2. When we incorporate the above model (9)
into a GLM (1) and ignore the adjusted covariates, the LSE of
parameters in model (9) can be derived as shown in Appendix
C in Supplementary Material. Similar to the one-locus GLM, the
LSE of these fixed allelic effects are highly dependent upon the
genotypic group means, which could be sensitive to phenotypic
outliers in small genotypic groups. More importantly, model (9)
cannot provide the same partition of the expected genotypic
variance V(E(G|g)) as the one defined in the original Fisher’s
ANOVAmodel (7).

To construct a two-locus GMA model for analysis of genetic
variance components, we can introduce the mean-corrected

index variables x
(1)
1j , x

(1)
2k

for j, k = 1, · · · ,m1 at locus 1, and

x
(2)
1r , x

(2)
2s for r, s = 1, · · · ,m2 at locus 2. Then we define

the modified genotype coding variables w∗
1j, v

∗
1jk

for j, k =

1, · · · ,m1 at locus 1, and w∗
2r , v

∗
2rs for r, s = 1, · · · ,m2 at

locus 2 in the same way as we did in the one-locus case.
By including the within locus additive and dominance effects
as well as the locus-by-locus interactions (i.e., epistases), we
can build a fully parameterized two-locus GMA model as the
following.

E(G|gi) = µ∗ +

m1−1∑

j= 1

α∗
1jw

∗
1j +

m1−1∑

j= 1

m1−1∑

k= j

δ∗1jkv
∗
1jk +

m2−1∑

r=1

α∗
2rw

∗
2r

+

m2−1∑

r=1

m2−1∑

s=r

δ∗2rsv
∗
2rs +

m1−1∑

j= 1

m2−1∑

r=1

(αα)∗jrw
∗
1jw

∗
2r

+

m1−1∑

j= 1

m2−1∑

r= 1

m2−1∑

s= r

(αδ)∗j,rsw
∗
1jv

∗
2rs

+

m1−1∑

j= 1

m1−1∑

k= j

m2−1∑

r= 1

(δα)∗jk,rv
∗
1jkw

∗
2r

+

m1−1∑

j= 1

m1−1∑

k= j

m2−1∑

r= 1

m2−1∑

s= r

(δδ)∗jk,rsv
∗
1jkv

∗
2rs (10)

for i = 1, . . . ,N. Similar to the one-locus case, the original
Fisher’s ANOVA model (7) under constraints (8) and the
symmetric properties of the dominance effects can be re-written
as

E(G|gi) = µ +

m1∑

j= 1

α1jw
∗
1j +

m1∑

j= 1

m1∑

k= j

δ1jkv
∗
1jk +

m2∑

r=1

α2rw
∗
2r

+

m2∑

r=1

m2∑

s=r

δ2rsv
∗
2rs +

m1∑

j= 1

m2∑

r=1

(αα)jrw
∗
1jw

∗
2r

+

m1∑

j= 1

m2∑

r=1

m2∑

s=r

(αδ)j,rsw
∗
1jv

∗
2rs

+

m1∑

j= 1

m1∑

k= j

m2∑

r=1

(δα)jk,rv
∗
1jkw

∗
2r

+

m1∑

j= 1

m1∑

k= j

m2∑

r=1

m2∑

s=r

(δδ)jk,rsv
∗
1jkv

∗
2rs. (11)

Model (10) is actually a simplified version of model (11) by
further removing the redundant parameters. The twomodels (10)
and (11) are equivalent when we take

µ∗ = µ, α∗
1j = α1j − α1m1 , α∗

2k = α2k − α2m2

δ∗1jk = δ1jk − δ1jm1 − δ1km1
+ δm1m1

δ∗2rs = δ2rs − δ2rm2 − δ2sm2 + δm2m2

(αα)∗jr = (αα)jr − (αα)jm2 − (αα)m1r + (αα)m1m2

(αδ)∗j,rs = [(αδ)j,rs − (αδ)j,rm2 − (αδ)j,sm2 + (αδ)j,m2m2 ]

− [(αδ)m1,rs − (αδ)m1,rm2 − (αδ)m1,sm2 + (αδ)m1,m2m2 ]

(δα)∗jk,r = [(δα)jk,r − (δα)jm1,r − (δα)km1,r + (δα)m1m1,r]

− [(δα)jk,m2
− (δα)jm1,m2 − (δα)km1,m2

+ (δα)m1m1,m2 ]

(δδ)∗jk,rs = [(δδ)jk,rs − (δδ)jk,rm2
− (δδ)jk,sm2

+ (δδ)jk,m2m2
]

− [(δδ)jm1,rs − (δδ)jm1,rm2 − (δδ)jm1,sm2 + (δδ)jm1,m2m2 ]

− [(δδ)km1,rs − (δδ)km1,rm2
− (δδ)km1,sm2

+ (δδ)km1,m2m2
]

+ [(δδ)m1m1,rs − (δδ)m1m1,rm2 − (δδ)m1m1,sm2

+ (δδ)m1m1,m2m2 ]

for j, k = 1, · · · ,m1 − 1 (j ≤ k) and r, s = 1, · · · ,m2 − 1
(r ≤ s). Therefore, both model (10) and (11) share
exactly the same genetic components as the ones
defined in the original Fisher’s two-locus ANOVA

model (7). In model (10), let A1 =
∑m1−1

j= 1 α∗
1jw

∗
1j,

D1 =
∑m1−1

j= 1

∑m1−1
k= j

δ∗
1jk
v∗
1jk
, A2 =

∑m2−1
r=1 α∗

2rw
∗
2r , D2 =

∑m2−1
r=1

∑m2−1
s=r δ∗2rsv

∗
2rs, A1A2 =

∑m1−1
j= 1

∑m2−1
r=1 (αα)∗jrw

∗
1jw

∗
2r ,
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A1D2 =
∑m1−1

j= 1

∑m2−1
r=1

∑m2−1
s=r (αδ)∗j,rsw

∗
1jv

∗
2rs, D1A2 =

∑m1−1
j= 1

∑m1−1
k= j

∑m2−1
r=1 (δα)∗

jk,r
v∗
1jk
w∗
2r and D1D2 =

∑m1−1
j= 1

∑m1−1
k= j

∑m2−1
r=1

∑m2−1
s=r (δδ)∗

jk,rs
v∗
1jk
v∗2rs, which represent

the additive and dominance at locus 1, additive and dominance at
locus 2, additive by additive, additive by dominance, dominance
by additive and dominance by dominance genetic components,
respectively. Each genetic component consists of a set of average
allelic effects (additive or interaction) contributed by alleles from
the same locus or the same set of loci, and at each locus at most
two alleles could be involved. We refer the number of alleles
involved in each average allelic effect of a genetic component as
the order of the genetic component, and the number of non-
redundant average allelic effects involved in a genetic component
as the degrees of freedom (df ) of the genetic component. Note
that genetic components of the same order may have different
df . For example, the additive by additive component A1A2

has its order being 2 and df = (m1 − 1)(m2 − 1), while the
dominance component D1 at locus 1 has its order being 2 and
df = (m1 − 1)2.

Both the GLM (9) and GMA model (10) provide a re-
parameterization of the expected genotypic values. From the
relationship between their genotype coding variables, these two
models can be transformed equivalently from one to the other.
We can represent the parameters in GMAmodel (10) in terms of
the parameters in its equivalent GLM (9) as shown in Appendix D
in Supplementary Material. It is interesting to see that an average
allelic effect can be affected by not only its corresponding fixed
allelic effect but also other higher-order fixed allelic effects. As
a result, the hypothesis test of an average allelic effect in the
GMA model (10) is not equivalent to the hypothesis test of the
corresponding fixed allelic effect in an equivalent GLM (9) when
higher order fixed allelic effects are present. From Appendices
C, D in Supplementary Material, we can also derive the LSE of
parameters for the GMAmodel (10) as the following

µ̂∗ = ȳ∗····, α̂∗
1j = ȳ∗j··· − ȳ∗m1···

, α̂∗
2r = ȳ∗··r· − ȳ∗··m2·

δ̂∗1jk = ȳ∗jk·· − (ȳ∗jm1··
+ ȳ∗m1k··

)+ ȳ∗m1m1··

δ̂∗2rs = ȳ∗··rs − (ȳ∗··rm2
+ ȳ∗··m2s

)+ ȳ∗··m2m2

(̂αα)
∗

jr = ȳ∗j·r· − (ȳ∗j·m2·
+ ȳ∗m1·r·

)+ ȳ∗m1·m2·

(̂αδ)
∗

j,rs = ȳ∗j·rs − (ȳ∗m1·rs
+ ȳ∗j·rm2

+ ȳ∗j·m2s
)

+(ȳ∗j·m2m2
+ ȳ∗m1·rm2

+ ȳ∗m1·m2s
)− ȳ∗m1·m2m2

(̂δα)
∗

jk,r = ȳ∗jkr· − (ȳ∗jkm2·
+ ȳ∗jm1r·

+ ȳ∗km1r·
)

+(ȳ∗jm1m2·
+ ȳ∗km1m2·

+ ȳm1m1r·)− ȳ∗m1m1m2·

and (̂δδ)
∗

jk,rs = (̂dd)jk,rs, for j, k = 1, . . . ,m1 − 1, j ≤ k; and
r, s = 1, . . . ,m2 − 1, r ≤ s. Similar to the one-locus GMA
model, the LSE of these average allelic effects depend on the
weighted genotypic group means. Except the LSE of the highest
order effects for dominance by dominance interactions, the LSE
of other lower order average allelic effects could be more robust
to phenotypic outliers in small genotypic groups than the LSE of
their corresponding fixed allelic effects.

When the two markers are unlinked and in HWE, the
inheritance of four paternal and maternal alleles at the two loci
are independent. Therefore, the four sets of indicator variables

{z
(1)
1j , j = 1, · · · ,m1}, {z

(1)
2k

, k = 1, · · · ,m1}, {z
(2)
1r , r =

1, · · · ,m2}, and {z
(2)
2s , s = 1, · · · ,m2} are independent with

each other, although the variables within each set could still
be correlated. In this case, all the genetic components are
independent of each other, and the GMAmodel (10) can provide
an orthogonal partition of the expected genotypic variance. In
Wang (2014), we have derived formulas for computing the
genetic variance components based on the model parameters
in a general multi-locus GMA model. For the two-locus GMA
model (10), by plugging in the LSE of its model parameters,
we obtain estimators of the genetic variance components as
shown in Appendix E in Supplementary Material. It should
be pointed out that Weir and Cockerham (1977) also derived
estimates of the genetic variance components based on the model
parameters in Fisher’s two-locus ANOVA model (7). But they
did not construct the estimators of genetic variance components
in terms of the weighted genotypic group means. Note that
the orthogonal partition on the genetic variance components
implies that the genetic components constitute independent
random sources contributing to the expected genotypic variance.
Therefore, we could estimate and test for each genetic component
separately. Bonferroni criterion can also be applied to correct for
the association testing of multiple genetic components.

When the inheritance of paternal and maternal alleles at the
two loci are dependent, non-zero covariances among different
genetic components may present. The dependency among
inheritance of the paternal and maternal alleles at the two
markers can bemeasured byDjkrs = pjkrs/(2−1{j=k})(2−1{r=s})−

pjpkprps, for j, k = 1, · · · ,m1 and r, s = 1, · · · ,m2. Let D̂jkrs =

p̂jkrs/(2− 1{j=k})(2− 1{r=s})− p̂jp̂kp̂rp̂s. Similar to the one-locus

case, when D̂jkrs = 0 for j, k = 1, · · · ,m1 and r, s = 1, · · · ,m2,
we can show that the LSE of the average additive, dominance,
additive by additive, additive by dominance, dominance by
additive and dominance by dominance effects in the full model
(10) can keep consistent when some components are excluded
from the model.

In general, we can always incorporate the two-locus GMA
model (10) into a regression model (1). By treating the modified
genotype coding variables w∗

1j, w
∗
2r , v

∗
1jk
, and v∗2rs as regular

fixed covariates, we can fit the regression model using the
ordinary LS approach. Based on the fitted model, we can
calculate the fitted genetic components for each individual
i = 1, · · · ,N. Then the genetic variance components and
their possible covariances can be estimated as the sample
variances and covariances from the fitted values of these genetic
components. Similar to the one-locus case, these estimators
of the variance and covariance components are different from
the traditional ANOVA estimators when the two marker are
linked or their genotypes are in HWD. As the estimators of
variance components coming from the sample variances, they
are guaranteed to be non-negative. When the model residuals
are normally distributed, these estimators of the variance and
covariance components become MLE and likely possess the
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asymptotic normality property. Besides, these variance and
covariance estimators are likely asymptotically unbiased.

2.3. A Simulation Example
Consider two biallelic marker loci with allele frequencies
p1 = 0.4 and q1 = 0.6 for alleles “1” and “0” at locus 1,
and p2 = 0.2 and q2 = 0.8 for alleles “1” and “0” at locus 2.
Assume that the two marker loci are in linkage and gametic
equilibria. The expected genotypic values at the two marker
loci are simulated based on a two-locus GLM model (9) with
µ0 = 10 and a11 = a21 = d111 = d211 = (aa)11 = 1
and (ad)1,11 = (da)11,1 = (dd)11,11 = 0. From Appendix
D in Supplementary Material, we can show that this GLM
is equivalent to a GMA model (10) with µ∗ = 11.72 and
α∗
11 = 1.8, α∗

21 = 2, δ∗111 = 1, δ∗211 = 1, (αα)∗11 = 1,
(αδ)∗1,11 = 0, (δα)∗11,1 = 0, and (δδ)∗11,11 = 0. Based
on the true expected genotypic values and the genotypic
distribution, we also know that the total expected genotypic
variance, which is VG = 3.09, has an orthogonal partition
which consists of eight variance components contributed
by w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗. Besides, these eight
components w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗ contribute
50.74, 1.87, 41.53, 0.83, 5.03, 0.00, 0.00, 0.00% of the total
expected genotypic variance VG. For each random sample of size
n, we first generate genotypes of individuals independently based
on the genotypic distribution. Then, based on the genotypes,
we create dummy variables w1 = w11, v1 = v111,w2 =

w21, v2 = v211,ww = w11 ∗ w21,wv = w11 ∗ v211, vw =

v111 ∗ w21, vv = v111 ∗ v211 and mean-corrected index
variables w∗

1 = w11, v
∗
1 = v111,w

∗
2 = w21, v

∗
2 = v211,ww

∗ =

w11 ∗w21,wv
∗ = w11 ∗ v211, vw

∗ = v111 ∗w21, vv
∗ = v111 ∗ v211.

The phenotypic values is a sum of the genotypic values and the
residuals with the residuals being independent of the genotypes.
To generate phenotypic values, we assume that the residuals
ǫi, i = 1, · · · , n, are i.i.d. and normally distributed with the
residual variance being Vǫ = 17.51, which account for 85% of
the total phenotypic variance (i.e., the broad sense heritability is
about 15%).

First, we show that the GLM and GMA models provide
different partitions of the expected genotypic variance. To
minimize the sampling variation, we simulate a random sample
with n = 100,000. We fit both GLM and GMA models to
the random sample using SAS “proc glm” (SAS Institute,
INC.). For the fitted GLM, we have LSE µ̂0 = 9.99,
â11 = 1.01, â21 = 1.05, d̂111 = 0.97, d̂211 = 0.95,
(̂aa)11 = 0.97, (̂ad)1,11 = 0.02, (̂da)11,1 = −0.03 and

(̂dd)11,11 = 0.07, which are close to the true values. From the
fitted GLM, we calculate estimates of the variance components
contributed by w1, v1,w2, v2,ww,wv, vw, vv as 0.4894, 0.1274,
0.3533, 0.0345, 0.4153, 0.00, 0.00, 0.00, respectively. The
summation of these variance components is 1.4199, which is
about 46% of the total expected genotypic variance estimate
VG = 3.0896. In other words, in the GLM based partition
of the expected genotypic variance, about 54% is contributed
by the covariance components due to the collinearity among
the variables w1, v1,w2, v2,ww,wv, vw, vv. For the fitted GMA,

we have LSE µ̂∗ = 11.72, α̂∗
11 = 1.78, α̂∗

21 = 2.02,

δ̂∗111 = 0.96, δ̂∗211 = 0.98, (̂αα)
∗

11 = 0.97, (̂αδ)
∗

1,11 =

0.05, (̂δα)
∗

11,1 = −0.02 and (̂δδ)
∗

11,11 = 0.07, which are
also close to the true values. From the fitted GMA model,
we compute estimates of the variance components contributed
by w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗ as 1.5321, 0.0534, 1.3079,
0.0244, 0.1462, 0.00, 0.00, 0.00, respectively. The summation
of these variance components is 3.064, which is about 99% of
the total expected genotypic variance estimate VG = 3.0896.
This indicates that the GMA model leads to a partition of the
expected genotypic variance, which is almost orthogonal with
only about 1% coming from the covariance components. Note
also that these estimates of the variance components contributed
by w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗ account for approximately
49.59, 1.73, 42.33, 0.79, 4.73, 0.00, 0.00, 0.00% of the expected
genotypic variance estimate VG = 3.0896, which are close to the
true proportions 50.74, 1.87, 41.53, 0.83, 5.03, 0.00, 0.00, 0.00%
of the variables w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗ contributed to
the expected genotypic variance.

We also look at the difference between the partition of the
expected genotypic variance and the Type III sums of squares
for this random sample. Both the GLM and GMA models have
the same regression sum of squares SSR = 307788.89 and mean
square errorMSE = 17.52. In the fitted GLM, the Type III sums
of squares for the eight variables w1, v1,w2, v2,ww,wv, vw, vv
are 13415.25, 3475.46, 8472.60, 840.54, 4149.25, 0.24, 1.04, and
0.67, respectively. The summation of these Type III sums of
squares is 30355.05, which is less than 10% of the total SSR.
In the fitted GMA, the Type III sums of squares for the
eight variables w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗ are 153184.54,
5340.61, 130751.17, 2438.75, 14620.38, 2.92, 0.44, and 0.67,
respectively. The summation of these Type III sums of squares is
306339.50, which is about 99.5% of the total SSR. This indicates
that these Type III sums of squares also provide an orthogonal
partition of the SSR. Or, in other words, the hypothesis tests of
the eight genetic components are approximately orthogonal.

Next, we examine the performance inmodel selection between
using the GLM and GMA models. We consider varied sample
sizes of n = 500, 1000, 2000, and 5000. Under each simulation
scenario, we run 1000 simulation. For each simulation sample,
we first apply one commonly usedmethod—the forward stepwise
selection for model selection on {w1, v1,w2, v2,ww,wv, vw, vv}
and {w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗}, separately. We run
“proc glmselect” in SAS with the criterion p=0.05 for both
entry and stay in the model. For the GMA model selection
on index variables {w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗}, as these
variables are independent in the underlying true model, we
can rank them in the order of w∗

1,w
∗
2,ww

∗, v∗1, v
∗
2, vw

∗,wv∗,
and vv∗ according to their variance contributions from
the largest to the smallest. Intuitively, we expect that the
selected models would include the higher ranked variables
more often than the lower ranked ones. We mainly focus
on the top five variables w∗

1,w
∗
2,ww

∗, v∗1, v
∗
2 and classify

the selected models into 10 categories: I = all the five
variables w∗

1,w
∗
2,ww

∗, v∗1, v
∗
2 are selected; II =w∗

1,w
∗
2,ww

∗, v∗1
are selected but not v∗2 ; III =w

∗
1,w

∗
2,ww

∗, v∗2 are selected but
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TABLE 1 | Counts of selected GLM and GMA model types for “Stepwise Selection”.

Model GLM GMA

types n = 500 n = 1000 n = 2000 n = 5000 n = 500 n = 1000 n = 2000 n = 5000

I 0 15 196 605 13 71 285 737

II 3 132 401 342 118 294 433 239

III 0 27 70 33 43 98 99 22

IV 89 266 176 9 370 361 160 2

V 288 213 71 11 456 176 23 0

VI 247 140 47 0 0 0 0 0

VII 82 77 9 0 0 0 0 0

VIII 265 129 30 0 0 0 0 0

IX 26 1 0 0 0 0 0 0

X 0 0 0 0 0 0 0 0

Total 1000 1000 1000 1000 1000 1000 1000 1000

TABLE 2 | Counts of selected GLM and GMA model types for “Adaptive LASSO”.

Model GLM GMA

types n = 500 n = 1000 n = 2000 n = 5000 n = 500 n = 1000 n = 2000 n = 5000

I 1 18 91 363 4 17 58 367

II 17 87 246 372 33 89 226 346

III 8 18 41 19 17 20 38 13

IV 87 180 226 153 194 336 371 197

V 271 227 125 25 602 432 237 55

VI 184 212 150 46 0 0 0 0

VII 39 34 13 0 0 0 0 0

VIII 227 145 71 10 0 0 0 0

IX 61 17 6 1 8 0 0 0

X 105 62 31 11 142 106 70 22

Total 1000 1000 1000 1000 1000 1000 1000 1000

not v∗1 ; IV= w∗
1,w

∗
2,ww

∗ are selected but not v∗1, v
∗
2 ; V=

w∗
1,w

∗
2 are selected but not ww∗, v∗1, v

∗
2 ; VI = w∗

1,ww
∗ are

selected but not w∗
2 ; VII = w∗

2,ww
∗ are selected but not

w∗
1 ; VIII =ww∗ is selected but w∗

1,w
∗
2 are missed; IX=w∗

1 is
selected but miss w∗

2,ww
∗, or w∗

2 is selected but miss w∗
1,ww

∗;
X=w∗

1,w
∗
2,ww

∗ are missed. For the GLM model selection on
the dummy variables {w1, v1,w2, v2,ww,wv, vw, vv}, we also
define the similar 10 categories I-VIII based on the variables
w1, v1,w2, v2,ww,wv, vw, vv. Under each simulation scenario,
the counts of selected GLM and GMA model types for stepwise
selection are listed in Table 1.

For the stepwise selection, the GMA model shows a clear

advantage over the GLMon choosing the Type I (the truemodel),
Type I+II, Type I+II+III, Type I+II+III+IV, or Type I-V models.

Meanwhile, the GLM tends to miss one of the main fixed effects

(Type VI, VII, or VIII) when the sample size≤2000, even though
a Type VI, VII, or VIII GLM could imply an equivalent GMA

model of Type IV. Overall, as the sample size increases, the model

selection improves using either GLM or GMA models. But the
selected GLM have a bigger variety, while the selected GMA

models are more predictable.

It has been known that the conventional stepwise model
selection has problems such as the stepwise F-statistics may
no longer follow the F-distributions and the aggravated
collinearity among the selected variables (Harrell, 2001). Several
regularized regression methods have been developed to deal with
the model selection problem especially for high-dimensional
data. Here we also apply one of the regularized regression
methods - the adaptive LASSO, using “proc glmselect” in
SAS. We adopt the Bayesian information criterion (BIC)
for model selections. The standardization of the variables
is also made prior to the model selection. Note that the
standardization of the variables {w1, v1,w2, v2,ww,wv, vw, vv}
or {w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗} can only affect the scales
of the regression coefficients but does not change the correlation
structure among each set of variables, while making mean-

corrections on the indicator variables {z
(1)
1j , z

(1)
2k
} and {z

(2)
1r , z

(2)
2s }

can lead to different correlation structures between the dummy
variables {w1, v1,w2, v2,ww,wv, vw, vv} and the index variables
{w∗

1, v
∗
1,w

∗
2, v

∗
2,ww

∗,wv∗, vw∗, vv∗}. The counts of selected
GLM and GMA model types for adaptive LASSO are listed in
Table 2.
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For the adaptive LASSO, it appears that the GMA model
performs slightly better on choosing Type I (the true model),
Type I+II, Type I+II+III, Type I+II+III+IV, or Type I-V models
when sample size=500. However, this advantage diminishes for
larger sample sizes. Still, the selected GLM appear to have a bigger
variety, while the selected GMAmodels are more predictable. On
the other hand, it seems that the selected GMA models could
miss all the three top variables w∗

1,w
∗
2,ww

∗ more likely than
the GLM models for w1,w2,ww. A brief comparison between
Tables 1, 2 also reveals that the stepwise selection has a better
performance than the adaptive LASSO under our simulation
setting. But this may not be a fair comparison as the selected
variables in our simulation setting is very limited. Besides, except
BIC, many other criteria are available for model selections
in “proc glmselect.” Further exploration on those criteria is
needed.

3. DISCUSSION

In this study, we applied the GMAmodels on analysis of variance
components for genetic markers with unphased genotypes. We
pointed out that the traditional Fisher’s ANOVA model does
not explicitly specify the random variables that contribute to the
various genetic variance components. The constraints on their
model parameters also complicate the model fitting. Meanwhile,
the classical dummy-variable based GLM does not provide the
same partition on the genetic variance components as the original
Fisher’s ANOVA model. The hypothesis tests of the fixed allelic
effects in a GLM based on the partial (Type III) reduction
in sums of squares could also be inadequate for testing the
existence of variance components when allelic interactions are
present. Alternatively, the GMA model can retain the same
partition on the genetic variance components as the traditional
Fisher’s ANOVA model. Similar to the classical GLM, the GMA
model does not require constraints on its model parameters
and can be fitted using the ordinary least square approach. As
the result, the GMA model allows us to estimate and test for
the genetic variance components more conveniently than the
classical GLM.

The classical GLM is appealing in genetic association studies
due to its simplicity in interpretation of the model parameters,
which often represent certain comparisons of the expected
genotypic values in different genotype groups. However, the
GLM-based approach faces challenges in dealing with allelic
interactions because the fixed lower order allelic effects are
often confounded with the higher order allelic interactions
in a GLM even when the paternal and maternal alleles are
independently inherited. In order to test for a particular fixed
allelic interaction based on the classical GLM, we need to
include all its lower order effects in the model to make
this allelic interaction interpretable. Besides, ignoring certain
higher order interactions in the model could also affect the
definition of this particular allelic interaction due to their

potential confounding, as pointed out in Zeng et al. (2005).
On the other hand, analysis of genetic variance components
using ANOVA type models such as GMA provides an alternative
way on assessing the allelic effects and interactions. A nice
feature of the GMA model is that the genetic components
are independent of each other when multiple genetic markers
are unlinked and in equilibrium populations. Therefore, at
least in equilibrium populations, each genetic component
can be treated as a random source of variation and tested
individually regardless of its lower or higher order genetic
components. A statistically significant higher-order genetic
variance component implies a variation contributed by varied
allele types from a set of loci, which could be more perceivable
than a significant fixed allelic interaction for claiming allelic
interactions.

As shown in Wang (2014), the extension of GMA to multiple
loci is straightforward. The GMA model could also be applied to
other phenotypic outcomes. For example, under the generalized
linear mixed model framework, we can consider the genetic
components contributing to a g-transformed (g - a link function)
expected outcomes. For survival outcomes, we can examine the
genetic components contributing to the hazard functions as well.
However, it should be pointed out that the estimation of genetic
variance components for genetic markers relies on the genotypic
distribution of the markers in a study population.When a sample
does not come from the simple random sampling, an adjustment
for the sampling strategy is needed in order to make appropriate
statistical inference in the general population. Currently, the
genome-wide association studies (GWAS) often adopt the case-
control design. When the case and control sampling rates are
known, we could assess the variance components of genetic
markers based on their odds ratio estimates. A thorough
exploration on applying the GMA type models to a case-control
based GWAS could be a research topic in the future.
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