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One objective of this study was to provide readers with a clear and unified understanding

of parametric statistical and kernel methods, used for genomic prediction, and to

compare some of these in the context of rice breeding for quantitative traits. Furthermore,

another objective was to provide a simple and user-friendly R package, named

KRMM, which allows users to perform RKHS regression with several kernels. After

introducing the concept of regularized empirical risk minimization, the connections

between well-known parametric and kernel methods such as Ridge regression [i.e.,

genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space

(RKHS) regression were reviewed. Ridge regression was then reformulated so as to show

and emphasize the advantage of the kernel “trick” concept, exploited by kernel methods

in the context of epistatic genetic architectures, over parametric frameworks used by

conventional methods. Some parametric and kernel methods; least absolute shrinkage

and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and

RKHS regression were thereupon compared for their genomic predictive ability in the

context of rice breeding using three real data sets. Among the comparedmethods, RKHS

regression and SVR were often the most accurate methods for prediction followed by

GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker

effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA

kernel, in a reasonable computation time has been developed. Moreover, a modified

version of this function, which allows users to tune kernels for RKHS regression, has

also been developed and parallelized for HPC Linux clusters. The corresponding KRMM

package and all scripts have been made publicly available.

Keywords: genomic prediction, parametric, semi-parametric, non-parametric, kernel “trick”, epistasis

1. INTRODUCTION

Since the seminal contribution of Meuwissen et al. (2001), genomic selection (GS) has become
a popular strategy for genetic improvement of livestock species and plants. Moreover numerous
methods from statistics and machine learning have been proposed for genomic prediction since,
due to the high modeling complexity associated to the large amount of markers available. For
instance, modeling the effects of thousands interacting genes (i.e., epistasis) associated to complex
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quantitative traits is not trivial. There is an increasing number
of studies supporting that epistasis may be the most prevalent
form of genetic architecture for quantitative traits (Flint and
Mackay, 2009; Moore and Williams, 2009; Huang et al., 2012).
Hence genomic prediction methods which can account for
epistatic genetic architectures have been proposed. For example,
Gianola et al. (2006) and Gianola and van Kaam (2008) first
proposed reproducing kernel Hilbert space (RKHS) regression
for genomic prediction when dealing with epistatic genetic
architectures. Later Howard et al. (2014) showed that RKHS and
support vector machine regression (SVR), when dealing with
an additive genetic architecture, could be almost as competitive
as parametric methods such as best linear unbiased predictor
(BLUP), least absolute shrinkage and selection operator (LASSO)
or Bayesian linear regressions (Bayes A, Bayes B, Bayes C, Bayes
Cπ , and Bayesian LASSO). These authors also showed that RKHS
regression and SVR, with some other non parametric methods,
clearly outperformed parametric methods for an epistatic genetic
architecture.

The SVR and kernel Ridge regression (abusively called
RKHS regression in this paper with respect to previous studies
(Konstantinov and Hayes, 2010; Howard et al., 2014) are popular
methods known as kernel methods in the machine learning
community (Cristianini and Shawe-Taylor, 2000), while they
are commonly and respectively referred to as non-parametric
and semi-parametric methods in statistics. Like kernel Ridge
regression, SVR also performs regularization in a RKHS and this
explains why kernel Ridge regression is somehow abusively called
RKHS regression. Nevertheless, the term RKHS regression for
kernel Ridge regression will be used in this paper so as to remain
consistent with previous studies. For RKHS regression, a part of
the model can be specified parametrically with fixed effects and
this explains why it is also called semi-parametric regression.

There is an increasing number of studies, based on either real
or simulated data, showing that kernel methods can be more
appropriate than parametric methods for genomic prediction
in many situations (Konstantinov and Hayes, 2010; Pérez-
Rodríguez et al., 2012; Sun et al., 2012; Howard et al., 2014). In
a recent review study, Morota and Gianola (2014) conjectured
that RKHS regression is at least as good as linear additive
models whether non-additive or additive effects are the main
source of genetic variation. Their conjecture came from a series
of comparison between parametric and kernel methods based
on several real data sets, especially in plant breeding. The
main difference between kernel and parametric methods rely
in model assumptions and functional form specification. For
example, SVR or RKHS regression can account for complex
epistatic genetic architectures without explicitly modeling them,
i.e., the model is data-driven and hence there is no pre-
specified functional form relating covariates to the response
(Howard et al., 2014). On the other hand classical linear
regression, which is a parametric method, rely on a pre-
specified functional relationship between covariates and the
response.

One objective of this paper is to provide readers with a clear
and unified understanding of conventional parametric and kernel
methods, used for genomic prediction, and to compare some

of these in the context of rice breeding for quantitative traits.
Another objective is to provide an R package named KRMMwhich
allows users to perform RKHS regression with several kernels.
The first part of the paper reviews the concept of regularized
empirical risk minimization as a classical formulation of learning
problems for prediction. The second part reviews the equivalence
between some well-known regularized linear models, such as
Ridge regression and LASSO, and their Bayesian formulations.
The main objective of this part is to highlight the equivalences
between Ridge regression, Bayesian Ridge regression, random
regression BLUP (RR-BLUP) and genomic BLUP (GBLUP),
through the connections between regularized, Bayesian and
mixed model regressions within the Ridge regression framework.
These equivalences are important in order to understand the
reformulation of Ridge regression in terms of kernel functions
known as the dual formulation (Saunders et al., 1998).

In the third part we use the dual formulation of Ridge
regression in order to explain and emphasize the RKHS
regression methodology, in the context of epistatic genetic
architectures, by the use of the so-called kernel “trick”. To our
best knowledge, and according to Jiang and Reif (2015), it has
not been well clarified howRKHS regression can capturemultiple
orders of interaction between markers and we aim at providing
a simple and clear explanation to this. Jiang and Reif (2015)
gave an excellent explanation on how RKHS regression, based
on Gaussian kernels, can capture epistatic effects. Nevertheless,
our approach is different from these authors in the sense that it is
directly motivated from the kernel “trick” perspective, and hence
we did not restricted ourselves to Gaussian kernels. Moreover,
we used a simpler kernel function (than the Gaussian kernel)
in order to give a simple and clear explanation on how RKHS
regression can capture multiple orders of interaction between
markers.

In the fourth part we show that solutions to many parametric
and machine learning problems have similar form, due to the so-
called representer theorem (Kimeldorf and Wahba, 1971), and
that these solutions differ only in the choice of the loss and kernel
functions used for the regularized empirical risk. We show that
many parametric methods can be framed as machine learning
methods with simple kernels. In the last part we compare four
methods which are LASSO, GBLUP, SVR, and RKHS regression
for their genomic predictive ability in the context of rice breeding
using three real data sets. Finally, we provide a simple and user-
friendly R function, and a tuned and parallelized version of
the latter, which allow users to perform RR-BLUP of marker
effects, GBLUP and RKHS regression with a Gaussian, Laplacian,
polynomial or ANOVAkernel. The correspondingKRMM package
and all scripts have been made publicly available at https://
sourceforge.net/u/ljacquin/profile/.

2. MATERIALS AND METHODS

2.1. Regularized Empirical Risk
Minimization (RERM)
Here we review RERM as a classical formulation of learning
problems for prediction. For simplicity reason, we consider
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a motivating example to RERM problems only in the linear
regression framework.

2.1.1. Classical Formulation of RERM Problems
Many statistical and machine learning problems for prediction
are often formulated as follows:

f̂ (.) = argmin
f∈H

{ E[||Y − f (X)||22]
︸ ︷︷ ︸

Empirical risk term (T1)

+ λ||f ||H
︸ ︷︷ ︸

Regularization term (T2),
i.e., “penalty”

}

(1)

where (Y,X) = (Yi,Xi)1≤i≤n are n independent and
identically distributed (i.i.d.) data samples, according to the joint
distribution of (Y,X), and f is a functional relating Y and
X. H corresponds to a Hilbert space and we can take H =
R
p for example in the finite dimensional case, which is the

Euclidean space, if f is a linear functional. In term T2, ||.||H is
a mathematical norm defined over H. For a ∈ H = R

p, we can

define ||a||H = ||a||q = (
∑p

i=1 |ai|q)
1
q which is the Lq norm for

example. In Expression (1) f̂ (.) corresponds to a functional (i.e.,
“model") minimizing simultaneously T1 and T2 over H. Note

that the uniqueness of f̂ (.) depends on the norm used in T2 and
the sizes of n and p. Term T2 is called the regularization (or
penalization) term which has a tuning parameter λ controlling
the “size" of f (i.e., model complexity). Term T1 is called the
empirical risk and corresponds, for some loss function, to the
expected ( i.e.,E[.] ) data prediction error which can be estimated
using the empirical mean by the weak law of large numbers
(Cornuéjols and Miclet, 2011). A common choice for the loss
function is the squared L2 norm (i.e., ||.||2q with q = 2), even

though other choices such as the L1 norm, or the ε-insensitive
loss like in the case of SVR (Smola and Schlkopf, 1998), are
possible. Finally, finding the solution to Expression (1) is known
as a RERM problem.

2.1.2. A Motivating Example for RERM Problems
Here we review the motivation behind RERM problems within
the classical linear regression framework for the sake of
simplicity. Assume that we have a functional relationship Y =
f ∗(X)+ε∗, where Y = [Y1, ..,Yi, ..,Yn] is a vector of nmeasured
phenotypic responses, X = (Xi)1≤i≤n is an n x pmarker genotype

matrix withXi = [X
(1)
i ,X

(2)
i , ..,X

(j)
i , ..,X

(p)
i ] ∈ R

p (i.e., genotypes
at pmarkers for individual i) and ε∗ = [ε∗1 , ε

∗
2 , .., ε

∗
i , .., ε

∗
n]

′ is the
error vector of n i.i.d elements with E[ε∗i ] = 0 and Var[ε∗i ] =
σ 2

ε∗ > 0, where σ 2
ε∗ is unknown. f ∗(.) can be interpreted as the

“true” deterministicmodel, or the data generating process (DGP),
generating the true genetic values of individuals. Note that we do
not assume gaussianity for ε∗ here. Our aim is to identify a model
with linear regression that best approximates f ∗(.). Consider the
following linear model with full rank X (⇒ p ≤ n):

Yi = β1X
(1)
i + β2X

(2)
i + β3X

(3)
i + ...+ βjX

(j)
i + ...+ βpX

(p)
i

+ εi = fp(Xi)+ εi where fp(Xi) =
p

∑

j= 1

βjX
(j)
i (2)

In matrix notation we can write the model defined by Equation
(2) as Y = fp(X) + ε = Xβ + ε where β = [β1, β2, .., βj, .., βp]

′.
By ordinary least squares (OLS), the estimated model for

Equation (2) is given by f̂p(X) = Xβ̂OLS, where β̂OLS is the unique
minimizer of ||Y − Xβ||22 = ||ε||22 (which is strictly convex

and quadratic) and is given by β̂OLS = (X′X)−1X′Y . For this
estimated model we have the following property which holds (see
Supplementary Material, lemma 4):

E[ ||f̂p(X)− f ∗(X)||22 ]
︸ ︷︷ ︸

Risk of the model, i.e., distance
between estimated model

and true model (R1)

= E[ ||Y − f̂p(X)||22 ]
︸ ︷︷ ︸

Empirical risk term (R2)

+ 2σ 2
ε∗p

︸ ︷︷ ︸

Term with dependence
on number of
parameters (R3)

−σ 2
ε∗n

︸ ︷︷ ︸

(R4)

(3)

For a fixed sample size n, from Equation (3) we clearly see that
R2 → 0 and R3 → +∞ when p → +∞. This situation is
common in genomic prediction where p is often much bigger

than n, i.e., p >> n. Precisely, we have R2 = 0 (i.e., Y = f̂p(X))

when p ≥ n. This is due to the fact that f̂p(X) is the orthogonal
projection of Y on the subspace of R

n, generated by columns
of X, which becomes R

n when p ≥ n (see Supplementary
Material, lemma 5). This phenomena is a case of what is known as
overfitting since the estimated model reproduces the data, which
contains the error term, and is not describing the underlying
relation defined by f ∗(.). Note that R4 is unaffected by p for
a fixed n. Hence, if we want to decrease the distance between
the estimated model and the true model (i.e., R1), we need to
minimize simultaneouslyR2 andR3 and thismotivates the RERM
formulation seen in Equation (1). Note that minimizing R3
(i.e., decreasing p), with R2 simultaneously, will penalize model
complexity, and size, and this explains why a regularization term
is also called a penalization term.

2.2. Equivalence of Regularized and
Bayesian Formulations of Ridge and
LASSO Regressions
In what follows, we assume that matrix X and vector Y
are centered. Two popular examples of regularized linear
regressions are Ridge regression (Hoerl and Kennard, 1970) and
LASSO (Tibshirani, 1996). These (estimated) models and their
regularized estimates are given by:

f̂ (X)Ridge = Xβ̂Ridge

where β̂Ridge = argmin
β∈Rp

{ ||Y − Xβ||22,Rn + λ||β||22,Rp } (4)

= (X′X + λIp)
−1X′Y (5)

f̂ (X)LASSO = Xβ̂LASSO

where β̂LASSO = argmin
β∈Rp

{ ||Y − Xβ||22,Rn + λ||β||1,Rp } (6)
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Note that β̂LASSO does not admit a closed form like β̂Ridge in

the general case. Indeed the L1 norm in the LASSO penalty
makes the objective function non-differentiable when βj = 0

for any βj. However, a closed form for β̂LASSO is available via
the soft-thresholding operator and the OLS estimate when X
is orthonormal (i.e., X′X = XX′ = I), which is however
rarely the case with SNP markers. Nevertheless, there are many
possible algorithms to compute LASSO solutions such as the
least angle regression selection (LARS) (Efron et al., 2004),
proximal gradient descent based iterative soft-thresholding
(ISTA) (Gordon and Tibshirani, 2012), cyclic coordinate descent
(Friedman et al., 2010) and etc. However, these algorithms are
beyond the scope of this article and are not the focus here. The
objective functions in Problem (4) and (6) are also particular type
of functions called relaxed Lagrangians, which are unconstrained
formulations of constrained optimization problems. Searching
for the saddle points of these Lagrangians is equivalent to
searching for the solutions to the constrained formulations of
Problem (4) and (6). Specifically, the solutions to Problem (4)
and (6) are obtained when the ellipses, defined by the contour
lines of the empirical risk term, touch the different constrained
regions for β imposed by the L2 and L1 norms respectively.
Hence, the L1 norm generally induces sparsity in the LASSO
solution, compared to the L2 norm which induces a shrinkage
of the βj in the Ridge solution, when λ increases (Friedman et al.,
2001).

Another way to tackle Problem (4) and (6) is in a
probabilistic manner via a Bayesian treatment. Moreover the
Bayesian treatment allows one to see the direct equivalence
between Ridge regression, Bayesian Ridge regression,
RR-BLUP and GBLUP. The equivalence between Ridge
regression, RR-BLUP and GBLUP is a direct consequence
of the proof of equivalence between Ridge regression
and Bayesian Ridge regression (Lindley and Smith, 1972;
Bishop and Tipping, 2003; De los Campos et al., 2013a).
The proof found in De los Campos et al. (2013a) is reported
below.

Proof of equivalence between Ridge regression and Bayesian
Ridge regression:

β̂Ridge = argmin
β∈Rp

{
n

∑

i= 1

[

Yi −
p

∑

j= 1

X
(j)
i βj

]2
+ λ

p
∑

j= 1

β2
j

}

(7)

(take λ = σ 2
ε

σ 2
β

and×− 1

2
)

= argmax
β∈Rp

{

− 1

2

n
∑

i= 1

[

Yi −
p

∑

j= 1

X
(j)
i βj

]2
− 1

2

σ 2
ε

σ 2
β

p
∑

j=1

β2
j

}

(8)

(divide by σ 2
ε and apply monotonic transformation ex )

=argmax
β∈Rp

{
n

∏

i= 1

N
(

Yi|
p

∑

j= 1

X
(j)
i βj, σ

2
ε

)

︸ ︷︷ ︸

i.e., Y|β,σ 2
ε ∼Nn(Xβ,Inσ 2

ε )

×
p

∏

j= 1

N (βj|0, σ 2
β )

︸ ︷︷ ︸

i.e., β|σ 2
β∼Np(0,Ipσ

2
β )

}

(9)

= argmax
β∈Rp

{

f (β|Y, σ 2
ε , σ 2

β )
}

= mode
{

f (β|Y, σ 2
ε , σ 2

β )
}

= β̂Bayesian Ridge (10)

where f (β|Y, σ 2
ε , σ 2

β ) is the density of the posterior
distribution for β (i.e., marker effects) in (10). Due to
the proportionality between the posterior density, and
the product of gaussian densities for the likelihood and
the prior distribution for β , f (β|Y, σ 2

ε , σ 2
β ) is also the

density of a gaussian distribution by conjugacy. Thus, by
symmetry of the gaussian distribution for β|Y, σ 2

ε , σ 2
β ,

we have mode
{

f (β|Y, σ 2
ε , σ 2

β )
}

= E(β|Y, σ 2
ε , σ 2

β ) =
Cov(β,Y)Var(Y)−1Y = Ipσ

2
βX

′[XX′σ 2
β + σ 2

ε In]
−1Y =

X′[XX′ + λIn]
−1Y under the assumption that Cov(β, ε) = 0,

where E(β|Y, σ 2
ε , σ 2

β ) can be identified to be the BLUP
(Robinson, 1991; Schaeffer, 2010) of β and corresponds to the
solution of the RR-BLUPmodel: β̂RR−BLUP = X′[XX′+λIn]

−1Y .
Hence we have β̂Ridge = β̂Bayesian Ridge = β̂RR−BLUP.

We recall that the RR-BLUP model (Ruppert et al., 2003)
corresponds to the following mixed model Y = Xβ + ε, where
β ∼ Np(0, Ipσ

2
β ), ε ∼ Nn(0, Inσ

2
ε ) and Cov(β, ε) = 0. If

U = Xβ , this model can be rewritten as Y = U + ε, where
U ∼ Nn(0, σ

2
UU) with genomic covariance matrix U = XX′

and σ 2
U = σ 2

β . The GBLUP of U for this model is given by

Û = Cov(U,Y)Var(Y)−1Y = XX′[XX′ + λIn]
−1Y . So it is

clear that predictions obtained with RR-BLUP and GBLUP are
mathematically equivalent.

The equivalence between LASSO and Bayesian LASSO, i.e.,
β̂LASSO = β̂Bayesian LASSO, can be shown using the same type
of arguments as for the proof of equivalence between Ridge
regression and Bayesian Ridge regression. For example, the proof
of equivalence between LASSO and Bayesian LASSO can also be
found in De los Campos et al. (2013a). In the case of Bayesian
LASSO the prior density for β corresponds to the product of p
i.i.d Laplace densities for the marker effects (Tibshirani, 1996;
De los Campos et al., 2013a). Thus, the prior distributions for β ,
in Bayesian Ridge regression and Bayesian LASSO, give another
insight on the shrinked and sparse solutions for Ridge and
LASSO respectively.

2.3. Dual Formulation of Ridge Regression
in Terms of Kernel Functions
We recall that the classical formulation of Ridge regression is

given by f̂ (X)Ridge = Xβ̂Ridge where β̂Ridge = (X′X + λIp)
−1X′Y .

This formulation is also known as the primal formulation of
Ridge regression. However, one can notice that the Ridge solution

can be written as β̂Ridge = X′α̂Ridge where α̂Ridge = 1

λ
[Y −

Xβ̂Ridge] . Therefore, by substituting X′α̂Ridge for β̂Ridge in the

expression for α̂Ridge, we also have α̂Ridge = (XX′ + λIn)
−1Y .

Hence Ridge regression can be reformulated as follows:

f̂ (X)Ridge = XX′α̂Ridge where α̂Ridge = (XX′ + λIn)
−1Y ∈ R

n

(11)
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Expression (11) is called the dual formulation of Ridge regression
(Saunders et al., 1998), where the components of the vector

α̂Ridge = (α̂
Ridge
1 , α̂

Ridge
2 , ...., α̂

Ridge
n ) are called dual variables. It is

clear that Expression (11) is identical to the GBLUP expression
seen in the previous section. Hence, the classical formulation of
Ridge regression and GBLUP are primal and dual formulations,
respectively, of the same solution to a RERM problem. Note
that Expression (11) requires the inversion of an n × n matrix
compared to Expression (5) where a p × p matrix needs to be
inverted. This is particularly convenient in the context of SNP
markers where p >> n. If we let K = XX′, Expression (11) can
be written more conveniently as:

f̂ (X)Ridge = Kα̂Ridge where α̂Ridge = (K + λIn)
−1Y (12)

For each genotype vector Xi = [X
(1)
i ,X

(2)
i , ..,X

(j)
i , ..,X

(p)
i ] ∈ R

p,
Expression (12) can be written as:

f̂ (Xi)Ridge =
n

∑

j= 1

α̂
Ridge
j Kij =

n
∑

j= 1

α̂
Ridge
j < Xi,Xj >Rp (13)

where Kij = < Xi,Xj >Rp are elements of K, i.e., K =
(Kij)1≤i,j≤n , and < ., . >Rp denotes the inner product between
two vectors in R

p. Expression (13) is particularly helpful as it
can allow one to understand the kernel “trick” exploited by
kernel methods, in the context of epistatic genetic architectures,
as shown by the following example.

Consider the school case where we have p = 2 markers,

i.e., Xi = [ X
(1)
i , X

(2)
i ], and n measured phenotypic

responses. Moreover, consider the following transformation φ

applied to Xi: φ(Xi) = [ (X
(1)
i )2,

√
2X

(1)
i X

(2)
i

︸ ︷︷ ︸

Interaction term

, (X
(2)
i )2 ] =

[ φ(1)(Xi), φ(2)(Xi), φ(3)(Xi) ] ∈ R
3 where φ(2)(Xi) corresponds

to the interaction term between X
(1)
i and X

(2)
i . In what follows we

define φ(X) to be the n× 3 transformed marker genotype matrix.
Hence, for our school case, two possible models for example are
given by:

Model 1 (M1): f̂ (Xi) = β̂1X
(1)
i + β̂2X

(2)
i

where

(

β̂1

β̂2

)

= argmin
β∈R2

{ ||Y − Xβ||22,Rn + λ||β||2
2,R2 }

⇐⇒ f̂ (Xi) =
n

∑

j=1

α̂
M1
j Kij =

n
∑

j=1

α̂
M1
j < Xi,Xj >R2 (14)

Model 2 (M2): f̂ (Xi) = θ̂1φ
(1)(Xi)+ θ̂2φ

(2)(Xi)+ θ̂3φ
(3)(Xi)

where





θ̂1

θ̂2

θ̂3



 = argmin
θ∈R3

{ ||Y − φ(X)θ ||22,Rn + λ||θ ||2
2,R3 }

⇐⇒ f̂ (Xi) =
n

∑

j= 1

α̂
M2
j K

φ
ij =

n
∑

j= 1

α̂
M2
j < φ(Xi), φ(Xj) >R3

(15)

where K
φ = φ(X)φ(X)′ and α̂M2 = (Kφ + λIn)

−1Y

However one can notice that K
φ
ij = < φ(Xi), φ(Xj) >R3 = (<

Xi,Xj >R2 )2 = (Kij)
2. Indeed we have:

< φ(Xi), φ(Xj) >R3 =
[

(X
(1)
i X

(1)
j )2 + 2(X

(1)
i X

(1)
j )(X

(2)
i X

(2)
j )

+ (X
(2)
i X

(2)
j )2

]

=
[

X
(1)
i X

(1)
j + X

(2)
i X

(2)
j

]2 = (< Xi,Xj >R2 )2

This means that we only need to square the elements of matrix K

forModel 1 to obtainModel 2 (i.e., to perform a Ridge regression
in R

3 modeling an interaction term). Indeed, in matrix form
Model 2 can be written as:

f̂ (X)Ridge = K
φ(Kφ + λIn)

−1Y where K
φ
ij = (Kij)

2 (16)

Similarly, for the case of p = 3 markers we can perform a
Ridge regression in R

6, which models three interaction terms,
by just squaring the inner product between genotype vectors

in R
3, i.e., K

φ
ij = (< Xi,Xj >R3 )2. This process of implicitly

computing inner products, in the space of transformed genotype
vectors, by performing computations only in the original space
of genotype vectors is known as the kernel “trick.” The space
of transformed covariates (i.e., space of transformed genotype
vectors here), associated to a map φ, is commonly known as a
feature space in machine learning. A kernel function associated
to a feature map φ is defined as follows.

Definition of a kernel k:
For Xi,Xj ∈ E, a kernel k is a function which satisfies
k(Xi,Xj) =< φ(Xi), φ(Xj) >F , where E and F are the space of
covariates and feature space respectively.

For example, in our school case we used the quadratic kernel
defined by k(Xi,Xj) = (< Xi,Xj >E)

2 = < φ(Xi), φ(Xj) >F

where F = R
3 when E = R

2 (i.e., p = 2markers). Note that there
is no one-to-one correspondence between a feature map φ and a
kernel k. Indeed, more that one feature map can be associated
to a unique kernel (see Supplementary Material, lemma 6). In
classical Ridge regression we do not have any interaction term
and the feature map is the identity (i.e., φ = id) since Kij =
k(Xi,Xj) =< Xi,Xj > in this situation. A necessary and sufficient
condition for a function k to be a kernel is that matrix K =
k(Xi,Xj)1≤i,j≤n (known as the Gram matrix) is positive semi-
definite. This condition comes from Mercer’s theorem (Gretton,
2013) and it gives a practical way to check if a function k defines
a kernel.

Some kernels are called universal kernels in the sense that
they can approximate any arbitrary function f ∗(.), with a finite
number of training samples, if regularized properly (Micchelli
et al., 2006). One such example is the Gaussian kernel given

by k(Xi,Xj) = e−h||Xi−Xj||22 , where h > 0 is a rate of
decay parameter for k. This kernel is associated to an infinite-
dimensional feature map which allows an implicit modeling
of all possible orders of interaction between markers (see
Supplementary Material, lemma 7). Hence, the Gaussian kernel
is useful for genomic prediction when dealing with complex
epistatic genetic architectures.
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2.4. RKHS and the Representer Theorem
The concept of RKHS (Smola and Schlkopf, 1998; Cornuéjols
andMiclet, 2011; Gretton, 2013) with its implications in statistics
and machine learning are well beyond the scope of this article.
Here we review the basic definition of a RKHS so as to introduce
the representer theorem which exploits the definition of RKHS.
The representer theorem has important applications in practice.
Indeed, it can allow one to find optimal solution to RERM
problems and it shows that solutions to many parametric and
machine learning problems have similar form.

Definition of a RKHS:
Let φ(Xi) = k(.,Xi), a RKHS Hk associated to a kernel k can be
defined as a space of functions generated by linear combinations
of k(.,Xi);

Hk =
{ n

∑

i= 1

αik(.,Xi); Xi ∈ E, αi ∈ R, n ∈ N

}

such that (i) for all Xi ∈ E, k(.,Xi) ∈ Hk and (ii) for all Xi ∈ E
and every f (.) ∈ Hk, < f (.), k(.,Xi) >Hk

= f (Xi) (Cornuéjols
and Miclet, 2011). The condition (ii) is called the reproducing
property of k as it reproduces f in some sense. Hence, from
the reproducing property we have < φ(Xi), φ(Xj) >=<

k(.,Xi), k(.,Xj) >= k(Xi,Xj). According to Moore-Aronszajn
theorem, every RKHS has a unique positive semi-definite kernel
(i.e., a reproducing kernel) and vice-versa. In other words, there
is one-to-one correspondence between RKHS and kernels. A
simplified version of the representer theorem is given as follows.

The Representer Theorem (Kimeldorf and Wahba, 1971):
Fix a set E and a kernel k, and let Hk be the corresponding

RKHS. For any loss function L : R
2 → R, the solution f̂ of the

optimization problem;

f̂ (.) = argmin
f∈Hk

{ n
∑

i= 1

L(Yi, f (Xi)) + λ||f ||2Hk

}

(17)

has the following form:

f̂ (.) =
n

∑

i= 1

αik(.,Xi) (18)

This result is of great practical importance. For example, if we
substitute the representation Equation (18) into Equation (17)
when L(Yi, f (Xi)) = ( Yi − f (Xi) )

2 (aka kernel Ridge regression)
then we obtain the following equivalent problem;

α̂Kernel Ridge = argmin
α∈Rn

{ 1

2
||Y − Kα||22 +

λ

2
α′

Kα

}

(19)

where α̂Kernel Ridge can be shown to be given by α̂Kernel Ridge =
[K + λIn]

−1Y . Moreover, if we follow the same reasoning as for
Equation (7) to Equation (10), one can easily show from Equation
(19) that α̂Kernel Ridge = α̂Bayesian Kernel Ridge = α̂RR−BLUP, where
α̂RR−BLUP is the BLUP of α for the following mixed model;

Y = Kα + ε where α ∼ Nn(0, σ
2
αK

−1) and ε ∼ Nn(0, σ
2
ε )

⇔ Y = g + ε where g = Kα ∼ Nn(0, σ
2
g K) , with σ 2

g = σ 2
α ,

and ε ∼ Nn(0, σ
2
ε )

Hence, the mixedmodel methodology can be used to solve kernel
Ridge regression (i.e., RKHS regression) for which classical Ridge
regression (i.e., GBLUP) is a particular case.

In Expression (17) we have L(Yi, f (Xi)) = |Yi − f (Xi)|ε for
SVR (i.e., ε-insensitive loss), proposed by Vapnik (1998), which
is given by:

|Yi − f (Xi)|ε =
{

0 if |Yi − f (Xi)| ≤ ε

|Yi − f (Xi)| − ε otherwise

Note that SVR also performs regularization in a RKHS. The

parameter λ in Equation (17) correspond to
1

2C
(where C > 0)

in the original formulation of SVR (Basak et al., 2007). Moreover,
slack variables are also found in the original formulation in order
to cope with infeasible constraints. SVR has several interesting
properties. For example, the dual optimization problem of
finding the Lagrange multipliers (i.e., dual variables: αj, α

∗
j ) in

SVR, and in support vectormachine for classification, is generally
a constrained Quadratic Programming (QP) problem which
assures a global minimum. Furthermore, only a fraction of the
Lagrange multipliers are non-zero, due to the so-called Karush-
Kuhn-Tucker (KKT) conditions which state that the product
between dual variables and constraints vanishes at the optimal
solution. The genotype vectors (i.e., Xj) corresponding to non-
zero Lagrange multipliers are called support vectors as they are
the only ones which contribute to prediction. This is particularly
convenient for data sets with a large number of accessions where
we need only the support vectors for prediction. Indeed, the
estimated prediction function in SVR can we written as;

f̂ (Xi)SVR =
n

∑

j= 1

ᾱjk(Xi,Xj)+ b with ᾱj = (α̂j − α̂∗
j ) and b ∈ R

where only a restricted number of ᾱj are non-zero and have
corresponding support vectors Xj (note that both α̂j and α̂∗

j

cannot be non-zero simultaneously Basak et al., 2007; Al-Anazi
and Gates, 2012). These vectors are associated to approximation
errors which are greater than ε. Thus, the number of support
vectors is inversely proportional to the ε parameter. Further
details on SVR, and on support vector machine in the general
case, can be found in Vapnik (1998), Smola and Schlkopf (1998),
Basak et al. (2007), and Al-Anazi and Gates (2012). Finally, note
that we do not have the representation Equation (18) for LASSO
since the L1 norm, for this particular case, violates the representer
theorem assumptions.

2.5. Analyzed Data Sets and Prediction
Methods Compared
Three real data sets were analyzed. The first data set was
composed of 230 temperate japonica accessions with 22,691 SNP.
For the second data set, 167 tropical japonica accessions with
16,444 SNP were available. The third data set was composed of
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188 tropical japonica accessions with 38,390 SNP. A total of 15
traits were analyzed for the three data sets. Plant height (PH),
flowering time (FL), leaf arsenic content (AR), number of tillers
(NT), shoot biomass (SB), maximum root length (RL), number
of roots below 30 centimeters (NR), deep root biomass (DR) and
root over shoot biomass ratio (RS) were analyzed for the first
and second data sets. For the third data set, PH, cycle duration
(CD), fertility rate (FE), number of seeds per panicle (NS), straw
yield in kilograms per hectare (SY) and number of panicles per
square metre (NP) were analyzed. All SNPmarker data sets had a
minor allele frequency strictly superior to 1%. The three data sets
are officially available at http://tropgenedb.cirad.fr/tropgene/JSP/
interface.jsp?module=RICE as the “GS-RUSE.zip" folder, or can
be downloaded directly at http://tropgenedb.cirad.fr/tropgene/
downloads/studies/GS-RUSE.zip.

Four methods; LASSO, GBLUP, RKHS regression and SVR
were applied to these data sets and traits, and hence a total of
60 situations were examined. R scripts were written to perform
analyses with the four methods and are available on request.
The glmnet (Friedman et al., 2010) and kernlab (Karatzoglou
et al., 2004) packages were used for LASSO and SVR respectively.
R scripts were written to solve GBLUP and RKHS regression.
The expectation-maximization (EM) algorithm (Dempster et al.,
1977; Foulley, 2002; Jacquin et al., 2014) was used tomaximize the
restricted likelihoods (REML) of the mixed models, associated to
GBLUP and RKHS regression respectively, in order to estimate
the associated variance parameters. The Gaussian kernel was
used for RKHS regression and SVR. For RKHS regression, values
over several grids were tested using cross-validation to tune the
rate of decay parameter for each data set. For SVR, the rate of
decay was estimated using the heuristic defined in the sigest
function (Karatzoglou et al., 2004), which is already implemented
in the ksvm function (Karatzoglou et al., 2004), that allows
an automatic selection of this parameter. The regularization
parameter C for SVR was estimated as C = max(|Ȳ + 3σY |, |Ȳ −
3σY |), where Ȳ is the phenotypic mean, as recommended by
Cherkassky and Ma (2004). Values higher than 0.5 for the ε

parameter in SVR produced no support vectors. Hence lower
values were tested for this parameter using cross validation.
Values ranging between 0.01 and 0.1 were found to give similar
and the best predictive performance for each data set, hence ε was
fixed to 0.01. For LASSO, the cv.glmnet function (Friedman
et al., 2010) was applied with its default values for the alpha
and nfolds parameters (i.e., 1 and 10 respectively). For this
function, the squared loss (i.e., mse in cv.glmnet) was used
for cross-validation and its associated lambda.min parameter
was used as the optimal lambda for prediction.

To evaluate the genomic predictive ability of the fourmethods,
cross-validations were performed by sampling randomly a
training and a target population 100 times for each case
among the 60 situations. For each random sampling the sizes
of the training and target sets were, respectively, two-thirds
and one-third times the size of the total population. The
Pearson correlation, between the predicted genetic values and
the observed phenotypes for the target set, was taken as a
measure of relative prediction accuracy (RPA). Indeed, true
prediction accuracy (TPA) can be attained only if the true genetic

values for the target set are available. The signal-to-noise ratio
(SNR) (Czanner et al., 2015) for each method, with respect to
each target set, was calculated as the sample variance of the
predicted genetic values over the sample variance of the estimated
residuals associated to the target phenotypes. Note that the SNR
is related to genomic based heritabilities (De los Campos et al.,
2013b; Janson et al., 2015). However, there are many different
definitions of heritability (Janson et al., 2015) and these are
different according to each studiedmethod here. Hence we report
only the estimated SNR for each method.

3. RESULTS

Table 1 gives the RPAmeans with their associated standard errors
and the SNR means for the 60 examined situations. The RPA
standard errors and SNRmeans are given within parantheses and
square brackets respectively. Figures 1–5 give the boxplots for
the RPA distributions associated to the 60 studied cases.

As can be seen in Table 1 and in Figures 1–5, RKHS
regression and SVR performed as well or better than LASSO and
GBLUP for most situations. Furthermore, in Figures 1–5, RKHS
regression and SVR gave RPA values strictly greater than 0, for
all data sets and traits, compared to LASSO and GBLUP. Indeed,
LASSO gave negative RPA values for PH and NR as can be seen in
Figures 1, 3, respectively. In Figure 5, both LASSO and GBLUP
gave negative RPA values for SY.

In these figures and in Table 1, the largest RPA mean
differences between parametric and kernel methods can be seen
for AR, NT, SB, NR, DR, FE, NS, and SY (see bold values in
Table 1). For these traits, the RPA mean differences between the
parametric and kernel methods varied between 0.03 and 0.21.
The highest observed RPA mean difference of 0.21 was between
SVR and GBLUP for SY. For CD, one can see in Table 1 that the
RPA and SNR means for GBLUP were simultaneously lower and
higher than those of the other methods. This can be explained
by a poor consistency of GBLUP, with respect to the DGP for
this trait, which leads to an over-estimation of the true SNR. For
example, it was shown in the second subsection that the poor
consistency of a linear model, due to over-fitting, could minimize
substantially the estimated residual variance, thus leading to an
over-estimation of the true SNR while inducing a poor predictive
ability.

Among the kernel methods, RKHS regression was often more
accurate than SVR although only little RPA mean differences can
be observed between these methods in Table 1. On the other
hand, GBLUP was often more accurate than LASSO for the
parametric methods. As can be seen in Table 1 and in Figures 1–
5, LASSO had a much lower predictive performance than the
other methods for most traits. The average of the RPA means
for each method, across all traits for the three data sets, were
0.51, 0.50, 0.46, and 0.41 for RKHS regression, SVR, GBLUP and
LASSO respectively.

For each analyzed trait, RKHS regression was performed in
a reasonable computation time. For example, the computation
time of one particular cross-validation for NT was 2.03 s on a
personal computer with 8 GB RAM. However, depending on
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TABLE 1 | RPA means with their associated standard errors within parantheses (.), and the SNR means within square brackets [.], for the 60 examined

situations.

Data set Trait Method

LASSO GBLUP RKHS regression SVR

Data set 1 PH 0.34 (0.11) [0.11] 0.40 (0.08) [0.14] 0.40 (0.08) [0.16] 0.37 (0.07) [0.21]

230 accessions FL 0.59 (0.07) [0.42] 0.65 (0.06) [0.93] 0.67 (0.06) [0.73] 0.66 (0.07) [0.75]

22691 SNP AR 0.21 (0.11) [0.10] 0.27 (0.07) [0.35] 0.35 (0.07) [0.12] 0.35 (0.08) [0.20]

NT 0.34 (0.11) [0.25] 0.41 (0.09) [0.59] 0.47 (0.09) [0.24] 0.46 (0.08) [0.32]

Data set 2 SB 0.42 (0.09) [0.31] 0.49 (0.09) [0.72] 0.53 (0.09) [0.33] 0.52 (0.10) [0.37]

167 accessions RL 0.39 (0.09) [0.29] 0.53 (0.09) [0.39] 0.54 (0.08) [0.33] 0.54 (0.09) [0.40]

16444 SNP NR 0.25 (0.13) [0.16] 0.39 (0.09) [0.31] 0.44 (0.09) [0.17] 0.42 (0.09) [0.31]

DR 0.39 (0.12) [0.29] 0.45 (0.11) [0.67] 0.49 (0.10) [0.40] 0.48 (0.11) [0.21]

RS 0.55 (0.08) [0.38] 0.54 (0.09) [0.70] 0.57 (0.07) [0.45] 0.57 (0.10) [0.30]

PH 0.66 (0.07) [0.85] 0.69 (0.06) [1.15] 0.70 (0.05) [0.90] 0.69 (0.06) [0.81]

Data set 3 CD 0.48 (0.11) [0.29] 0.39 (0.09) [0.58] 0.47 (0.09) [0.26] 0.46 (0.09) [0.38]

188 accessions FE 0.39 (0.12) [0.28] 0.43 (0.10) [0.58] 0.50 (0.09) [0.46] 0.50 (0.08) [0.47]

38390 SNP NS 0.38 (0.12) [0.33] 0.50 (0.08) [0.44] 0.54 (0.08) [0.38] 0.55 (0.09) [0.45]

SY 0.18 (0.13) [0.14] 0.12 (0.09) [0.03] 0.28 (0.09) [0.10] 0.33 (0.10) [0.28]

NP 0.64 (0.08) [0.85] 0.70 (0.06) [0.80] 0.68 (0.06) [0.62] 0.67 (0.06)[0.65]

the trait considered, the computation time for RKHS regression
was either lower or higher than that for SVR. For example,
the computation times associated to one cross-validation for
NT were 2.99 and 2.03 seconds for SVR and RKHS regression
respectively. However, the computation times associated to one
cross-validation for RL were 2.25 and 3.32 seconds for SVR and
RKHS regression respectively. This can be explained by the, well
known, slow convergence properties of the EM algorithm in
some situations (Naim and Gildea, 2012).

4. DISCUSSION

4.1. Comparison of the Genomic Predictive
Abilities of LASSO, GBLUP, SVR and RKHS
Regression
Among all the compared methods, RKHS regression and SVR
were regularly the most accurate methods for prediction followed
by GBLUP and LASSO. On the other hand, LASSO was often the
least accurate method for prediction. This can be explained by the
fact that, for situations where p > n, the predictive performance
of LASSO is regularly dominated by Ridge regression (i.e.,
GBLUP) when covariates are highly correlated (Tibshirani, 1996;
Zou and Hastie, 2005). Moreover, Dalalyan et al. (2014) recently
showed that the predictive performance of LASSO can be
mediocre, irrespective of the choice of the tuning parameter,
when covariates are moderately correlated. For SNP marker data
it is common to have high numbers of moderately and highly
correlated markers due to linkage disequilibrium. Furthermore,
there was a limited number of accessions (i.e., n) for the
three studied data sets. This may also explain the less accurate
performance of LASSO. Indeed, it is well known that the number

of non null coefficients for an estimated LASSO model is
bounded bymin(n, p) (Tibshirani, 2013). Hence, when p > n, the
number of markers (i.e., covariates) selected as relevant will be
bounded by the number of accessions which may be inconsistent
with the DGP. Alongside, Onogi et al. (2015) reported that
the estimation of parameters via REML for GBLUP could be
problematic for small sample size. This was observed for CD
in our study where the RPA and SNR means for GBLUP were
simultaneously lower and higher than those of the othermethods.

Nevertheless, the observed RPA mean differences between
the studied methods were somehow incremental for the three
data sets. This is most probably due to the fact that our
measure of RPA is based on the correlation between observed
phenotypes, which are noisy measurements per se, and predicted
genetic values. Moreover, Gianola et al. (2014) pointed out that
differences among methods can be masked by cross-validation
noise. Simulation studies conducted by our team (work to be
published), based on real data for four traits, indicate that
differences between methods based on TPA are often much
higher than those based on RPA for the same simulated
data set. In other words, small differences in RPA can be an
indicator of higher differences in TPA among methods. Results
for these simulation studies, with the corresponding simulated
data sets, are available at http://tropgenedb.cirad.fr/tropgene/
JSP/interface.jsp?module=RICE as the “GS-RUSE.zip” folder.

Still, our results show that kernel methods can be more
appropriate than conventional parametric methods for many
traits with different genetic architectures. These results are
consistent with those of many previous studies (Konstantinov
and Hayes, 2010; Pérez-Rodríguez et al., 2012; Sun et al., 2012;
Howard et al., 2014). With respect to Morota and Gianola (2014),
our results also indicate that kernel methods will have higher
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FIGURE 1 | Boxplots of RPA distributions associated to PH, FL, and AR for data set 1.
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FIGURE 2 | Boxplots of RPA distributions associated to NT, SB, and RL for data set 2.

Frontiers in Genetics | www.frontiersin.org 10 August 2016 | Volume 7 | Article 145

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Jacquin et al. Comprehensible View of Prediction Methods

FIGURE 3 | Boxplots of RPA distributions associated to NR, DR, and RS for data set 2.
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FIGURE 4 | Boxplots of RPA distributions associated to PH, CD, and FE for data set 3.
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FIGURE 5 | Boxplots of RPA distributions associated to NS, SY, and NP for data set 3.
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predictive performance, than conventional parametric methods,
for traits potentially havingmoderate to complex epistatic genetic
architectures. For example, the large RPA mean differences for
SY, between the studied parametric and kernel methods, is
probably due to an epistatic genetic architecture associated to
this trait as pointed out by Liu et al. (2006). The same reasoning
can be applied to AR for which epistatic mechanisms might
potentially be involved (Norton et al., 2010). In this study, SVR
and RKHS regression had similar predictive abilities. However,
one advantage of RKHS regression over SVR lies in the fewer
number of parameters to be estimated, which can be automated
quite easily. Thus, RKHS regression can be performedmore easily
than SVR by low experienced users. Indeed, as pointed out by
Cherkassky and Ma (2004), SVR application studies are usually
performed by “practitioners,” who have a good understanding of
the SVMmethodology, since the main issue in having good SVM
models lies in the proper setting of the meta-parameters.

4.2. Comparison and Connections Between
Kernel Methods and Other Methods in
Frequentist and Bayesian Frameworks
In comparison with Howard et al. (2014), we did not compare the
studied kernel methods to neural networks (NN). Nevertheless,
these authors showed that NN did not perform better than these
methods in their simulation study. As pointed out by Howard
et al. (2014), it is well-known that NN can be prone to over-
fitting which reduces predictive performance. Moreover, NN are
plagued with the problem of local minima in comparison to
support vector machines which are not (Smola and Schlkopf,
1998). Yet, connections between NN with a single layer of
hidden units (i.e., neurons) and kernel machines exist (Cho
and Saul, 2009). In our study we reviewed the equivalence
between well-known regularized, mixed and Bayesian linear
models. As a matter of fact, for parametric models where one can
specify likelihoods, inferences from frequentist (i.e., maximum
likelihood based approaches) and Bayesian procedures will be
practically the same if n (i.e., number of accessions) becomes
sufficiently large for a fixed p. This is a consequence of the so-
called Bernstein-von Mises theorem (Ghosal et al., 1995; Ghosal,
1997). Moreover, we showed in this study that many parametric
methods can be framed as kernel methods, with simple kernels,
due to their equivalent primal and dual formulations. For
instance, this was shown for Ridge regression, Bayesian Ridge
regression, RR-BLUP and GBLUP which are mathematically
equivalent methods for prediction.

Framing parametric methods as kernel machines with simple
kernels has important implications in the sense that many kernel
methods can be specified, and solved conveniently, in existing
classical frequentist (e.g., embedding kernels in mixed models)
and Bayesian frameworks. This was first pointed out by Gianola

et al. (2006) and several following works (De los Campos et al.,
2010; Endelman, 2011; Morota et al., 2013; Pérez and de los
Campos, 2014) developed kernel methods in these frameworks.
We also developed a simple and user-friendly R function within
the mixed model framework, named Kernel_Ridge_MM.R,
which allows users to perform RR-BLUP of marker effects,

GBLUP and RKHS regression, with a Gaussian, Laplacian,
polynomial or ANOVA kernel, in a reasonable computation time.
In our study we used only the Gaussian kernel which performed
well for RKHS regression. However, other kernels such as the
polynomial or ANOVA kernel can be used. For instance, the
ANOVA kernel was found to perform well in multidimensional
regression problems (Hofmann et al., 2008). A modified version
of this function named Tune_kernel_Ridge_MM.R, which
allows users to tune the rate of decay parameter for RKHS
regression based on K-folds cross validation, has also been
developed for Windows, Linux and parallelized for HPC Linux
clusters. Finally, an R package named KRMM, associated to
these functions, has also been developed. The KRMM package
and all scripts are publicly available at https://sourceforge.net/u/
ljacquin/profile/. As conclusion, we recommend the use of kernel
methods for genomic prediction, and selection, since the genetic
architectures associated to quantitative traits are rarely known
and can be very complex and complicated to model. Therefore,
it seems more advisable to use data-driven prediction models,
which can account for multiple orders of interaction, to assess
the genetic merits of individuals.
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