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Hierarchical clustering is a simple and reproducible technique to rearrange data of

multiple variables and sample units and visualize possible groups in the data. Despite the

name, hierarchical clustering does not provide clusters automatically, and “tree-cutting”

procedures are often used to identify subgroups in the data by cutting the dendrogram

that represents the similarities among groups used in the agglomerative procedure. We

introduce a resampling-based technique that can be used to identify cut-points of a

dendrogram with a significance level based on a reference distribution for the heights of

the branch points. The evaluation on synthetic data shows that the technique is robust

in a variety of situations. An example with real biomarker data from the Long Life Family

Study shows the usefulness of the method.

Keywords: dendrogram, tree-cutting procedures, resampling techniques

1. INTRODUCTION

Hierarchical clustering is a popular data analysis technique that is commonly used to analyze
data sets comprising multiple variables and to identify possible grouping in the data (Murtagh
and Contreras, 2012). The associated dendrogram that represents the sorting procedure based
on similarity between groups is an effective way to visualize structure in the data and to aid the
process of data quality, bias detection, and discovery of informative groups in the data. Hierarchical
clustering has become the standard way to display and identify structure in -omics data (Eisen
et al., 1998; Hastie et al., 2001; Sebastiani et al., 2003), but despite the name this agglomerative
procedure does not provide clusters automatically, and the task of cluster discovery is often based
on a subjective decision. “Tree-cutting” procedures can be used to identify subgroups in the data
by cutting the dendrogram at some height, and several methods have been proposed to inform
this decision based on separation within and between clusters. Examples include the Calinski and
Harabasz index (Caliński and Harabasz, 1974), the “Gap statistics” (Tibshirani et al., 2001), and
“dynamic tree cutting” (Langfelder et al., 2008). A comprehensive review is presented in Charrad
et al. (2014). While these methods provide a solution to the task of selecting the “best set of clusters”
among a set of possible choices, they do not provide statistical evidence that there are actually
clusters in the data, and whether the set of clusters is statistically significant. In years of experience
using hierarchical clustering, the typical question asked by collaborators is to provide the likelihood
that the selected clusters are “random.”

Beale (1969) proposed an F-statistic to test the hypothesis that a larger set of clusters is
significantly better than a smaller one. Model-based clustering provides also a solution by setting
cluster membership as a hidden variable, and different model-based clusters can be compared using
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metrics for model fit such as the Bayesian information criterion
(Fraley and Raftery, 2002). This approach has been usually
applied to k-means clustering, and it was combined with
hierarchical clustering in the context of -omics data (Ramoni
et al., 2002b), and Markov chains (Ramoni et al., 2002a). The
downside of model-based clustering is that it is parametric, and
the solution may not be robust to inappropriate parametric
models.

This article proposes a very simple idea to identify “statistically
significant” groups in the data using hierarchical clustering.
The intuition of the approach is to derive a permutation-based
distribution of the similarity between sample profiles under the
null hypothesis of no clusters in the data, and then to use
quantiles of this reference distribution to cut the dendrogram
at heights that would unlikely be seen in random data. The
advantages of the proposed approach are that it is easy, it can
be used together with existing methods to improve the task of
clusters discovery, it is model-free and does not rely on any
assumption on the parametric distribution of the data, and it is
computationally efficient.

2. METHODS

Denote by X the nv × ns data matrix with nv rows that represent
variables and ns columns that represent sample units. Let the
jth column of the matrix X denote the profile of the jth sample
unit: (x1j, ..., xnvj)

T . We assume that the goal of the analysis is to
discover groups of samples that share a similar profile defined
by the v variables. We focus on hierarchical clustering of the
sample units, with Euclidean distance as dissimilarity metric,
and complete linkage, so that the shortest distance between two
clusters during the agglomerative procedure is defined as the
maximum distance between all possible pairs of units in the two
clusters.

The rationale of our proposed approach is illustrated by
the two dendrograms displayed in Figure 1. The heights of the
branch points (clades) in the dendrogram in the left panel are
the normalized Euclidean distances used in the agglomerative
procedure of ns = 2000 sample profiles of 16 variables
(nv = 16) simulated from nc = 13 clusters. Data were
generated from multivariate Normal distributions with diagonal
variance-covariance matrices, and marginal means that were
randomly generated from a Normal distribution with mean 0
and variance 4. Data were standardized by row before using
hierarchical clustering, and Euclidean distances were normalized
by dividing by the square root of the profile dimension (nv).
The dendrogram in the right panel displays the normalized
Euclidean distances driving the agglomerative procedure of the
data after the elements of each of the 16 rows were reshuffled
independently so that there should be no clusters in the data.
Even in data with no structure the agglomerative procedure sorts
the sample profiles and finds patterns in the data. However,
the dendrogram in the left panel is more “dynamic” and the
distribution of the distances driving the agglomerative procedure
is concentrated on smaller value (median = 0.60) compared to
the dendrogram generated from random data (median = 0.91).

Furthermore, the distribution of the heights of the branch points
in the dendrogram of data with real clusters (inset histogram
in the left panel) shows a longer right tail than the distribution
of the heights in data with no clusters. The distributions are
consistent with the hypothesis that when there are real clusters
in the data, profiles in the same cluster should be more similar
than profiles from random (unclustered) data, while profiles in
different clusters should be more different than profiles from
random data.

This example suggests that we could statistically decide if
and how many clusters are in a data set by comparing the
distribution of the distances used in the agglomerative procedure
of hierarchical clustering to a referent distribution generated
under the null hypothesis of no clusters in the data. We therefore
developed this resampling procedure to identify significant
groups using hierarchical clustering:

1. Standardize the data matrix X by row to produce the data
matrix Z, in which the variables are all on the same scale.

2. Conduct hierarchical clustering of the columns of Z, and store
the ns − 1 distances from the agglomerative procedure in the
vector Do. Normalize the vector of distances by dividing by√
nv.

3. Repeat r times:

(i) Reshuffle the elements of each of the nv rows of the matrix
Z to produce the data matrix Zi;

(ii) Conduct hierarchical clustering of the columns of the
matrix Zi and store the vector Di of ns − 1 heights from
the agglomerative procedure;

4. Compute the reference distributions of heights, say De, with
elements Dej =

∑

k Dkj/r. Normalize the vector of distances
by diving by

√
nv.

5. Display the observedDo and expected heightsDe in aQQ-plot.
6. Generate significant clusters by cutting the dendrogram

displaying the Do distances at some extreme percentile of
the reference distribution. The “significance level” of clusters
detected by using the pth percentile of De is α = 1− p/100.

In steps 2 and 4, dividing the distances by the square root of
the number of variables normalizes the distances so that values
are interpretable in general. Inspection of the QQ-plot would
inform about the existence of clusters in the data. A situation
in which observed and “expected” distances are statistically
indistinguishable would suggest that there are no clusters in
the data, while departure of the QQ-plot from the diagonal
line would suggest that there are clusters, (see Figure 2 for an
example). To detect the number of clusters, extreme percentiles
of the reference distribution De can be used to bound the false
detection rate to some fixed value.

3. EVALUATION

We evaluated the false and true positive rate of the proposed
algorithm in data simulated under a variety of scenarios. We also
compared the proposed algoritm to the strategy based on Beale
F-index (Beale, 1969).
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FIGURE 1 | Dendrogram of hierarchical clustering of 2000 profiles of 16 variables generated from 13 clusters, with cluster size ranging from 2 to 532

(left panel), and dendrogram generated from the same data after reshuffling of the rows (right panel). Data were generated from multivariate normal

distributions and standardized by row. The histograms describe the distributions of the heights of the branch points.

FIGURE 2 | Left panel: QQ-plot comparing expected and observed normalized distances used in hierarchical clustering of 2000 profiles of 16 variables generated

from 13 clusters. Right panel: QQ-plot comparing expected and observed normalized distances used in hierarchical clustering of 2000 profiles of 16 variables

generated from only one cluster. The QQ-plot is consistent with the hypothesis that when there are real clusters in the data, profiles in the same cluster should be

more similar than profiles from random (unclustered) data and should produce distances that are smaller than what expected in unclusterd data, while profiles in

different clusters should be more different than profiles from random data and should produce larger distances than expected by chance. Therefore, a QQ-plot with a

clear S-shape as depicted in the plot on the left panel would suggest the presence of very distinct clusters in the data.
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3.1. Data Generation and Analysis
We designed this simulation study to evaluate the impact of
the number of true clusters (nc), the number of variables in
the data set (nv), the number of profiles in the sample (ns),
and the separation of true clusters profiles on the accuracy of
the algorithm to detect the correct number of clusters and the
correct clusters’ composition. For each σ = 2, 5, 10, we generated
10,000 data sets with nc clusters, nv variables, and ns sample
profiles. To generate each data set, first the numbers nc, nv and
ns were randomly selected from ranges 2–20, 2–20, and 1000–
5000 respectively. Then, a set of nc vectors of nv elements were
generated to represent the true profiles of the nc clusters as
follows: One of the true profiles was a vector with all elements
equal to 0, while the elements of the remaining nc−1 profiles were
randomly generated from aNormal distribution withmean 0 and
variance σ 2. Finally, a data matrix X was generated with columns
that were simulated from multivariate normal distributions with
variance-covariance matrix Inv , and mean vector matching one
of the nc true cluster profiles. The number of sample profiles
per cluster was also randomly generated. To evaluate the false
positive rate of the algorithm, we also generated an additional
10,000 data sets with nc = 1, while nv and ns were randomly
selected from ranges 2–20 and 1000–5000 respectively. For each
pair (nv, ns), ns sample profiles based were generated from a
multivariate normal distribution with means 0 and variance-
covariance matrix σ 2Inv .

In each simulated data set, hierarchical clustering with
complete linkage and normalized Euclidean distance was
conducted to generated the observed distances Do used for the
agglomerative procedure. Resampling of the rows was conducted
10 times for each data set to derive the reference distribution De,
and percentiles of De corresponding to probabilities 0.95, 0.975,
0.99, 0.995, and 0.999 were used to detect clusters. We also used
Beale’s F-statistic to test the global null hypothesis that a given
set of clusters are identical vs. the alternative hypothesis that they
are not. We iteratively built clusters by cutting the dendrogram at
the clades, and we computed the F-statistic comparing each new
(larger) set of clusters to a single cluster merging all data. If the
maximum F-statistic was significant (p-value < 0.05 or 0.001),
we selected the corresponding number of clusters as solution. If
no significant result was found among 500 iterations, we selected
one cluster as solution.

3.2. Metrics
We used a variety of metrics to evaluate the algorithm. A simple
calculation of the number of wrong clusters is insufficient because
this number would not take into account the range of errors
that depends on the number of sample profiles and would also
ignore the composition of clusters. We therefore measured the
proportion of wrong clusters detected by the algorithm using the
ratio:

PWC = ( ˆncq − nc)/(ns − nc),

where ˆncq is the number of clusters inferred in the data by cutting
the dendrogram at the height corresponding to percentile with
probabilities, q = 0.95, 0.975, 0.99, 0.995, 0.999. The rationale of

this metric is that in a sample of ns profiles, there are at most ns
clusters that can be detected, ns − nc of which are wrong, and
PWC returns the proportion of the possible errors. This metric
takes value 0 whenever the algorithm infers the correct number
of clusters ( ˆncq = nc), and takes value 1 whenever the algorithm
assigns each sample profile to its own cluster ( ˆncq = ns). Negative
values denote underestimation of the number of clusters, with
minimum value (1−nc)/(ns−nc) that corresponds to merging all
sample profiles into one cluster. When nc = 1, the PWC becomes
( ˆncq−1)/(ns−1). Themetric wasmodified as ( ˆncq−nc)/(500−nc)
to assess the proportion of wrong clusters detected with the
heuristics based on Beale’s F-statistic.

It is importance to notice that detection of the exact number
of clusters does not imply that the algorithm assigns profiles to
the right groups. The Rand index proposed in Rand (1971) to
measure agreement between two sets of clusters is sensitive to
the number of clusters and profiles and can be too optimistic
(Solovieff et al., 2010). Therefore, we used two alternative indexes
to assess the accuracy of the composition of the clusters inferred
by the algorithm: the Cramer’s V index (Cramer, 1946), and
the average Jaccard’s similarity coefficient (Torres et al., 2009).
Cramer’s V index measures the perfect dependency between the
true and inferred clusters’ labels and it is calculated as

IC =
√

(χ2/n)/min(nc − 1, ˆncq − 1)

where the χ2 statistics is computed in the contingency table
cross-classified by the true cluster labels and the cluster labels
inferred by the algorithm. The index varies between 0 and 1, with
1 denoting perfect dependency. The limitation of this metric is
that when the number of inferred clusters ˆncq differs from the
number of true clusters nc, the index can take value 1 as long as
there is a perfect dependency in the cross-classification matrix
and each row of the contingency table (or each column) has only
one element different from 0. Therefore, this index would miss
merging of true clusters into larger clusters (See Example 1 in
Supplement Material). The Jaccard’s index is more appropriate
to detect these errors since it is calculated as

IJ = (
∑

ij

pij/qij)/max(r, c)

where pij is the number of objects common between true cluster
i and inferred cluster j, and qij is the number of objects in
either clusters i or in cluster j. Jaccard’s similarity index takes
value 1 only when there is perfect dependency between true
and inferred clusters and they also match in numbers. However,
when the number of inferred clusters differ from the number
of true clusters, and some objects are misclassified, the Jaccard’s
index will be less than one. The two indexes together can
inform about the precision to detect clusters, as well as the
type of errors. For example, a Cramer’s V index equal to 1
and a Jaccard’s index less than 1 will suggest that clusters are
correctly detected during the agglomerative procedure but some
are merged into bigger clusters if the detection rule is too
stringent.
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3.3. Results
3.3.1. False Positive Rate

In all 10,000 simulated data sets with only one cluster the
algorithm always generated some partition of the sample profiles.
The distributions of the proportion of wrong clusters for
significance levels 0.05, 0.01 and 0.001, and σ 2 = 4 are
displayed in Figure 3. Supplement Figure 1 displays a more
comprehensive set of results. The proportion of errors shown
by PWC matches the expected error rates for different choices
of the quantiles used to cut the dendrogram, and is independent
of the number of variables in the simulated data set. Beale F-test
correctly assigned the sample profiles to one cluster in 53% of
the simulated data sets when the level of significance was 0.05,
and in 59% of simulated data sets when the level of significance
was 0.001. However, in the remaining cases, the F-statistic
kept increasing with larger number of clusters and produced
a PCW = 1. The proportion of wrong clusters appeared
to increase with the number of variables (See Supplement
Figure 2).

3.3.2. True Positive Rate

The algorithm detected the correct number of clusters only in
11% of simulated data sets when a 0.05 significance level was
used, in only 9% of cases with 0.01 significance level, and in only
8% of cases with 0.001 significance level. Figure 4 shows the PWC
vs. the number of true clusters (nc) and the number of variables
(nv), for 5, 1, and 0.1% significance levels and σ = 2. More
comprehensive results are shown in Supplement Figure 3. The
PWC tends to decrease with increasing numbers of true clusters
and variables. This result is consistent with the observation
that the normalized Euclidean distance between true profiles in
the 10,000 simulations increases with the number of variables
(Supplement Figure 4) so that the clusters become easier to detect
and, consistently, the precision of the algorithm increases. The
use of more extreme percentiles may underestimate the correct
number of clusters and therefore less extreme percentiles should
be used for cluster detection when the distance between Do and
De is large. This observation is also emphasized by the results in
Figure 5, and also Supplement Figures 5–7, that show increasing

FIGURE 3 | Distribution of the proportion of falsely detected clusters PWC = ( ˆncq − 1)/(ns − 1) for different significance levels (α = 0.05: left panel;

α = 0.01; mid panel; α = 0.001 right panel), vs. the number of variables (top panels) and number of sample profiles generated in 10,000 simulations

(bottom panels). The number of sample profiles are presented in quantiles ranges. In each set, data were generated from one cluster, and cluster detection was

based on cutting the dendrogram with observed distances Do using the percentiles of the resampling-based reference distribution De.
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FIGURE 4 | Distribution of the error rate (PCW = ( ˆncq − nc)/(ns − nc)) vs. the true number of clusters (top panel), and the true number of variables

bottom panel) for different significance levels α = 0.05, 0.01,0.001. The error rate decreases with larger number of variables and larger number of clusters that

are both associated with larger separation of clusters (See Supplement Figure 3).

Cramer’s V Index and Jaccard’s similarity index for increasing
number of variables that define the sample profiles (columns 1
and 2), increasing number of clusters (columns 3 and 4) and
increasing separation between true profiles used to generate the
data (column 5 and 6). However, Jaccard’s similarity between
true cluster and inferred cluster labels tend to decrease if the
dendrogram is cut at a too extreme height and consequently some
clusters are merged into larger ones. Beale F ratio detected the
correct number of clusters in approximately 26% of cases, but the
PWC in the remaining 74% of simulated data was high and in
approximately 25% of simulated dataset the algorithm inferred
500 clusters (Supplement Figure 8).

3.4. Discussion of the Simulations Results
The simulation study suggests that the algorithm provides
a reasonable heuristics to detect significant groups from
hierarchical clustering although the accuracy of the results
can vary with the choice of percentile value used to cut the
dendrogram. Compared to Beale’s F-ratio, using the empirical
distribution of the dendrogram heights appears to be more
reliable, particularly when the number of variables or the
number of clusters in the data are large. The choice of the
best detection threshold can be informed by the magnitude
of the difference between the observed and expected distances
Do and De displayed in a QQ-plot. Substantial separation

between Do and De would indicate that a moderate detection
threshold, for example the 95th percentile, should be sufficient
to detect the correct number of clusters and assign correct
cluster membership to the sample profiles. For example, the QQ-
plot in the left panel of Figure 2 show substantial separation
between the set of distances Do and De for the data used
in the dendrogram in Figure 1. Cutting the dendrogram at
a height = 1.76 (95th percentile of De) detects exactly 13
clusters, with only 1 of the 2000 profiles that was wrongly
classified, and a similarity metric SJ = 0.97. Cutting the
dendrogram at more extreme heights reduces the true discovery
rate, for example only 9 clusters are detected using the 99th
percentile of the referent distribution. More limited separation
between real clusters makes both tasks of detecting the correct
number of clusters and assigning the correct cluster membership
more challenging. In these situations, we advocate using more
extreme percentiles from the distribution of De for cluster
detection. The next application to real data illustrates this
point.

4. APPLICATION

Prior studies by us and others indicate that circulating biomarker
values correlate with physical function, anabolic response
and healthy aging (Stenholm et al., 2010; Banerjee et al.,

Frontiers in Genetics | www.frontiersin.org 6 August 2016 | Volume 7 | Article 144

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Sebastiani and Perls Significant Groups in Hierarchical Clustering

FIGURE 5 | Cramer’s Index V (top panel) and Jaccard’s Similarity Index (bottom panel) for different levels of significance α, numbers of variables

(columns 1 and 2), number of true clusters (columns 3 and 4), and separation between true profiles (Norm. Euclidean Dist.).

2011; Newman et al., 2011). While analysis of individual
biomarker levels is often confounded by diverse underlying
physiological states resulting in poor specificity, analysis of
multiple biomarkers simultaneously could discover robust
signatures of key circulating factors that distinguish between
different patterns of aging, including early frailty and healthy
aging. Consistent with this hypothesis, we identified 19 blood
biomarkers that include some tests from total blood counts,
lipids, markers of inflammation and frailty measured in 4704
participants of the Long Life Family Study (LLFS; Newman
et al., 2011), and used the proposed algorithm to group LLFS
participants into clusters characterized by different patterns of
biomarkers. We used hierarchical clustering of age and sex
standardized biomarkers and generated the vector of 4703
distances Do. Resampling of the biomarker data was conducted
10 times to generate the reference set of distances De. Figure 6
shows the QQ-plot of Do and De and the departure from the
diagonal line suggests that there are indeed significant clusters
in the data, although the separation between Do and De is
limited and extreme percentiles should be used for guaranteeing
accuracy. We therefore investigated clusters that are detected
for extreme percentiles corresponding to probabilities p =
0.99, 0.991, ..., 0.999 of the reference distribution De.

Figure 7 shows the composition of clusters detected for
p = 0.994, 0.995, ..., 0.999. As the probability of Type I error
increases, so does the number of clusters. However, the number

of additional clusters introduced for more liberal thresholds is
small and most of the differences are in the generation of new
clusters with very small number of individuals. With a Type I
error rate of 0.4% the algorithm detects 26 clusters, and the most
noticeable difference from the clusters detected with a Type I
error rate ranging between 0.1 and 0.3% is the split of the cluster
with 462 participants into 3 smaller clusters of 96, 140 and 178
participants. These clusters are highlighted in blue in Figure 7.
For all subsequent analyses, we used the 26 clusters detected for
a significance level of 0.4% that provides a good compromise
between number of clusters and expected error rate.

Each cluster was characterized by the associated profile (or
signature) of the 19 biomarkers that is defined by the vector
of means and standard deviation of the biomarker data in the
subjects allocated to the specific cluster. The most common
profile corresponding to the largest cluster was shared by about
50% of LLFS participants (highlighted in yellow in Figure 7)
and was characterized by biomarkers that, on average, match
the values expected for the age and sex of cluster members.
We selected this profile as the referent profile and we described
it as representing “average aging” in LLFS. Another profile
shared by about 25% of LLFS participants is characterized by
a subset of the 19 biomarkers that tend to be below the values
observed in the referent profile. Other profiles shared by smaller
proportions of LLFS participants are characterized by varying
combinations of subsets of biomarkers that tend to be above
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FIGURE 6 | QQplot of the observed heights of the branch nodes in the

dendrogram of hierarchical clustering of 4704 profiles of 19

biomarkers in participants of the Long Life Family Study (y-axis) and

the expected heights based on 10 resampling of the data. The departure

from the diagonal line suggests that there are significant clusters in the data.

or below the normal aging values. We analyzed the predictive
values of these biomarker profiles by associating them with
survival rates and risk of age related diseases including cancer,
cardiovascular events, and type 2 diabetes using about 7 years
of follow up data in LLFS. All analyses were conducted using
Cox proportional hazard model, were stratified by sex, and were
adjusted by the age of participants at enrollment in the study. The
analysis showed that one biomarker profile was associated with a
statistically significant reduction in hazard for mortality and type
2 diabetes relative to the referent profile, while other 9 profiles
were associated with less successful aging, characterized by higher
risk for morbidity and mortality. Interestingly, the clusters of 140
and 178 subjects that are generated by choosing the percentile
99.6% are associated with a similar increased risk for diabetes
compared to the referent profile, but different risk for mortality.
The predictive values of 7 of these 10 profiles was replicated in
an independent data set from the Framingham Heart Study with
statistically significant and consistent effects, while the other 3
profiles showed consistent effects but did not reach statistical
significance associations. The complete analysis will be described
elsewhere.

5. DISCUSSION

We proposed a very simple method to identify statistically
significant groups in data comprising multiple variables using
hierarchical clustering. The method consists of generating a
permutation-based distribution of the similarity between sample
profiles under the null hypothesis of no clusters in the data,
and then uses quantiles of this reference distribution to cut

the dendrogram at an height that would unlikely be seen
in random data. A large simulation study showed that the
algorithm provides a reasonable heuristics to detect significant
groups from hierarchical clustering although the accuracy of
the results can vary with the choice of percentile value used
to cut the dendrogram. We also showed that a QQ-plot of
the observed and expected heights of the branch nodes in the
dendrogram can inform about the presence of clusters in the
data and the magnitude of percentiles that would likely produce
accurate results. We applied the algorithm to detect clusters
defined by patterns of 19 blood biomarkers in a sample of 4704
participants of the LLFS. The analysis identified several profiles
of biomarkers that are associated with varying types of aging in
LLFS participants. The replication of some of these association
in an independent data set from the Framingham Heart Study
suggests that the algorithm works well in practice.

Hierarchical clustering is a very popular method that is easy
to visualize and to describe to a non-statistical audience. We
believe that our proposed algorithm provides a statistically sound
method for the discovery of significant clusters that maintains the
simplicity of the overall approach. In addition the algorithm is
easy to implement (See an example of R script in the Supplement
material) and it is computationally efficient. In practice we noted
that resampling the data 10 times is sufficient to generate a
reliable reference distribution while maintaining computational
efficiency when the number of sample profiles is large. In our
evaluation we tried resampling up to 1000 times but we did
not see noticeable differences in the results. The accuracy to
estimate the reference distribution depends also on the number
of sample profiles, and with a small number of profiles there
will be a limit to the level of significance that can be determined
with the resampling procedure. Although we focused attention
to hierarchical clustering with complete linkage and Euclidean
distance as dissimilarity metric, the approach that we have
proposed can be applied to hierarchical clustering with different
dissimilarity and linkage choices.

An important preliminary step of the analysis is the
standardization of the rows of the data matrix so that all the
variables are on the same scale. Since hierarchical clustering
with complete linkage is sensitive to outliers, it is advisable to
remove outliers before the analysis, using for example principal
component analysis (Jolliffe, 2002). We have also noticed that
standardization of the variable profiles using trimmedmeansmay
lead to more robust results.

Theoretically it should be possible to derive a closed-form
solution for the reference distribution De assuming that the
data follow special probability distributions, such as a Normal
distribution. However, an important feature of the proposed
method is that it is model-free and in many applications with
biological data, standard probability distributions may fail to
capture the complexity of the data. Furthermore, the QQ-plot
of observed and expected distances also provide a simple but
effective way to decide whether there are significant clusters in
the data.

Our method differs substantially from the approach of
“bootstrap p-values” implemented in the R package pvclust
(Suzuki and Shimodaira, 2006), that provides a level of
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FIGURE 7 | Clusters detected by cutting the dendrogram using different percentiles of the the reference distribution De in the LLFS data. The first

column shows the significance level α = 1− p where p was used to determine the percentiles of the reference distribution De. The other columns report the size of

different clusters and colors track clusters that are robust with respect to different percentiles. For example, the algorithm detects 10 clusters for α = 0.001, and the

largest cluster in yellow includes 2298 profiles. The bulk of this cluster is maintained when the algorithm detects 14 clusters with α = 0.002, and the 2298 profiles are

split into a cluster with 2293 profiles and a smaller cluster with only 5 profiles.

significance for each clade of the dendrogram. Similar approaches
to detect the significance levels of each individual cluster have
been proposed in (Levenstien et al., 2003; Park et al., 2009). Our
approach provides a simple heuristic to decide whether there
are clusters, and where to cut the dendrogram to detect these
clusters. The method we propose does not assess the significance
of individual clusters, but tests only the overall significance of a
set of clusters or, in other words, the global hypothesis that there
are clusters in the data. It would be interesting to combine the two
approaches and we conjecture that our algorithm could be used
to reduce the computation time of pvclust that at the moment
can be substantial in large datasets. Similarly, the simulations
suggested that Beale’s index could be used in conjunction with the
proposed approach to reduce the number of falsely discovered
clusters.

In addition to the discovery of biomarker profiles of aging
in LLFS, we have used the proposed algorithm to detect
significant clusters in other -omic data with encouraging
results. Following the very successful application of hierarchical
clustering to discover subtypes of lymphoma (Alizadeh et al.,
2000), this clustering method has become one of the most
commonly used techniques to analyze -omics data, and to
discover new disease subtypes using gene expression and other
gene product data. Although many limitations of hierarchical
clustering are well-known (Quackenbush, 2001), the most
critical limitation is the lack of statistical rules to detect
clusters with some measure of uncertainty, and this limitation

is often overlooked. In the simulations and the application
to real data, we used the algorithm to cluster data sets
with a number of profiles that is comparable to the number
of expressed genes in many gene expression data sets (ns
ranged between 1000 and 5000). We also used the algorithm
for clustering larger data sets with up to 20,000 profiles
with comparable results. The approach proposed here could
become a useful and simple way for discovering new biological
processes and disease conditions from -omic data with higher
specificity.
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