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Autoimmune diseases represent a significant medical burden affecting up to 5–8% of the

U.S. population. While genetics is known to play a role, studies of common autoimmune

diseases are complicated by phenotype heterogeneity, limited sample sizes, and a

single disease approach. Here we performed a targeted genetic association study for

cases of multiple sclerosis (MS), rheumatoid arthritis (RA), and Crohn’s disease (CD)

to assess which common genetic variants contribute individually and pleiotropically to

disease risk. Joint modeling and pathway analysis combining the three phenotypes were

performed to identify common underlying mechanisms of risk of autoimmune conditions.

European American cases of MS, RA, and CD, (n = 119, 53, and 129, respectively)

and 1924 controls were identified using de-identified electronic health records (EHRs)

through a combination of International Classification of Diseases, Ninth Revision, Clinical

Modification (ICD-9-CM) billing codes, Current Procedural Terminology (CPT) codes,

medication lists, and text matching. As expected, hallmark SNPs in MS, such as DQA1

rs9271366 (OR = 1.91; p = 0.008), replicated in the present study. Both MS and CD

were associated with TIMMDC1 rs2293370 (OR= 0.27, p= 0.01; OR= 0.25, p= 0.02;

respectively). Additionally, PDE2A rs3781913 was significantly associated with both CD

and RA (OR = 0.46, p = 0.02; OR = 0.32, p = 0.02; respectively). Joint modeling

and pathway analysis identified variants within the KEGG NOD-like receptor signaling

pathway and Shigellosis pathway as being correlated with the combined autoimmune

phenotype. Our study replicated previously-reported genetic associations for MS and CD

in a population derived from de-identified EHRs. We found evidence to support a shared

genetic etiology between CD/MS and CD/RA outside of the major histocompatibility

complex region and identified KEGG pathways indicative of a bacterial pathogenesis

risk for autoimmunity in a joint model. Future work to elucidate this shared etiology will

be key in the development of risk models as envisioned in the era of precision medicine.
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INTRODUCTION

Autoimmune (AI) and immune-mediated (IM) diseases are a
driving force behind disability in the United States with 5–8%
of the population affected (2002). Currently there are upwards
of 80 conditions that occur as a consequence of immunological
attacks on the body’s tissues and organs. As a whole, AI and IM
diseases share many epidemiological and pathogenic similarities.
Most notable is the occurrence of a skewed sex distribution
with females more likely to be affected by an AI disease. The
female sex ratio of cases is most extreme in Sjögren syndrome
(9:1) that occurs as a result of immune-mediated attack on
salivary and lacrimal glands in comparison to type 1 diabetes
which is sex neutral (Gale and Gillespie, 2001). Over the last
decade, genome-wide association studies have consistently
identified genes within the major histocompatibility complex
(MHC), located on the short arm of chromosome 6, strong
regulators of disease risk in a number of AI diseases such
as multiple sclerosis (MS) (International Multiple Sclerosis
Genetics Consortium et al., 2007, 2011; Patsopoulos et al., 2011),
rheumatoid arthritis (RA) (Plenge et al., 2007; Raychaudhuri
et al., 2008; Okada et al., 2012), and vitiligo (Jin et al., 2010;
Quan et al., 2010). Despite these commonalties, their underlying
genetic and molecular profiles vary and are hindered by low
case counts with most AI diseases rarely occurring in the general
population (i.e., Addison’s disease prevalence estimated at ∼1
in 20,000). Elusive and overlapping symptoms further confound
diagnosis of a condition, often leading patients on a long and
costly diagnostic odyssey. Additionally, time to diagnosis, time
between presentation of first symptoms to confirmed diagnosis,
can approach a year in conditions such as amyotrophic lateral
sclerosis (Paganoni et al., 2014).

Large-scale studies for AI and IM diseases typically require
recruiting and consenting patients from specialty clinics
and individual medical practices, all of which necessitates
considerable financial investment and manpower. In recent
years, researchers have begun to utilize electronic health records
(EHR) for use in clinical and genetic association studies
covering a range of conditions from type 2 diabetes (Ng et al.,
2014) to response to drugs or treatment (Oetjens et al., 2014;
Laper et al., 2016). Use of EHRs rapidly facilitates biomedical
studies by providing researchers with access to a repository of
extensive, longitudinal medical data. In particular, EHRs offer
the opportunity to assess less common conditions such as MS
by directly accessing data from specialty disease clinics within
the framework of a health care organization. In conjunction
with DNA repositories, it becomes feasible to combine genetic
and phenotypic data in order to study the immunogenetic
architecture of autoimmune disease (Goris and Liston, 2012),
much of which is still unknown.

Individuals with one AI disease are at greater risk to develop
another AI condition; RA and type 1 diabetes have been observed
to occur jointly in patients from a United Kingdom cohort,
while there is reduced comorbidity between RA and MS (Somers
et al., 2009). Additionally, a GWAS study of inflammatory
bowel disease, which includes CD and ulcerative colitis, found
variants initially identified in GWAS studies of MS and RA (Liu

et al., 2015). In order to delineate potential, common genetic
pathways involved in AI and IM disease, we have performed a
targeted genetic association study of SNPs known to be associated
with AI (MS and RA) and IM (Crohn’s disease or CD) in a
European American population extracted from the Vanderbilt
University Medical Center’s (VUMC) DNA biorepository linked
to de-identified EHRs. Based on previous evidence from GWAS
(Sivakumaran et al., 2011) and candidate gene studies, we
hypothesized that MS, RA, and CD share genetic factors within
the MHC region, known to include many immune system genes,
and outside the MHC region where less is known about genes
that may play a role in autoimmunity. Elucidating the role that
genetics plays in disease risk and progression is vital for future
studies to incorporate risk of a comorbid disorder and lead to
better screening and prevention strategies.

MATERIALS AND METHODS

Study Population
The study population is derived from BioVU, the VUMC
biorepository linked to de-identified EHRs. The Synthetic
Derivative or SD refers to the de-identified version of Vanderbilt’s
EHR and contains inpatient and outpatient medical records
from VUMC and affiliated clinics. Patient records consist of
both structured (e.g., billing codes, procedure codes, laboratory
values) and unstructured (e.g., clinical free text) data. The
VUMC EHR contains over 2.2 million records with each record
containing 1–1000 International Classification of Diseases, Ninth
Revision, Clinical Modification (ICD-9-CM) codes captured
electronically since the inception of the VUMC EHR more
than twenty years ago (Crawford et al., 2015). The SD is linked
with VUMC’s DNA repository known as BioVU (Roden et al.,
2008). These DNA samples are extracted from discarded blood
samples collected from outpatient clinical laboratories. Genomic
data generated on BioVU samples are available for additional
analyses by other investigators after IRB approval. All procedures
were approved by the Vanderbilt University’s Institutional
Review Board that determined that this study met the criteria of
“non-human subjects” as no personal identifying information is
available to the investigators (The Code of Federal Regulations,
45 CFR 46.102 (f)).

Phenotype Definitions
Detailed protocols for the identification of MS, RA, and CD
phenotypes in this EHR have been previously published (Ritchie
et al., 2010). Briefly, cases and controls were defined as follows.

Multiple Sclerosis Cases

Cases of MS were extracted from the SD based on the presence
of either (1) ICD-9-CM for MS (ICD-9-CM 340) or (2) ICD-
9-CM for demyelinating disease of the central nervous system
(341.9), transverse myelitis (323.9) AND presence of an MS
medication (interferon-beta 1a, interferon-beta 1b, glatiramer,
natalizumab, Rituxan) AND a textmention of “multiple sclerosis”
AND no mention of an ICD-9-CM for a potentially overlapping
autoimmune condition. Due to the complex diagnosis process for
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MS, all MS cases were manually reviewed. TheMS case algorithm
deployed here had a positive predictive value (PPV) of 90%.

Rheumatoid Arthritis Cases

RA cases contained all of the following: (a) RA ICD-9-CM (714,
714.0, 714.1, or 714.2), (b) RA medication (i.e., methotrexate,
sulfasalazine, minocycline, hydroxychloroquine, adalimumab,
etanercept, infliximab, gold, azathioprine, rituximab, anakinra,
abatacept, leflunomide), (c) text match for “rheumatoid arthritis,”
and (d) does NOT contain an ICD-9-CM for a potentially
overlapping autoimmune condition. A randomized, subset of RA
cases (n = 30) was manually reviewed for quality assurance. The
RA case algorithm deployed here had a PPV of 96.6%.

Crohn’s Disease Cases

CD cases contained both an ICD-9-CM for CD (555.∗)
and at least one medication for CD (i.e., balsalazide,
mesalamine, sulfasalazine, ciprofloxacin, levofloxacin,
metronidazole, rifaximin, prednisone, budesonide, azathioprine,
mercaptopurine, methotrexate, infliximab, adalimumab,
certolizumab, natalizumab). If case records also contained
an ICD-9-CM for ulcerative colitis (556.∗), the ratio of CD
ICD-9-CM codes to ulcerative colitis ICD-9-CM codes had
to be greater than two to be considered a case in the study. A
randomized, subset of CD cases (n= 30) was manually reviewed
for quality assurance. The CD case algorithm deployed here had
a PPV of 100%.

Joint Controls

Controls were those individuals whose de-identified EHRs met
the control criteria for MS, RA, and CD as previously defined
(Ritchie et al., 2010). A randomized, subset of 90 controls was
manually reviewed for quality assurance. Control records were
devoid of all of the following:

a) Text match for “multiple sclerosis,” no text mention of a
conflicting autoimmune disease for CD or RA.

b) ICD-9-CM: MS ICD-9-CM, any ICD-9-CM for RA, other
inflammatory arthritides, and other conflicting autoimmune
conditions, inflammatory bowel disease.

c) Medications: MS medications (interferon-beta 1a, interferon-
beta 1b, glatiramer, natalizumab, Rituxan).

The PPV of the joint controls was 93.3%.

Clinical Traits and Variables

Demographic data and laboratory tests were extracted and
calculated as follows. For cases, age at diagnosis was defined by
the date in the patient’s EHR for the first mention of an MS (340,
341.9, 323.9), RA (714, 714.0, 714.1, 714.2), or CD (555.∗) ICD-
9-CM code. For controls, age was calculated from date of birth as
of 2014. Clinical values for body-mass-index (BMI), rheumatoid
factor, and C-reactive protein were calculated as the mean of
all measurements in a patient’s medical record, regardless of
case/control status.

SNP Selection and Statistical Analysis
Targeted genotype data was pulled from BioVU as of February
2014 for samples that were previously genotyped for other

research studies. SNPs selected for analysis were associated with
MS, RA, or CD in a published GWAS (at p < 10−6) identified
in the NHGRI GWAS Catalog (Welter et al., 2014) or candidate
gene study (at p < 0.05) as of 2013 (Supplemental Table 1).
In total, genotype data for 345 SNPs in 295 genes or gene
regions were accessed and pooled from the following Illumina
genotyping arrays: 660W (Denny et al., 2011; Ritchie et al., 2013),
1M (Ng et al., 2014), HumanOmni1-Quad, HumanOmni5-Quad,
and Infinium HumanExome BeadChip.

Each SNP considered for analysis was common (minor allele
frequency >5%) and passed quality control standards (Hardy
Weinberg Equilibrium p < 0.001) separately in MS, RA, and
CD. Analyses were limited to European American patients,
and controls under the age of twenty years were removed from
analysis as it cannot be determined if these are true disease-free
controls for these later onset conditions. Likewise, cases with age
at diagnosis under 20 years were removed from analyses given
that the genetic architecture for later onset AI and IM may be
different than juvenile onset. Quality control and single SNP
tests of association were performed using PLINKv1.07 (Purcell
et al., 2007). Each SNP was tested for an association using logistic
regression assuming a log-additive genetic model adjusted by
age and sex. The Bonferroni significance threshold is set at 1.5 ×
10−4.

Previous studies have suggested that some autoimmune
diseases share a common genetic architecture or associated
SNPs have evidence of pleiotropy (Ueda et al., 2003; Criswell
et al., 2005; Gough and Simmonds, 2007; Zhernakova et al.,
2009; Sivakumaran et al., 2011). To explore whether specific
variants are associated with multiple phenotypes in this clinical
population, MS, CD, and RA cases were combined into a joint
multivariate association test of likelihood ratio for model fit.
Ordinal regression adjusted for age and sex was performed on
each SNP with MS, RA, and CD modeled as predictors of the
genotype. Ordinal regression was performed with the software
package MultiPhen (O’Reilly et al., 2012) in R software version
3.2.3 (R Development Core Team, 2013). Twenty-two SNPs from
the MultiPhen joint model (i.e., MS, CD, and RA) with a p
< 0.05 were further characterized using the Pathway Analysis
by Randomization incorporating Structure (PARIS), a SNP-
based pathway analysis tool that identifies biological pathways
significantly enriched by genetic variants adjusted for linkage
disequilibrium and gene size (Yaspan et al., 2011).

RESULTS

Clinical Population Characteristics
We extracted 129 CD cases, 119 MS cases, 53 RA cases, and
1642 joint controls from the de-identified EHR. Demographics in
Table 1 include information for patients over the age of 20 years
for all three phenotypes and joint controls. In general, age and sex
distributions were as expected. That is, MS and CD cases were on
average younger than controls, while RA cases were on average
of a similar age compared with controls. Additionally, MS and
RA cases were predominantly female, consistent with the known
epidemiology for autoimmune diseases. CD cases were equally
likely to be male as female as has been observed in previous
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TABLE 1 | Demographics of the BioVU multiple sclerosis, rheumatoid arthritis, and Crohn’s disease cases and controls by sex.

Multiple sclerosis cases Rheumatoid arthritis cases Crohn’s disease cases Controls

Male Female Male Female Male Female Male Female

N 33 86 17 36 64 65 805 837

Age in years (SD) 47.6 (15.2) 45.4 (12.8) 60.3 (11.5) 61.3 (12.4) 47.5 (15.2) 49.6 (17.5) 61.1 (15.3) 58.3 (16.6)

BMI, kg/m2 (SD) 29.1 (6.2) 27.3 (6.7) 30.3 (4.0) 29.2 (6.7) 26.7 (6.1) 26.8 (7.5) 29.2 (6.7) 29.4 (12.3)

RF, µ/mL (SD) 26.8 (37.1) 16.0 (21.1) 66.5 (60.5) 190.8 (139.3) 7.5 (6.4) 10.5 (7.8) . .

CRP, mg/L (SD) 31.4 (50.2) 37.10 (69.3) 12.5 (13.8) 24.9 (53.3) 42.2 (65.1) 20.3 (30.8) . .

Values represent means and standard deviations (SD). Abbreviations: RF, rheumatoid factor; CRP, C-reactive protein.

epidemiological surveys (Cosnes et al., 2011). Of the MS cases,
we were able to manually identify the MS clinical subtype for
48% of patients (Davis et al., 2013; Davis and Haines, 2015).
Of these, 42.3% were diagnosed with relapsing-remitting, 33%
with secondary progressive, 14% with progressive/relapsing, and
10.2% with primary progressive MS.

Validation of EHR Phenotype Extraction
To further validate the case/control extraction from the EHR,
we performed tests of association for each autoimmune disease
to replicate previously-reported associations from the literature.
We identified 157, 124, and 64 SNPs previously associated with
CD, MS, and RA, mostly from GWAS (Supplemental Table 1).
Genotype data for these GWAS-identified variants were available
for 120 out of 129, 62 out of 119, and 35 out of 53 cases of
CD, MS, and RA identified in the EHR, respectively. At a liberal
significance threshold of 0.05, we replicated associations for CD
(one), MS (11), and RA (one) (Supplemental Tables 2–4).

Despite differences in sample size, previously reported
associations proportionally replicated most often in MS (∼9%)
compared with CD (∼1%) and RA (∼1.5%) (Table 2). As
expected, HLA-DRA rs3135388 (De Jager et al., 2009; OR= 3.04;
p = 0.004) and rs3129889 (Patsopoulos et al., 2011; OR =

3.04; p = 0.004), variants in strong linkage disequilibrium
with one another, as well as HLA-DQA1 rs9271366 (Australia
New Zealand Multiple Sclerosis Genetics Consortium, 2009;
OR = 2.16; p = 0.003) were strongly associated with MS in the
present study. For CD, we replicated rs7714584 (Franke et al.,
2010) located in IRGM (OR = 2.66; 95% CI: 1.22-5.78; p =

0.013). Additionally, we replicated rs7765379 on chromosome
6 in the RA dataset. SNP rs7765379 was originally identified in
a Korean population with an OR of 2.51 (Freudenberg et al.,
2011) which is similar to the effect size observed in this study of
European Americans (OR= 2.42).

Evidence for Shared Genetic Architecture
Known autoimmune disease risk loci, such as the MHC and
PTPN22 (Begovich et al., 2004; Bottini et al., 2004), have
been associated with multiple autoimmune diseases such as
type 1 diabetes, CD, and MS (Wellcome Trust Case Control
Consortium, 2007). Three of the most significant associations
identified in this MS study, of the total 332 SNPs tested, were
originally associated with CD (Barrett et al., 2008; rs2301436; OR
= 1.21) and RA (Kochi et al., 2010; Stahl et al., 2010; rs3093024;

OR = 1.19 and rs3093023; OR = 1.13; Table 3). SNPs rs3093024
and rs3093023 in the chemokine C-C motif receptor 6 (CCR6)
gene, which is located outside of the MHC region yet plays a
role in the immune system via B-cell maturation (Bowman et al.,
2000), are located approximately 1500 base pairs apart. At least
one of these two SNPs has been associated with RA in European-
descent (Stahl et al., 2010), Chinese (Jiang et al., 2014), and
Japanese (Kochi et al., 2010) populations with similar effect sizes
ranging from an OR of 1.13–1.19. In the present study, the two
CCR6 SNPs were associated withMS but in the opposite direction
compared with the published RA studies (Table 3).

Eight of the SNPs associated with RA at p < 0.05
were originally associated with MS (International Multiple
Sclerosis Genetics Consortium, 2011; International Multiple
Sclerosis Genetics Consortium et al., 2011; Patsopoulos et al.,
2011; rs10866713, rs12644284, rs11962089, rs6952809) and CD
(International Multiple Sclerosis Genetics Consortium et al.,
2007; Franke et al., 2010; Julià et al., 2014; rs4820425, rs6556412,
rs7807268, rs9286879) notably in regions outside of the MHC.
The protein expressed by the TRIM2 gene is part of the
tripartite motif family that plays a role in neuroprotection,
while deleterious mutations in TRIM2 are known to cause
early-onset axonal neuropathy (Ylikallio et al., 2013). SNP
rs12644284 located in TRIM2moderately contributed to extreme
MS (International Multiple Sclerosis Genetics Consortium, 2011)
in a European-descent population (OR = 2.04, allele “G”), and
was found to be associated with RA in this study (Table 3).

The two most significant associations in this study for CD
were initially identified in a meta-analysis of European-descent
populations for MS where the opposite alleles for rs1323292 (A)
and MAPK1 rs2283792 (C) contributed to MS risk (OR = 1.12
and OR = 1.10, respectively; International Multiple Sclerosis
Genetics Consortium et al., 2011). Lastly, GCH1 rs3783637(C),
associated at p= 2× 10−6 (OR= 1.10) in a GWAS conducted in
a Japanese population of RA (Okada et al., 2012), was associated
(p < 0.05) with CD in this study for the opposite allele “T.”

SNP rs2293370(T) located in an intronic region of TIMMDC1
on chromosome 3 was associated with both MS [OR = 0.27 (CI
0.09 – 0.80); p = 0.017] and CD [OR = 0.25 (CI 0.07 – 0.84);
p= 0.024] in the same directions in this study. Additionally, SNP
rs3781913(A) located within the PDE2A gene on chromosome
11 was also found to be associated with RA [OR = 0.32
(CI 0.12 – 0.83); p = 0.020] and CD [OR = 0.46 (CI 0.24 – 0.91);
p = 0.024] in the same direction.
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TABLE 2 | Previously-associated SNPs from Crohn’s disease, multiple sclerosis, and rheumatoid arthritis that replicated in the present study of European

American patients.

SNP Gene CHR CA OR (95% CI) CAFcases CAFcontrol Disease P-value

rs7714584 IRGM 5 G 2.66 (1.22–5.78) 0.19 0.09 CD 0.013

rs9271366 DQA1 6 G 2.16 (1.30–3.62) 0.22 0.14 MS 0.003

rs3135388 HLA-DRA 6 T 3.04 (1.40–6.57) 0.25 0.12 MS 0.004

rs3129889 HLA-DRB1 6 G 3.04 (1.40–6.57) 0.25 0.12 MS 0.004

rs2243123 IL12A 3 C 2.13 (1.16–3.93) 0.36 0.29 MS 0.015

rs2523393 HLA-B 6 T 2.77 (2.50–3.08) 0.77 0.56 MS 0.018

rs2546890 IL12B 5 A 1.75 (1.32–2.32) 0.63 0.52 MS 0.022

rs12368653 AGAP2, CYP27B1 12 A 1.98 (1.10–3.60) 0.57 0.47 MS 0.022

rs4409785 RGS14 11 C 1.81 (1.07–3.09) 0.20 0.16 MS 0.027

rs7255066 PVR 19 C 1.64 (1.03–2.60) 0.39 0.28 MS 0.035

rs7090512 IL2RA 10 C 1.65 (1.01–2.68) 0.34 0.30 MS 0.045

rs7765379 HLA-DRB1 6 G 2.40 (1.13–5.13) 0.24 0.11 RA 0.023

Tests of association were performed using logistic regression assuming an additive log model adjusted for age and sex. The threshold for significance was 0.05. For each replicated

test of association, the rs number, nearest gene, chromosome (CHR), coded allele (CA), odds ratio (95% confidence interval), coded allele frequency (CAF) for cases and controls,

associated disease, and p-value are given.

Coded allele (CA).

Coded allele frequency (CAF).

Odds ratio (OR).

95% confidence intervals (CI).

Joint Modeling of MS, RA, and CD
By combining cases for MS, RA, and CD in a joint model, we
increase power to detect an association while simultaneously
testing for variants that correlate with all three phenotypes. In an
ordinal regression analysis adjusted for age and sex, 22 SNPs were
associated with all three phenotypes at p < 0.05 (Supplemental
Table 5). Of the ten most significant results (Table 4), five
were originally identified in CD, three in RA, and two in MS
(Supplemental Table 1). Only two of these ten were located within
the HLA region of chromosome 6 suggesting other genomic
regions and pathways are contributing to autoimmunity in this
study population.

Pathway Analysis
Standard approaches for genetic association studies limit small,
targeted studies due to power issues and lack of genomic coverage
that in turn can hinder the identification of modest main effects
and biologically relevant associations. Pathway analysis was
performed with results from the joint model in order to increase
power and identify pathways which may be driving generalized
autoimmunity. Using PARIS, we identified two KEGG pathways
that were significantly (p < 0.05) enriched for autoimmune
disease-associated SNPs identified here. These included the
NOD-like receptor signaling pathway (p = 0.028; Supplemental
Figure 1) and the Shigellosis pathway (p = 0.015; Supplemental
Figure 2) which contain overlapping gene elements. In healthy
humans, the NOD-like receptor signaling pathway plays a role in
detecting bacterial pathogens and triggering the innate immune
system and localized inflammatory responses (Kanneganti et al.,
2007; Shaw et al., 2008). Shigella, the primary cause of bacillary
dysentery, effectively colonize the human intestines through a
type III secretion system that pumps effector proteins into host
cells that interfere with the host immune response (Ogawa et al.,

2008; Schroeder and Hilbi, 2008). Strong evidence supports that
infectious agents may lead to autoimmunity through a number of
mechanisms including “epitope spreading” in which a long term
immune response to a pathogen can lead to damage of the host
cells and release of host antigens being taken up by immune cells
and labeled as foreign (Vanderlugt and Miller, 2002; Ercolini and
Miller, 2009).

DISCUSSION

In order to determine whether common autoimmune and
immune-mediated diseases share an underlying genetic etiology,
we performed a targeted genetic association study of common
variants in MS, RA, and CD which had been implicated in
previous studies. Additionally, joint modeling of the three
phenotypes and pathway analysis was performedwhich identified
overlapping KEGG pathways involved in bacterial pathogenesis.
Although this study was underpowered to detect associations
with moderate effect sizes below 1.80, we replicated a number of
strong, well-studied associations in MS and CD.

Studies of MS have historically been confounded by the
clinical heterogeneity of the disease as well as the complex
interaction of genetics and environment in disease initiation,
progression, and severity (Davis et al., 2013; Davis and Haines,
2015). Despite these obstacles, genetic studies identified theMHC
region and theHLA genes asmajor predictors ofMS over 40 years
ago (1972). The HLA-DRB1∗15 allele is a hallmark susceptibility
locus for MS (Caillier et al., 2008), which is marked by rs3135388
(International Multiple Sclerosis Genetics Consortium et al.,
2007). Our study replicated this association at p = 0.003 with
an OR of 3.02 and risk allele frequency (RAF) of 25% in cases
and 12% in controls, similar to another publication (OR = 2.7;
RAFcases = 29.8%; RAFcontrols = 13.6%; Briggs et al., 2010).
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TABLE 3 | Common genetic variants associated with multiple autoimmune phenotypes.

SNP Gene Published phenotype Current study

phenotype

CHR CA OR (95% CI) CAFcase CAFcontrol P

rs2301436 FGFR1OP CD MS 6 A 0.38 (0.22–0.63) 0.38 0.49 0.0002

rs3093024 CCR6 RA MS 6 A 0.39 (0.23–0.66) 0.35 0.47 0.0004

rs3093023 CCR6 RA MS 6 A 0.33 (0.16–0.68) 0.33 0.47 0.002

rs9271366 HLA-DRB1 MS and CD MS 6 G 2.16 (1.29–3.62) 0.22 0.14 0.003

rs2274910 ITLN1 CD MS 1 T 0.36 (0.17–0.77) 0.20 0.34 0.008

rs2836754 RPSAP64-RPL23AP12 CD MS 21 T 1.78 (1.13–2.80) 0.46 0.35 0.011

rs13126505 BANK1 CD MS 4 A 3.09 (1.26–7.6) 0.08 0.07 0.013

rs4409785 CEP57 MS and RA MS 11 C 1.81 (1.07–3.09) 0.20 0.16 0.027

rs6457617 HLA-DQB1 RA MS 6 T 0.60 (0.37–0.96) 0.34 0.49 0.033

rs13031237 REL RA MS 2 T 1.92 (1.05–3.52) 0.46 0.36 0.034

rs13017599 NONOP2 RA MS 2 A 1.92 (1.04–3.53) 0.46 0.36 0.036

rs2076756 NOD2 CD MS 16 G 0.52 (0.28–0.97) 0.16 0.26 0.041

rs26232 C5 or f30 RA MS 5 T 1.98 (1.03–3.82) 0.39 0.31 0.042

rs9268853 HLA-DRA CD/UC MS 6 C 0.40 (0.16–0.97) 0.21 0.36 0.043

rs6448432 LOC105374540 RA MS 4 A 0.48 (0.24–0.98) 0.28 0.31 0.045

rs9286879 LOC105371618 CD MS 1 G 0.46 (0.21–0.99) 0.20 0.26 0.047

rs7765379 HLA-DRB1 CD and RA RA 6 G 2.4 (1.12–5.12) 0.24 0.11 0.023

rs10866713 IL12B MS RA 5 A 4.81 (1.20–19.31) 0.50 0.20 0.026

rs4820425 RBX1 CD RA 22 A 2.10 (1.05–4.21) 0.44 0.26 0.035

rs6556412 IL12B5 CD RA 5 A 2.23 (1.04–4.79) 0.50 0.31 0.038

rs7807268 RNA5SP249-RPL32P17 CD RA 7 G 0.12 (0.01–0.93) 0.10 0.49 0.043

rs12644284 TRIM2 MS RA 4 G 0.35 (0.12–0.97) 0.11 0.27 0.043

rs6952809 CHST12 MS RA 7 T 0.37 (0.14–0.98) 0.15 0.32 0.047

rs11962089 POPDC3 MS RA 6 G 3.10 (1.01–9.51) 0.18 0.08 0.047

rs1323292 RGS1 MS CD 1 C 2.80 (1.48–5.27) 0.36 0.16 0.001

rs2283792 MAPK1 MS CD 22 T 2.58 (1.33–5.01) 0.32 0.46 0.005

rs3780792 VAV2 MS CD 9 G 0.61 (0.41–0.92) 0.26 0.34 0.018

rs2293370 TIMMDC1 MS CD 3 T 0.24 (0.07–0.81) 0.06 0.19 0.021

rs13119723 IL21 RA CD 4 G 0.20 (0.05–0.88) 0.05 0.16 0.033

rs3781913 PDE2A RA CD 11 A 0.48 (0.25–0.95) 0.26 0.43 0.036

rs7238078 MALT1 MS CD 18 G 0.61 (0.39–0.97) 0.16 0.24 0.036

rs3783637 GCH1 RA CD 14 T 1.58 (1.01–2.47) 0.18 0.12 0.041

rs2002842 LOC105372221 RA CD 18 A 1.45 (1.01–2.08) 0.49 0.43 0.045

Tests of association were performed using logistic regression assuming a log-additive model adjusted for age and sex. Associations were considered significant at p < 0.05. For each

significant test of association, rs number, nearest gene, originally-published associated phenotype, the current study phenotype, chromosome (CHR), coded allele (CA), odds ratio (95%

confidence interval), coded allele frequency (for cases and controls), and p-value are given.

Coded allele for this study (CA).

Coded allele frequency (CAF).

Odds ratio (OR).

95% confidence intervals (CI).

While we replicated other associations between MS and
variants in the HLA genes, perhaps more interesting were
the inverse associations for SNPs that were identified in
studies of RA. These inverse associations may represent false
positive associations in the present study (a strong possibility
underscoring the small sample sizes and limited power) or
interesting complex pleiotropic or co-morbid relationships. SNPs
rs3093024 and rs3093023 are both located in the CCR6 gene
on chromosome 6. Originally identified in independent GWAS
of RA in a Chinese and Japanese population, these variants
contributed to a small increase in risk of RA within these
populations (OR = 1.12–1.13; Kochi et al., 2010; Jiang et al.,

2014). In the BioVU European American population, these
variants were associated with MS in the opposite direction
[OR = 0.39–0.43]. Both MS and RA are T helper type 1
cell (Th1)—mediated AI diseases that have inconsistently been
observed to co-occur in individuals at a rate varying from the
general populace. In a large population study utilizing the United
Kingdom General Practice Research Database, an inverse rate
of comorbidity was observed between RA and MS (Somers
et al., 2009). The opposite was observed in U.S.-based multiplex
families with MS in which RA occurred in 2% (Barcellos et al.,
2006) of cases vs. ∼1% in the general U.S. population (Helmick
et al., 2008). Additionally, a Taiwanese population study of MS
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TABLE 4 | The 10 most significant association results for the ordinal

regression joint model adjusted by age and sex.

SNP Gene Joint Model (p-value)

rs2274910 ITLN1 0.002

rs6457617 HLA-DQB1 0.004

rs1551398 Chr 8 (intergenic) 0.009

rs26232 C5 or f30 0.010

rs1323292 RGS1 0.015

rs6651252 MIR1208 - MIR3686 0.016

rs1800795 IL6 0.017

rs10734105 TCERG1L 0.017

rs7765379 HLA-DQA2 0.019

rs2542151 PTPN2 0.020

and comorbid AI diseases also found patients diagnosed with MS
were at greater risk of developing RA (OR = 4.8; Kang et al.,
2010). In chart reviews from the Vanderbilt University Medical
Center’s EHR linked to BioVU, we noted two MS patients out
of 162 (1.2%) who were diagnosed with RA. While this rate
falls within the range observed in previous studies, it should be
noted that the present numbers from BioVUmay be biased given
that medical charts were not reviewed with the intent to identify
additional overlapping AI diseases.

There were a number of factors that limited the strength of this
study, particularly the small number of strict cases available with
genetic data. Had we accepted a more lenient definition for cases,
such as including patients whose medical records contained an
ICD-9-CM code for another AI disease, we could have increased
the number of cases for RA (n= 286). By utilizing a more lenient
case definition, we are able to replicate previous RA associations
for rs6910071 [(Stahl et al., 2010); OR = 2.41 (CI 1.72–3.39);
p = 3.42 × 10−7] and rs660895 [(Plenge et al., 2007); OR = 2.21
(CI 1.60–3.03); p = 9.98 × 10−7] at a Bonferroni significance
threshold (1.5× 10−4).

The strict case definitions also may have limited our ability to
more fully describe the shared genetic architecture for these AI
and IM outcomes. That is, the case definitions explicitly excluded
patients with two or more overlapping conditions (among MS,
RA, and CD). Had this exclusion not been in place, the resulting
cases would be a mix of bona fide cases with two or more AI or
IM conditions and those who had a billing code for one AI or
IM disease but were diagnosed with another. It is well known
that many of these AI and IM patients experience a diagnostic
odyssey. Multiple sclerosis patients, for example, typically receive
an eventual differential diagnosis where laboratory tests are
ordered to rule out other conditions. More complex data mining
followed bymanual review of EHRs would be required to identify
true cases of AI or IM for study.

Another challenge unique to EHRs compared with
epidemiologic cohorts is the patient-to-patient variability
related to follow-up data. For example, Davis et al. (2013) noted
that the median follow-up time for MS patients in BioVU was
4.5 years, which is similar to the observed median follow-up
time for BioVU patients with normal electrocardiograms (5.0

years; Denny et al., 2010) and for BioVU patients with a heart
transplant (5.5 years; Oetjens et al., 2014). The range of follow-up
on a per patient basis, however, can be extreme (0–20 years
for MS patients; Davis et al., 2013). The extreme differences
in follow-up time per patient is also reflected on the number
of clinic visits available in BioVU per patient. An analysis of
∼15,000 patients in BioVU revealed an average of ∼82 clinic
visits per patients with a wide range of one to 1456 clinic visits
per patient (Crawford et al., 2015). The paucity of clinical data
for a proportion of patients in any given EHR is a known caveat
for use of these data in a research setting (Hersh et al., 2013).

For patients with adequate follow-up data, access to the rich,
longitudinal EHR data is a strength that enables identification
of patients with complex diseases that might be difficult to
extract from epidemiological cohorts. Additional work, however,
is required to better define clinical populations. Indeed, EHRs
in the United States recently adopted the 10th revision of the
International Statistical Classification of Diseases and Related
Health Problems codes (ICD-10) in response to meaningful use
encouraged in part by the Health Information Technology for
Economic and Clinical Health (HITECH) Act as part of the
American Recovery and Reinvestment Act (ARRA). Compared
with ICD-9-CM, the ICD-10 billing codes expanded from 13,000
to 68,000, offering much needed granularity for both clinical care
and research relevant to precision medicine.

The most significant individual SNP associations in the
joint model were HLA variants (Table 4) and ITLN1 (Barrett
et al., 2008; Franke et al., 2010; Liu et al., 2015) and PTPN2
(Okada et al., 2012) genes. PTPN2 is a non-receptor type
tyrosine-specific phosphatase that dephosphorylates receptor
and non-receptor protein tyrosine kinases in a diverse range of
signaling cascades that are responsible for hematopoiesis, cell
proliferation, and inflammatory response. PTPN2 also negatively
regulates a number of immune pathways responsible for T-cell
differentiation (Spalinger et al., 2015) and Interleukin-6 (IL6;
Table 4) cytokine signaling (Yamamoto et al., 2002).

Consistent evidence finds that autoimmune diseases co-occur
at an increased rate in family-based and population studies
(Barcellos et al., 2006; Eaton et al., 2007; Somers et al., 2009; Sardu
et al., 2012) suggesting that these conditions share common
genetic or environmental etiologies. Here we implicate bacterial
pathogenesis (e.g., NOD-like receptor signaling and Shigellosis)
as a common underlying susceptibility factor for MS, CD, and
RA. Individual SNPs and genes in these pathways may not
be significant at a multiple-correction threshold due to small
sample size and clinical heterogeneity as described previously.
Yet, pathway analysis takes into consideration modest effect
sizes distributed throughout genes in a pathway and increases
the likelihood of identifying relevant biological components.
Infectious pathogens have been hypothesized to play a major role
in the development of autoimmune diseases through a number
of mechanisms. A couple of these mechanisms included epitope
spreading and molecular mimicry (Ercolini and Miller, 2009).
Molecular mimicry results due to a pathogen carrying proteins,
amino acid sequence, or antigens that closely resemble host
factors which lead to T or B cells triggering an autoimmune
response (Lo et al., 2000; Paludan and Bowie, 2013).
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In conclusion, pathway analysis of a joint model
identified overlapping KEGG pathways with implications
for autoimmunity driven by bacterial pathogenesis. These
pathways have already been found in individual studies of
AI/IM diseases. Future studies with a larger clinical population
may allow for replication and fine-tuning of these results.
Longitudinal clinical or epidemiological data will be necessary
to determine whether acute or chronic infections indeed lead to
susceptibility or progression of comorbid AI/IM diseases.
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